
17
THE NIMROD/G GRID RESOURCE
BROKER FOR ECONOMICS-BASED
SCHEDULING

RAJKUMAR BUYYA AND DAVID ABRAMSON

17.1 INTRODUCTION

Computational Grids enable the coordinated and aggregated use of geographically

distributed resources, often owned by autonomous organizations, for solving large-

scale problems in science, engineering, and commerce. However, application com-

position, resource management, and scheduling in these environments are complex

undertakings [18,30]. This is due to the geographic distribution of resources that

are often owned by different organizations having different usage policies and cost

models, and varying loads and availability patterns. To address these resource

management challenges, we have developed a distributed computational economy

framework for quality-of-service (Qos)-driven resource allocation and regulation of

supply and demand for resources. The new framework offers incentive to resource

owners to participate in the Grid and motivates resource users to trade off between

time for results delivery and economic cost, namely, deadline and budget [19].

Resource management systems need to provide mechanisms and tools that realize

the goals of both service providers and consumers. Resource consumers need a utility

model, representing their resource demand and preferences, and brokers that auto-

matically generate strategies for choosing providers on the basis of this model.

Further, the brokers need to manage as many issues associated with the execution of

the underlying application as possible.

Market-Oriented Grid and Utility Computing Edited by Rajkumar Buyya and Kris Bubendorfer
Copyright � 2010 John Wiley & Sons, Inc.

371

A computational economy offers many advantages in this environment, because

it allows producers and consumers to dynamically negotiate a level of service quality

that suits them both. Moreover, when there are multiple users with conflicting

demands, they can negotiate access to resources (and thus response time) by “trading”

units of currency. A computational economy gives clients a common currency in an

otherwise totally distributed system. Service providers benefit from price generation

schemes that increase system utilization, aswell as economic protocols that help them

offer competitive services. For the market to be competitive and efficient, coordina-

tion mechanisms that help the market reach an equilibrium price are required; that is,

the market price at which the supply of a service equals the quantity demanded [8].

Numerous economic theories have been proposed in the literature, and many

commonly used economic models for selling goods and services can be employed

as negotiation protocols in Grid computing. Some of these market or social driven

economic models are shown in Table 17.1 along with the identity of the distributed

system that adopted the approach [21].

These economic models regulate the supply and demand for resources in Grid-

based virtual enterprises. We demonstrate the power of these models in scheduling

computations using the Nimrod/G resource broker on a large global Grid testbed,

called the World Wide Grid (WWG). While it is not the goal of the system to earn

revenue for the resource providers, this approach does provide an economic incentive

for resource owners to share their resources on the Grid. Further, it encourages the

emergence of a new service-oriented computing industry. Importantly, it provides

mechanisms to trade offQoS parameters, deadline, and computational cost, and offers

incentive for users to relax their requirements. For example, a user may be prepared

to accept a later deadline if the computation can be performed at a lower cost.

The rest of this chapter explores the use of an economic paradigm for Grid

computing with particular emphasis on providing the tools and mechanisms that

support economics-based scheduling. The emphasis will be placed on the Nimrod/G

resource broker that supports soft-deadline and budget-based scheduling of parameter

TABLE 17.1 Economics Models and Their Use in Some Distributed Computing

Scheduling Systems

Economic Model Adopted by

Commodity market Mungi [9], MOSIX [29], Nimrod/G [20]

Posted price Nimrod/G

Bargaining Mariposa [15], Nimrod/G

Tendering or contract-net model Mariposa

Auction model Spawn [2], Popcorn [17]

Bid-based proportional resource sharing Rexec and Anemone [1]

Community and coalition Condor and SETI@Home [28]

Cooperative bartering MojoNation [16]

Monopoly and oligopoly Nimrod/G broker can be used to choose

between resources offered at different

quality and prices

372 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

sweep applications [18,32]. Depending on the users’ quality-of-service (QoS)

requirements, the resource broker dynamically leases Grid services at runtime

depending on their cost, quality, and availability. The broker supports the optimization

of time or cost within specified deadline and budget constraints. The results of a series

of scheduling experiments that we conducted on theWWG testbed using the Nimrod

broker will be reported.

17.2 THE NIMROD/G GRID RESOURCE BROKER

17.2.1 Objectives and Goals

Nimrod/G [20,31] is a tool for automated modeling and execution of parameter

sweep applications (parameter studies) over global computational Grids [3–7]. It

provides a simple declarative parametric modeling language for expressing para-

metric experiments. A domain expert can easily create a plan for a parametric

experiment and use the Nimrod/G system to deploy jobs on distributed resources

for execution. It has been used for a very wide range of applications over the years,

ranging from quantum chemistry [32] to policy and environmental impact [33].

Moreover, it uses novel resource management and scheduling algorithms based on

economic principles. Specifically, it supports user-defined deadline and budget

constraints for schedule optimisations and manages supply and demand of resources

in the Grid using a set of resource-trading services [19].

Nimrod/G provides a persistent and programmable task-farming engine (TFE)

that enables “plugging” of user-defined schedulers and customized applications or

problem-solving environments (e.g., ActiveSheets) in place of default components.

The task-farming engine is a coordination point for processes performing resource

trading, scheduling, data and executable staging, remote execution, and result

collation. The Nimrod/G project builds on the early work [5,7] that focused on

creating tools that help domain experts compose their legacy serial applications for

parameter studies and run them on computational clusters and manually managed

Grids. The Nimrod/G system automates the allocation of resources and application

scheduling on the Grid using economic principles in order to provide some measur-

able quality of service (QoS) to the end user. Thus, the focus of this work is within an

intersection area of Grid architectures, economic principles, and scheduling optimi-

zations (see Fig. 17.1), which is essential for pushing the Grid into the mainstream

computing.

17.2.2 Services and End Users

The Nimrod/G system provides tools for creating parameter sweep applications and

services for management of resources and scheduling applications on the Grid.

It supports a simple declarative programming language and associated portal andGUI

tools for creating scripts and parameterization of application input data files, and

a Grid resource broker with programmable entities for scheduling and deploying

THE NIMROD/G GRID RESOURCE BROKER 373

jobs on distributed resources. The Nimrod/G resource broker is made up of a number

of components—namely, a persistent and programmable task farming engine, a

schedule advisor, and a dispatcher—whose functionalities are discussed later. It

also provides job management services that can be used for creating user-defined

schedulers, steering and monitoring tools, and customized applications. Therefore,

the end users that benefit from Nimrod/G tools, protocols, and services are

. Domain Experts. This group includes scientific, engineering, and commercial

users with large-scale dataset processing requirements. Parameter applications

can use Nimrod/G tools to compose them as coarse-grained data-parallel,

parameter sweep applications for executing on distributed resources. They can

also take advantage of the Nimrod/G broker features to trade off between a

deadline and the cost of computation while scheduling application execution

on the Grid. This quality of service aspect is important to end users, because the

results are useful only if they are returned in a timely manner.

. Problem-Solving Environments Developers. Application developers can Grid-

enable their applications with their own mechanisms to submit jobs to the

Nimrod/G resource broker at runtime depending on user requirements for

processing on the Grid. This gives them the ability to create applications capable

of directly using Nimrod/G tools and job management services, which, in turn,

enables their applications for Grid execution.

. TaskFarmingorMaster-WorkerProgrammingEnvironmentsDesigners. These

users can focusondesigninganddevelopingeasy-to-use andpowerful application

creation primitives for task farming and master-work style programming model,

developing translators and application execution environments by taking advan-

tage of Nimrod/G runtime machinery for executing jobs on distributed Grid

resources. Other tools, like Nimrod/O [3,4] use the services of Nimrod/G, for

example, to launch jobs on Grid resources.

Nimrod-G

WW Grid

Figure 17.1 QoS-based resource management: intersection of economic, scheduling, and

Grid worlds.

374 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

. Scheduling Researchers. The scheduling policy developers generally use si-

mulation techniques and tools such as GridSim [14] for evaluating performance

of their algorithms. In simulation, it is very difficult to capture the complete

property and behavior of a real-world system; hence, evaluation results may be

inaccurate. Accordingly, to prove the usefulness of scheduling algorithms on

actual systems, researchers need to develop runtime machinery, which is a

resource-intensive and time-consuming task. This can be overcome by using

Nimrod/G broker programmable capability. Researchers can use Nimrod/G job

management protocols and services to develop their own scheduler and asso-

ciated scheduling algorithms. The new scheduler can be used to run actual

applications on distributed resources and then evaluate the ability of scheduling

algorithms in optimally mapping jobs to resources.

17.2.3 Architecture

Nimrod/G leverages services provided by Grid middleware systems such as Globus

and Legion. The middleware systems provide a set of low-level protocols for secure

and uniform access to remote resources, and services for accessing resources

information and storage management. The modular and layered architecture of

Nimrod/G is shown in Figure 17.2. The Nimrod/G architecture follows an hourglass

Globus Legion

Fabric

Nimrod-G
Broker

Nimrod-G
ClientsP-Tools (GUI/Scripting)

(parameter_modeling)

Legacy Applications

P2P GTS

Farming Engine

Dispatcher & Actuators

Schedule
Advisor

Trading
Manager

Grid
Explorer

Customised Apps
(Active Sheet)

Monitoring and
Steering Portals

Algorithm1

AlgorithmN

Middleware

. . .

Computers Storage Networks InstrumentsLocal Schedulers

G-Bank. . .

Agents

Resources

Programmable Entities Management

Jobs Tasks

. . .

AgentScheduler JobServer

PC/WS/Clusters Radio TelescopeCondor/LL/NQS . . .Database

Meta-Scheduler

Channels

. . .

Database

Condor GMD

Condor-AGlobus-A Legion-A P2P-A

Figure 17.2 A layered architecture of the Nimrod/G system.

THE NIMROD/G GRID RESOURCE BROKER 375

design model that allows its implementation on top of different middleware systems

and enables the usage of its services by multiple clients and applications.

The key components of Nimrod/G resource broker are:

. Nimrod/G clients, which can be

Tools for creating parameter sweep applications

Steering and control monitors

Customized end-user applications (e.g., ActiveSheets [6])

. The Nimrod/G resource broker, which consists of

A task-farming engine (TFE)

A scheduler that performs resource discovery, trading, and scheduling

A dispatcher and actuator

Agents for managing the execution of jobs on resources

The Nimrod/G broker architecture leverages services provided by lower-level

different Grid middleware solutions to perform resource discovery, trading, and

deployment of jobs on Grid resources.

17.2.4 Nimrod/G Clients

17.2.4.1 Tools for Creating Parameter Sweep Applications. Nimrod supports

GUI tools and declarative programming language that assist in creation of

parameter sweep applications [7]. They allow the user to (1) parameterize input

files; (2) prepare a plan file containing the commands that define parameters and their

values; (3) generate a run file, which converts the generic plan file to a detailed list

of jobs; and (4) control and monitor execution of the jobs. The application execution

environment handles online creation of input files and command line arguments

through parameter substitution.

17.2.4.2 Steering and Control Monitors. These components act as a user interface

for controlling and monitoring a Nimrod/G experiment. The user can vary constraints

related to time and cost that influence the direction the scheduler takes while selecting

resources. It serves as a monitoring console and lists the status of all jobs, which a

user can view and control. A Nimrod/G monitoring and steering client snapshot is

shown in Figure 17.3. Another feature of the Nimrod/G client is that it is possible to

run multiple instances of the same client at different locations. This means the

experiment can be started on one machine and monitored on another machine by the

same or a different user, and the experiment can be controlled from yet another

location. We have used this feature to monitor and control an experiment from

Monash University and Pittsburgh Supercomputing Centre at Carnegie-Mellon

University simultaneously during HPDC-2000 research demonstrations.

17.2.4.3 Customized End-User Applications. Specialized applications can be

developed to create jobs at runtime and add jobs to the Nimrod/G engine for

376 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

processing on the Grid. These applications can use the Nimrod/G job management

services (APIs and protocols described in Ref. 27) for adding and managing jobs.

One such application is ActiveSheets [6], an extended Microsoft Excel spreadsheet

that submits cell functions as jobs to the Nimrod/G broker for parallel execution on

the Grid (see Fig. 17.4). Another example is the Nimrod/O system, a tool that uses

nonlinearoptimizationalgorithms to facilitate automaticoptimaldesign[3,4].This tool

has been used on a variety of case studies, including antenna design, smog modeling,

durability optimization, airfoil design, and computational fluid dynamics [4].

Figure 17.3 A snapshot of Nimrod/G execution monitoring–steering client.

Figure 17.4 ActiveSheet: spreadsheet processing on the Grid using the Nimrod/G broker.

THE NIMROD/G GRID RESOURCE BROKER 377

17.2.5 The Nimrod/G Grid Resource Broker

The Nimrod/G resource broker is responsible for determining the specific require-

ments that an experiment places on the Grid and performing resource discovery,

scheduling, dispatching jobs to remote Grid nodes, starting and managing job

execution, and gathering results back to the home node. The submodules of our

resource broker are the task-farming engine, the scheduler that consists of a Grid

explorer for resource discovery, a schedule advisor backed with scheduling algo-

rithms and a resource trading manager, a dispatcher and an actuator for deploying

agents on Grid resources, and agents for managing execution of Nimrod/G jobs on

Grid resources. The interaction between components of the Nimrod/G runtime

machinery and Grid services during runtime is shown in Figure 17.5. The machine

on which the broker runs is called the root node, the machine (e.g., a cluster master

node) that acts as a front end to a Grid resource and forwards the user jobs to a

queuing system or forks them for execution is called the gatekeeper node, and the

machine (e.g., cluster worker node) that executes the user job is called the computa-

tional node.

17.2.5.1 The Task-Farming Engine (TFE). The Nimrod/G task-farming engine

is a persistent and programmable job control agent that manages and controls an

experiment. The farming engine is responsible for managing the execution of

parameterized application jobs, as well as the actual creation of jobs, the

maintenance of job status, and providing a means for interaction between the

clients, the schedule advisor, and the dispatcher. The scheduler and dispatcher

respectively interact with the TFE to map jobs to resources and deploy on them;

that is, the TFE manages the experiment under the direction of schedule advisors,

Grid Info
servers

Resource
Discovery

Queuing
System

Process
server

Resource
allocation

(local)

User
process

File access

(a) (b) (c)

I/O
server

I/O
server

Nimrod
AgentDispatcher

Scheduler

Farming
Engine

Grid Trade
Server

“Do this in 30min. for $10?”

Figure 17.5 Work flow in the Nimrod/G runtime environment: (a) root node; (b) gatekeeper

node; (c) computational node.

378 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

and then instructs the dispatcher to deploy an application job for execution on the

selected resource.

The TFE maintains the state of an entire experiment and ensures that it is

recorded in persistent storage. This helps in keeping track of the experiment

progress (e.g., status of jobs execution and resources status) and allows the

experiment to be restarted if the root node fails without the need for execution

of jobs that are already executed. The TFE exposes interfaces for job, resource, and

task management along with the job-to-resource mapping APIs and protocols [27].

The developers of scheduling algorithms can use these interfaces to implement their

own schedulers rapidly by taking advantage of Nimrod/G TFE and dispatcher

capability without concern for the complexity of low-level remote execution

mechanisms.

The programmable capability of the task-farming engine enables “plugging” of

user-defined schedulers and customized clients or problem-solving environments

(e.g., ActiveSheets [6]) in place of the default components. The task-farming engine is

a coordination point for processes performing resource trading, scheduling, data and

executable staging, remote execution, and result collation.

17.2.5.2 The Scheduler. The scheduler is responsible for resource discovery,

resource trading, resource selection, and job assignment. The resource discovery

algorithm interacts with an information service [the metacomputing directory service

(MDS) in Globus], identifies the list of authorized and available machines, trades for

resource access cost, and keeps track of resource status information. The resource

selection algorithm is responsible for selecting those resources that meet the deadline

and budget constraints alongwith optimization requirements. Nimrod/G incorporates

three different algorithms (discussed in Section 17.4 for deadline/budget-constrained

scheduling [22]).

17.2.5.3 The Dispatcher and Actuators. The dispatcher triggers appropriate

actuators—depending on the type of middleware running on resources—to deploy

agents on Grid resources and assign one of the resource-mapped jobs for execution.

Even though the schedule advisor creates a schedule for the entire duration according

to user requirements, the dispatcher deploys jobs on resources periodically, depending

on the load and the number of free CPUs available. When the dispatcher decides to

deploy computation, it triggers the appropriate actuator depending on middleware

service. For example, a Globus-specific actuator is required for Globus resources,

and a Legion-specific actuator is required for Legion resources.

17.2.5.4 Agents. Nimrod/G agents are deployed on Grid resources dynamically at

runtime depending on the scheduler’s instructions. The agent is submitted as a job to

the resource process server (e.g., GRAM gatekeeper for a resource running Globus),

which then submits to the local resource manager (fork manager in case of time-share

resources and queuing system in case of space-shared resource) for starting its

execution. The agent is responsible for setting up the execution environment on

a given resource for a user job. It is responsible for transporting the code and data to

THE NIMROD/G GRID RESOURCE BROKER 379

The important parameters of computational economy that can inßuence the way
resource scheduling is done are

. Resource cost (set by its owner)

. Price (that the user is willing to pay)

. Deadline (the period by which an application execution needs to be completed)

The scheduler can use the information gathered by a resource discoverer and also
negotiate with resource owners to establish service price. The resource that offers
the best price and meets resource requirements can eventually be selected. This can be
achieved by resource reservation and bidding. If the user deadline is relaxed, the
chances of obtaining low-cost access to resources are high. The cost of resources
can vary with time, and the resource owner will have the full control over deciding
access cost. Further, the cost can vary from one user to another. The scheduler can
even solicit bids from resource providers in an open market, and select the feasible
service provider(s). To accomplish this, we need scheduling algorithms that take the
application processing requirements, Grid resource dynamics, and the user quality-
of-service (QoS) requirements such as the deadline, budget, and their optimization
preference into consideration. In the next section, we discuss deadline/budget-
constrained (DBC) algorithms that we developed for scheduling parameter sweep
applications on globally distributed Grid resources.

17.4 SCHEDULING ALGORITHMS

The parameter sweep applications, created using a combination of task and data-
parallel models, contain a large number of independent jobs operating different
datasets. A range of scenarios and parameters to be explored are applied to the
program input values to generate different datasets. The programming and execution
model of such applications resemble the single-program multiple-data (SPMD)
model. The execution model essentially involves processingN independent jobs
(each with the same task speciÞcation, but a different dataset) onM distributed
computers, whereN is, typically, much larger thanM.

When the user submits a parameter sweep application containingN tasks along
with QoS requirements, the broker performs the following activities:

1. Resource discoveryÑidentifying resources and their properties and then
selecting resources capable of executing user jobs.

2. Resource tradingÑnegotiating and establishing service access cost using a
suitable economic model.

3. SchedulingÑselect resources that Þt user requirements usingscheduling
heuristic/algorithmand map jobs to them.

4. Deploy jobs on resources (dispatcher).
5. Monitor and steer computations.

SCHEDULING ALGORITHMS 381

6. Perform load profiling for future usage.

7. When the job execution is finished, gather results back to the user home

machine (dispatcher).

8. Record all resource usage details for payment processing purpose.

9. Perform rescheduling—repeat steps 3–8 until all jobs are processed and the

experiment is within the deadline and budget limit.

10. Perform cleanup and postprocessing, if required.

The high-level steps for scheduling with deadline and budget constraints are shown in

Figure 17.6.

The scheduling and orchestration of the execution of parameter sweep applications

on worldwide distributed computers appear simple, but complexity arises when users

place QoS constraints such as deadline (execution completion time) and computation

cost (budget) limitations. Such a guarantee of service is difficult to provide in a Grid

environment since its resources are shared, heterogeneous, distributed in nature, and

ownedby different organizations having their ownpolicies and chargingmechanisms.

In addition, scheduling algorithms need to adapt to the changing load and resource

availability conditions in the Grid in order to achieve performance and at the same

time meet the deadline and budget constraints. In our Nimrod/G application-

level resource broker (also called an application-level scheduler) for the Grid, we

have incorporated three adaptive algorithms for deadline and budget constrained

scheduling:

. Cost optimization, within time and budget constraints

. Time optimization, within time and budget constraints

. Conservative time optimization, within time and budget constraints

The role of deadline and budget constraints in scheduling and the objectives of

different scheduling algorithms are listed in Table 17.2.

We have developed another new algorithm, called cost–time optimization

scheduling, which extends the first two (cost–time optimization) scheduling algo-

rithms. This new algorithm and the performance evaluation results are discussed in

Section 17.6.

Discover Discover
ResourcesResources

Distribute JobsDistribute Jobs

Establish Establish
RatesRates

Meet requirements ? Remaining Meet requirements ? Remaining
Jobs, Deadline, & Budget ?Jobs, Deadline, & Budget ?

Evaluate & Evaluate &
RescheduleReschedule

Discover Discover
More More

ResourcesResources

Compose & Compose &
ScheduleSchedule

Figure 17.6 High-level steps for adaptive scheduling used in the Nimrod/G broker.

382 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

Thetime optimization schedulingalgorithm attempts to complete the experiment
as quickly as possible, within the budget available. A description of the core of the
algorithm is as follows:

1. For each resource, calculate the next completion time for an assigned job,
taking into account previously assigned jobs and job consumption rate.

2. Sort resources by next completion time.
3. Assign one job to the Þrst resource for which the cost per job is less than or

equal to the remaining budget per job.
4. Repeat steps 1Ð3 until all jobs are assigned.

Thecost optimization schedulingalgorithm attempts to complete the experiment
as economically as possible within the deadline:

1. Sort resources by increasing cost.
2. For each resource in order, assign as many jobs as possible to the resource,

without exceeding the deadline.

Theconservative time optimizationscheduling algorithm attempts to complete the
experiment within the deadline and cost constraints, minimising the time when higher
budget is available. It spends the budget cautiously and ensures that a minimum of
Òthe budget per jobÓ from the total budget is available for each unprocessed job:

1. Split resources as to whether cost per job is less than or equal to the budget per
job.

2. For the cheaper resources, assign jobs in inverse proportion to the job
completion time (e.g., a resource with completion time¼5 gets twice as
many jobs as a resource with completion time¼10).

3. For the more expensive resources, repeat all steps (with a recalculated budget
per job) until all jobs are assigned.

Note that the implementations of all the algorithms described above contain extra
steps for dealing with the initial startup (when the average completion times are
unknown), and for when all jobs cannot be assigned to resources (infeasible
schedules). Detailed steps of the above mentioned scheduling heuristics are described
in Section 17.6.

TABLE 17.2 Deadline/Budget-Constrained Scheduling Algorithms and Objectives

Scheduling
Algorithm Strategies

Execution Time
(Not beyond the Deadline)

Execution Cost
(Not beyond the Budget)

Cost optimization Limited by deadline Minimize
Time optimization Minimize Limited by budget
Conservative time optimization Limited by deadline Limited by budget

SCHEDULING ALGORITHMS 383

Resource discovery Resource discovery involves discovering appropriate resources and

their properties that match the user’s requirements; we maintain

resource listings for Globus, Legion, and Condor and their static

and dynamic properties are discovered using Grid information

services; for example, in case of Globus resources, we query

Globus LDAP-based GRIS server for resource information

Resource trading

and market

models

Nimrod/G broker architecture is generic enough to support various

economic models for price negotiation and using the same in

developing application schedules

Performance

prediction

Nimrod/G scheduler performs user-level resource capability

measurement and load profiling by measuring and establishing

the job consumption rate

Scheduling

algorithms

Deadline/budget-based constraint (DBC) scheduling performed

by Nimrod/G schedule advisor; Along with DBC scheduling, we

support further optimization of time-, cost-, or surplus-driven

divide-and-conquer in scheduling

Remote job

submission

The Nimrod/G dispatcher performs deployment of Nimrod/G

agents using Globus GRAM, Legion, or Condor commands; the

agents are responsible for managing all aspects of job execution

Staging programs

and data on

remote resources

In the case of Legion and Condor, it is handled by their I/O

management systems; onGlobus resources, we use http protocols

for fetching required files

Accounting

(broker level)

Nimrod/G agents perform accounting tasks such as measuring

resource consumption, and the scheduler performs the entire

application-level accounting

Monitoring and

steering

Nimrod/G monitoring and steering client

Problem-solving

environments

ActiveSheets and Nimrod-O are Grid-enabled using the Nimrod/G

broker job management services

Execution testbed The World Wide Grid (WWG) having resources distributed across

five continents

TABLE 17.3 (Continued)

Nimrod/G Module Implementation and Grid Technologies Used

While submitting applications to the broker, user requirements such as deadline

and budget constraints need to be set and start application execution. These con-

straints can be changed at any time during execution. The complete details on

application parameterization and jobs management are maintained in the database.

In the past the database was implemented as a file-based hierarchical database. In

the latest version of Nimrod/G, the TFE database is implemented using a standard

“relational” database management system.

The commodity technologies and software tools used in the Nimrod/G imple-

mentation include the C and Python programming languages, the Perl scripting

language, SQL, and Embedded C for database management. The PostgreSQL

database system is used for management of the TFE database and its interaction

with other components.

IMPLEMENTATION ISSUES AND TECHNOLOGIES USED 385

17.6 SCHEDULING EVALUATION ON NIMROD/G

SIMULATED TEST QUEUES

In addition to accessing real computational resources, Nimrod can also simulate the

execution of jobs on a test queue. These simulated queues are useful for testing

the scheduling algorithms, since their behavior can be controlled very precisely. A test

queue runs each submitted job in succession, and the apparent wall clock time and

reported CPU usage can be controlled exactly. It simulates job execution by waiting

for a job length period in “real time,” and it is assumed that each test queue has a single

CPU. This feature is meant for a simple testing of scheduling algorithms incorporated

into the Nimrod/G broker. For a detailed performance evaluation, discrete-event

simulation tools such GridSim are used (discussed in the next two sections).

For this simulation, we created experiments containing 100 jobs, each with a 90 s

runtime, giving a total computation time of 9000 s. For each experiment, we created

10 test queues with different (but fixed) access costs of 10, 12, 14, 16, 18, 20, 22, 24,

26, and 28 G$/(CPU�s). The optimal deadline for this experiment is achieved when

each queue runs 10 jobs in sequence, giving a runtime of 900 s for the 100 jobs.

We selected three deadlines: 990 s (the optimal deadline plus 10%), 1980 s

(990� 2), and 2970 s (990� 3). The 10% allowance allows for the fact that although

the queues are simulated, and behave perfectly, the standard scheduler has some

delays built in.

We selected three values for the budget. The highest is 252,000 units, which is the

amount required to run all jobs on the most expensive queue. Effectively, this allows

the scheduler full freedom to schedule over the queues with no consideration for

the cost. An amount 171,000 G$ is the budget required to execute 10 jobs on each of

the queues. Finally, the lowest budget of 126,000 G$ is the budget required to execute

20 jobs on each of the five cheapest queues. Note that for this value, the deadline of

990 s is infeasible, and the deadline of 1980 s is the optimal deadline plus 10%.

Table 17.4 summarizes results for each combination of scheduling algorithm,

deadline and budget, and the resulting percentage of completed jobs, the total runtime,

and the final cost. The jobs marked “infeasible” have no scheduling solution that

enables 100% completion of jobs. The jobs marked “hard” have only one scheduling

solution.

Queue behavior is analyzed by examining queue usage over the period of the

experiment. For the cost optimization algorithm, Figure 17.7 shows the node usage for

a deadline of 1980s. After an initial spike, during which the scheduler gathers

information about the queues, the scheduler calculates that it needs to use the four

or five cheapest queues only in order to satisfy the deadline. (Actually, it requires

exactly five, but the initial spike reduces the requirements a little.) Note that the

schedule is similar, no matter what the allowed budget is. Since we are minimizing

cost, the budget plays little part in the scheduling, unless the limit is reached. This

appears to have happened for the lowest budget, where the completion rate was 97%.

The budget of 126,000 units is only enough to complete the experiment if the five

cheapest nodes are used. Because of the initial spike, this experiment appears to have

run out of money. The other experiments also did not complete 100% of the jobs, but

386 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

different budgets. The schedule with a very large budget is equivalent to the time
optimization algorithm. The schedule with the low budget is almost the same as the
cost optimization algorithm.

17.7 SCHEDULING EXPERIMENTS ON THE WORLDWIDE GRID

We have performed a number of deadline- and budget-constrained scheduling
experiments with different requirements at different times by selecting different sets
of resources available in the WWG [23] testbed during each experiment. They can be
categorized into the following scenarios:

. Cost optimization scheduling during Australian peak and off-peak times

. Cost and time optimization scheduling using cheap local and expensive remote
resources

We brießy discuss the WWG testbed followed by a detailed discussion of these
scheduling experiments.

17.7.1 The WWG Testbed

To enable our empirical research and experimentations in distributed computational
economy and Grid computing, we created and expanded a testbed called theWorld
Wide Grid(WWG) in collaboration with colleagues from numerous organizations
around the globe. A pictorial view of the WWG testbed depicted in Figure 17.10
shows the name of the organization followed by type of computational resource they
have shared. Interestingly, the contributing organizations and the WWG resources
themselves are located in Þve continents: Asia, Australia, Europe, North America,
and South America. The organizations whose resources we have used in scheduling
experiments reported in this chapter are Monash University (Melbourne, Australia),
Victorian Partnership for Advanced Computing (Melbourne, Australia), Argonne
National Laboratories (Chicago, USA), University of Southern CaliforniaÕs Informa-
tion Sciences Institute (Los Angeles, USA), Tokyo Institute of Technology (Tokyo,
Japan), National Institute of Advanced Industrial Science and Technology (Tsukuba,
Japan), University of Lecce (Italy), and CNUCEÑInstitute of the Italian National
Research Council (Pisa, Italy), Zuse Institute Berlin (Berlin, Germany), Charles
University, (Prague, Czech Republic), University of Portsmouth (UK), and University
of Manchester (UK). In Nimrod/G, these resources are represented using their
Internet hostnames.

The WWG testbed contains numerous computers with different architectures,
capabilities, and conÞgurations. They include PCs, workstations, SMPs, clusters,
and vector supercomputers running operating systems such as Linux, Sun Solaris,
IBM AIX (Advanced IBM Unix), SGI IRIX (Silicon Graphics UNIX-like
Operating System), and Compaq Tru64. Further, the systems use a variety of
job management systems such as OS-Fork, NQS (Network Queueing System),

SCHEDULING EXPERIMENTS ON THE WORLDWIDE GRID 389

Condor, RMS, PBS (Portable Batch System), and LSF (Load Sharing Facility). These

system characteristics can be identified by accessing the Grid Information Service

(GIS) provided by middleware systems such as Globus running on each resource.

Most of the resources in the WWG testbed support secure remote access through

the Globus system and a Linux cluster at Virginia (USA) is managed using the Legion

system. The Solaris workstation fromwhere this scheduling experiment is performed

runs Globus, Legion, and Condor systems along with the Nimrod/G resource broker.

At runtime, the Nimrod/G agents are deployed on resources for managing the

execution of jobs.

The properties of WWG testbed resources selected for use in scheduling experi-

ments are discussed in the respective sections. To deploy applications on the Grid

using the Nimrod/G broker, the users need to supply the plan that defines application

paramterization and task specification, the list of resources that can possibly be

utilized, and their QoS requirements such as the deadline, budget, and optimization

strategy. The broker discovers the properties of resources using the GIS (e.g., GRIS in

the case of Globus) running on them and selects the resources that meet various

constraints such as the cost and performance. It also ensures that the application code

is available for the target resource architecture. After the selection of resources,

the broker maps application jobs to resources using suitable scheduling algorithms.

The jobs are then deployed on the Grid by the Nimrod/G dispatcher. To facilitate the

tracing of experiments for performance evaluation, the Nimrod/G scheduler records

the mapping of jobs and their status at every scheduling event.

Given that the WWG testbed has been used in numerous scheduling experiments

with computational economy and real applications (like molecular modeling for drug

design), we believe that it truly represents a blueprint of an emerging scalable Grid

Globus+Legion
GRACE_TS

Australi a

Monash U. : Cluster

VPAC: Alpha

Solaris WS

Nimrod/G

Globus +
GRACE_TS

Europ e
ZIB: T3E/Onyx
AEI: Onyx
Paderborn: HPCLine
Lecce: Compaq SC
CNR: Cluster
Calabria: Cluster
CERN: Cluster
CUNI/CZ: Onyx
Pozman: SGI/SP2
Vrije U: Cluster
Cardiff: Sun E6500
Portsmouth: Linux PC
Manchester: O3K

Globus +
GRACE_TS

Asi a

Tokyo I-Tech.: Ultra WS
AIST, Japan: Solaris

Cluster
Kasetsart, Thai: Cluster
NUS, Singapore: O2K

Globus/Legion
GRACE_TS

North Ameri ca

ANL: SGI/Sun/SP2
USC-ISI: SGI
UVa: Linux Cluster
UD: Linux cluster
UTK: Linux cluster
UCSD: Linux PCs
BU: SGI IRIX

Internet

Globus +
GRACE_TS South Amer ica

Chile: Cluster

WW GridWW Grid

Figure 17.10 The WWG testbed.

390 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

maintained on each resource by its owner. The resource cost database contains access

cost (price) that resource owners like to charge to all their Grid users at different times

of the day. The access price generally differs from user to user and time to time.

17.7.2.2 Parameter Sweep Application. Wehave created a hypothetical parameter

sweep application (PSA) that executes a CPU-intensive program with 165 different

parameter scenarios or values. The program calc takes two input parameters and

saves results into a file named “output.” The first input parameter angle_degree

represents the value of angle in degree for processing trigonometric functions.

The program calc needs to be explored for angular values from 1 to 165�. The
second parameter time_base_value indicates the expected calculation

complexity in minutes plus 0–60 s positive deviation. That means that the

program calc is expected to run for anywhere between 5 and 6min on resources

with some variation depending on resource capability. A plan file modeling this

application as a parameter sweep application using the Nimrod/G parameter

specification language is shown in Figure 17.11. The first part defines parameters,

and the second part defines the task that needs to be performed for each job. As the

parameter angle_degree is defined as a range parameter typewith values varying

from 1 to 165 in step 1, it leads to the creation of 165 jobs with 165 different input

parameter values. To execute each job on a Grid resource, the Nimrod/G resource

broker, depending on its scheduling strategy, first copies the program executable(s)

and necessary data to a Grid node, then executes the program, and finally copies

results back to the user home node and stores output with job number as file extension.

17.7.2.3 Scheduling Experiments. The experiments were run twice, once during

the Australian peak time, when the US machines were in their off-peak times,

and again during the US peak, when the Australian machine was off-peak. The

experiments were configured to minimize the cost, within a one-hour deadline.

This requirement instructs the Nimrod/G broker to use the cost optimization

scheduling algorithm in scheduling jobs for processing on the Grid.

#Parameters Declaration
parameter angle_degree integer range from 1 to 165 step 1;
parameter time_base_value integer default 5;

#Task DeÞnition
task main

#Copy necessary executables depending on node type
copy calc. $OS node:calc
#Execute program with parameter values on remote node
node:execute ./calc $angle_degree $time_base_value
#Copy results file to use home node with jobname as extension
copy node:output ./output.$jobname

endtask

Figure 17.11 Nimrod/G parameter sweep processing specification.

392 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

The number of jobs in execution or queued on resources during the Australian peak

and off-peak time scheduling experimentations is shown in Figures 17.12 and 17.13,

respectively. The results for the Australian peak experiment show the expected typical

results. After an initial calibration phase, the jobs were distributed to the cheapest

machines for the remainder of the experiment. This characteristic of the scheduler

isclearlyvisibleinbothexperiments.IntheAustralianpeakexperiment,aftercalibration

period, the scheduler excluded the usage ofAustralian resources as theywere expensive

and the scheduler predicted that it could still meet the deadline using cheaper resources

0

2

4

6

8

10

12

0 1 3 4 6 8 9 10 12 14 15 17 19 20 21 22 24 25 27 28 30 31 33 34 36 37 38 40 41 43 44 46 47 49 51 52 54

Time (minutes)

Jo
bs

Linux cluster - Monash (20) Sun - ANL (5) SP2 - ANL (5) SGI - ANL (15) SGI - ISI (10)

Figure 17.12 Computational scheduling during Australian peak time (US off-peak time).

0

2

4

6

8

10

12

0 3 4 7 8 10 13 15 17 19 21 23 26 28 31 32 35 37 39 41 43 46 48 50 53 55 57 60

Time (minutes)

Jo
bs

Linux cluster - Monash (5) Sun - ANL (10) SP2 - ANL (10) SGI - ANL (15) SGI - ISI (20)

Figure 17.13 Computational scheduling during Australian off-peak time (US peak time).

SCHEDULING EXPERIMENTS ON THE WORLDWIDE GRID 393

fromUS resources, which were in off-peak time phase. However, in theAustralian off-

peak experiment, the scheduler never excluded the usage of Australian resources and

excluded theusageofsomeof theUSresources,as theywereexpensivecomparativelyat

that time (USinpeak-timephase).The results for theUSpeakexperimentare somewhat

more interesting (see Fig. 17.13). When the Sun-ANL machine becomes temporarily

unavailable, the SP2, at the same cost,was also busy, so amore expensive SGI is used to

keep the experiment on track to complete before the deadline.

When the scheduling algorithm tries to minimize the cost, the total cost Australian

peak-time experiment is 471,205G$ and the off-peak time is 427,155G$. The result is

that costs were quite low in both cases. An experiment using all resources, without

the cost optimization algorithm during the Australian peak, costs 686,960 G$ for the

sameworkload. The cost difference indicates a saving in computational cost, and it is

certainly a successful measure of our budget/deadline-driven scheduling on the Grid.

The number of computational nodes (CPUs) in use at different times during the

execution of scheduling experimentation at Australian peak time is shown in

Figure 17.14. It can be observed that in the beginning of the experiment (calibration

phase), the scheduler had no precise information related to job consumption rate for

resources; hence it attempted to use as many resources as possible to ensure that it

could meet the deadline. After the calibration phase, the scheduler predicted that it

could meet the deadline with fewer resources and stopped using more expensive

nodes. However, whenever scheduler senses difficulty in meeting the deadline by

using the resources currently in use, it includes additional resources. This process

continues until deadline is met and at the same time ensures that the cost of

computation is within a given budget.

0

5

10

15

20

25

30

35

40

0 3 6 9 12 15 19 21 24 27 30 33 36 38 41 44 47 51 54

Time (in min.)

R
es

ou
rc

es
 (

N
o.

 o
f C

P
U

s)
 in

 U
se

Figure 17.14 Number of resources in use during Australian peak-time scheduling

experiment.

394 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

The total cost of resources (sum of the access price for all resources) in use at

different times during the execution of scheduling experimentation at Australian

peak time is shown in Figure 17.15. It can be observed that the pattern of variation

of cost during the calibration phase is similar to that of number of resources in

use. However, this is not the same as the experiment progresses, and in fact the

cost of resources decreased almost linearly although the number of resources in

use did not decline at the same rate. The reason for this behavior is that a large

number of resources selected by the scheduler were located in off-peak time zones

(i.e., USA was in off-peak time when Australia was in peak hours) as they were

less expensive. Another reason is that the number of resources used in these

experiments contains more US resources compared to Australian resources.

Similar behavior did not occur in scheduling experiments conducted during

Australian off-peak time (see Figs. 17.16 and 17.17). The variation pattern of total

number of resources in use and their total cost is similar because the larger numbers

of US resources were available cheaply. Although the scheduler has used Australian

resources throughout the experiment (see Fig. 17.13), the scheduler had to depend

on US resources to ensure that the deadline is met even if resources were expensive.

17.7.3 Cost and Time Optimization Scheduling Using

Local and Remote Resources

This experiment demonstrates the use of cheap local resources and expensive remote

resources together for processing a parameter sweep application (the same as that

used in the previous scheduling experiment) containing 165CPU-intensive jobs, each

running approximately 5min in duration. We have set the deadline of 2 h (120mins)

0

50

100

150

200

250

300

350

400

450

500

0 3 6 9 12 15 19 21 24 27 30 33 36 38 41 44 47 51 54

Time (in min.)

C
os

t o
f R

es
ou

rc
es

 in
 U

se

Figure 17.15 Cost of resources in use at Australian peak-time scheduling experiment.

SCHEDULING EXPERIMENTS ON THE WORLDWIDE GRID 395

and budget of 396,000 (G$ or tokens) and conducted experiments for two different

optimization strategies:

. Optimize for time—this strategy produces results as early as possible, but before

a deadline and within a budget limit.

0

5

10

15

20

25

30

0 3 6 8 11 14 17 20 22 26 29 32 35 38 41 43 47 49 53 56 59

Time (in min.)

R
es

ou
rc

es
 (

N
o.

 o
f C

P
U

s)
 in

 U
se

Figure 17.16 Number of resources in use at Australian off-peak time scheduling experiment.

0

50

100

150

200

250

300

350

0 3 6 8 11 14 17 20 22 26 29 32 35 38 41 43 47 49 53 56 59

Time (in min.)

C
os

t o
f R

es
ou

rc
es

 in
 U

se

Figure 17.17 Cost of resources in use at Australian off-peak time scheduling experiment.

396 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

. Optimize for cost—this strategy produces results by deadline, but reduces cost

within a budget limit.

In these scheduling experiments, the Nimrod/G resource broker employed the

commodity market model for establishing a service access price. The broker

established connection with the Grid Trader running on resource providers’ machines

to obtain service prices at runtime. The broker architecture is generic enough to use

any of the protocols discussed by Buyya et al. [21] for negotiating access to resources

and choosing appropriate ones. The access price varies for local and remote users;

users are encouraged to use local resources since they are available at cheaper price.

Depending on the deadline and the specified budget, the broker develops a plan for

assigning jobs to resources.While doing so, it does dynamic load profiling to establish

the user job consumption rate for each resource. The broker uses this information to

adapt itself to the changing resource conditions including failure of resources or jobs

on the resource.

We have used a subset of resources of the WWG testbed in these scheduling

experiments. Table 17.6 shows resource details such as architecture, location, and

TABLE 17.6 The WWG Testbed Resources Used in Scheduling Experiments,

Job Execution, and Costing

Resource Type

and Size

(Nr. of Nodes)

Organization

and Location

Grid

Services

and Fabric

Price

[G$/(CPU:s)]

Jobs Executed on

Resources

Time_Opt Cost_Opt

Linux cluster

(60 nodes)

Monash,

Australia

Globus,

GTS,

Condor

2 64 153

Solaris (Ultra-2) Tokyo

Institute of

Technology,

Japan

Globus,

GTS, Fork

3 9 1

Linux PC

(Prosecco)

CNUCE, Pisa,

Italy

Globus,

GTS, Fork

3 7 1

Linux PC

(Barbera)

CNUCE, Pisa,

Italy

Globus,

GTS, Fork

4 6 1

Sun (8 nodes) ANL, Chicago,

USA

Globus,

GTS, Fork

7 42 4

SGI (10 nodes) ISI, Los

Angeles,

USA

Globus,

GTS, Fork

8 37 5

Total experiment

cost (G$)

237,000 115,200

Time to complete

experiment

(min.)

70 119

SCHEDULING EXPERIMENTS ON THE WORLDWIDE GRID 397

scheduling experiments with different QoS requirements on the World Wide Grid

resource show promising insights into the effectiveness of an economic paradigm

for management of resources, and their usefulness in application scheduling with

optimizations. The results demonstrate that the users have options and can, indeed,

trade off between the deadline and the budget depending on their requirements, thus

encouraging them to reveal their true requirements to increase the value delivered by

the utility.

ACKNOWLEDGMENTS

The Nimrod project began in 1994 at the Co-operative Research Centre for

Distributed Systems Technology (DSTC) in Brisbane, Australia. It has been funded

by various Australian government grants, including the Co-operative Research

Centres scheme and the Australian Research Council. Today, it continues at Monash

University, where it is supported by the Australian Research Council. We would

like to thank Jon Giddy for his contribution to development of the Nimrod/G

Grid Resource Broker. This chapter is partially derived from earlier publica-

tions [18–20,22,30]. We thank Christian Vecchiola for his help with typesetting.

REFERENCES

1. B.Chun,Market-basedCluster ResourceManagement, PhDdissertation,Univ.California

Berkeley, Oct. 2001.

2. C.Waldspurger, T.Hogg, B.Huberman, J. Kephart, andW. Stornetta, Spawn:A distributed

computational economy, IEEE Transactions on Software Engineering 18(2):103–117

(Feb. 1992).

3. D. Abramson, A. Lewis, and T. Peachy, Nimrod/O: A tool for automatic design

optimization, Proc. 4th International Conf. Algorithms & Architectures for Parallel

Processing (ICA3PP 2000), Hong Kong, China, Dec. 2000.

4. D. Abramson, A. Lewis, Peachy, and C. Fletcher, An automatic design optimization tool

and its application to computational fluid dynamics, Proc. Super Computing 2001 Conf.,

Denver, CO, Nov. 2001.

5. D. Abramson, I. Foster, J. Giddy, A. Lewis, R. Sosic, R. Sutherst, and N. White, The

Nimrod computational workbench: A case study in desktop metacomputing, Proc.

Australian Computer Science Conf. (ACSC 97), Macquarie Univ., Sydney, Feb. 1997.

6. D. Abramson, P. Roe, L. Kotler, and D. Mather, ActiveSheets: Super-computing with

spreadsheets, Proc. 2001 High Performance Computing Symp. (HPC’01), Advanced

Simulation Technologies Conf., April 2001.

7. D. Abramson, R. Sosic, J. Giddy, and B. Hall, Nimrod: A tool for performing parametised

simulations using distributed workstations, Proc. 4th IEEE International Symp. High

Performance Distributed Computing, Virginia, Aug. 1995, IEEE CS Press, 1995.

8. D. Ferguson, C. Nikolaou, J. Sairamesh, and Y. Yemini, Economic models for allocating

resources in computer systems, in Market-Based Control: A Paradigm for Distributed

Resource Allocation, S. H. Clearwater (ed.), World Scientific Press, Singapore, 1996.

400 THE NIMROD/G GRID RESOURCE BROKER FOR ECONOMICS-BASED SCHEDULING

9. G. Heiser, F. Lam, and S. Russell, Resource management in the Mungi single-address-
space operating system,Proc. Australasian Computer Science Conf., Perth, Australia,
Feb. 4Ð6, 1998, Springer-Verlag, Singapore, 1998.

10. I. Foster and C. Kesselman, Globus: A metacomputing infrastructure toolkit,International
Journal of Supercomputer Applications11(2):115Ð128 (1997).

11. J. Postel, C. Sunshine, and D. Cohen, The ARPA Internet Protocol,Computer Networks
5 (1981).

12. L. Gong,Project JXTA: A Technology Overview, Technical Report, Sun Microsystems
Inc., April 2001, http://www.jxta.org/project/www/docs/TechOverview.pdf.

13. M. Litzkow, M. Livny, and M. Mutka, CondorÑa hunter of idle workstations,Proc. 8th
International Conf. Distributed Computing Systems (ICDCS 1988), San Jose, CA,
Jan. 1988, IEEE CS Press, 1988.

14. R. Buyya and M. Murshed, GridSim: A toolkit for the modeling and simulation of
distributed resource management and scheduling for Grid computing,Concurrency and
Computation: Practice and Experience14(13Ð15):1175Ð1220 (Nov.ÐDec. 2002).

15. M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pfeffer, A. Sah, and C. Staelin,
An economic paradigm for query processing and data migration in Mariposa,Proc. 3rd
International Conf. Parallel and Distributed Information Systems, Austin, TX,
Los Alamitos, CA, Sept. 28Ð30, 1994, IEEE Computer Society Press, 1994.

16. Mojo Nation, http://www.mojonation.net/, June 2001.
17. N. Nisan, S. London, O. Regev, and N. Camiel, Globally distributed computation over the

Internet:ThePOPCORNproject,Proc. InternationalConf.DistributedComputingSystems
(ICDCS’98), Amsterdam, The Netherlands, May 26Ð29, 1998, IEEE CS Press, 1998.

18. R. Buyya, D. Abramson, and J. Giddy, A case for economy Grid architecture for service-
oriented Grid computing,Proc. International Parallel and Distributed Processing Symp.:
10th IEEE International Heterogeneous Computing Workshop (HCW 2001),
San Francisco, CA, April 23, 2001, IEEE CS Press, 2001.

19. R. Buyya, D. Abramson, and J. Giddy, An economy driven resource management
architecture for global computational power Grids,Proc. 2000 International Conf.
Parallel and Distributed Processing Techniques and Applications (PDPTA 2000),
Las Vegas, NV, June 26Ð29, 2000, CSREA Press, 2000.

20. R. Buyya, D. Abramson, and J. Giddy, Nimrod/G: An architecture for a resource
management and scheduling system in a global computational Grid,Proc. 4th
International Conf. High Performance Computing in Asia-Paci�c Region (HPC Asia
2000), Beijing, China, May 2000, IEEE Computer Society Press.

21. R. Buyya, D. Abramson, J. Giddy, and H. Stockinger, Economic models for resource
management and scheduling in Grid computing,Concurrency and Computation: Practice
and Experience14(13Ð15):1507Ð1542 (2002).

22. R. Buyya, J. Giddy, and D. Abramson, An evaluation of economy-based resource trading
and scheduling on computational power Grids for parameter sweep applications,Proc. 2nd
International Workshop on Active Middleware Services (AMS 2000), Kluwer Academic
Press, Aug. 1, 2000, Pittsburgh, PA.

23. R. Buyya, The World-Wide Grid (WWG), http://www.buyya.com/ecogrid/wwg/,
1999Ð2002.

24. S. Bansal and G. Pal,The Web at your (machineÕs) service,JavaWorld Magazine(Sep. 28,
2001), http://www.javaworld.com/javaworld/jw-09-2001/jw-0928-smsservice.html.

REFERENCES 401

