
R. Meersman and Z. Tari (Eds.): OTM 2008, Part I, LNCS 5331, pp. 62–81, 2008.
© Springer-Verlag Berlin Heidelberg 2008

Load and Proximity Aware Request-Redirection for
Dynamic Load Distribution in Peering CDNs

Mukaddim Pathan, Christian Vecchiola, and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering
The University of Melbourne, Parkville, VIC 3010, Australia
{apathan,csve,raj}@csse.unimelb.edu.au

Abstract. Peering between Content Delivery Networks (CDNs) endeavors to
ensure that each user is served by an optimal Web server in terms of network
cost, even under heavy load conditions. Therefore, a dominant factor for the
success of peering between CDNs is to perform load distribution to handle
highly skewed loads. In this paper, our approach for dynamic load distribution
adopts a request-redirection mechanism by taking traffic load and network
proximity into account. The load distribution strategy reacts to overload condi-
tions, at a time instance, in any primary CDN server(s) and instantly distributes
loads to the target servers, minimizing network cost and observing practical
constraints. In this context, we formulate the resulting redirection strategy and
perform extensive simulations to demonstrate the novelty of our approach. We
show that our approach is effective to handle high load skews, and thus achieve
service “responsiveness”. We also perform a sensitivity analysis to reveal that
our redirection scheme outperforms other alternatives.

1 Introduction

Content Delivery Networks (CDNs) [6][14] emerged to provide fast and reliable Web
access services by distributing content to edge servers located close to end-users. To
operate effectively a CDN is required to either over-provision or to harness external
resources on demand. Cooperation between CDNs can reduce costs with over-
provisioning and provide users with high quality services. This collaboration, termed
as peering between CDNs [15], can be short-term wherein CDNs operate to handle
flash crowds, or long-term in which they explore the delivery of specialized services.

The success of peering depends on its ability (i) to perform dynamic load distribu-
tion under traffic surges by redirecting requests to optimally underloaded Web
server(s), thus binding users to optimal replicas (timeliness) and (ii) to exhibit accept-
able throughput under overload conditions (e.g. during flash crowds). Load distribu-
tion to react to overload conditions on multiple inter-CDN Web servers is crucial to
achieve scalability. Specifically, it can be stated as:

Given current load information in an overload condition, the peering CDNs system
needs to select an optimal server to which a given request is to be redirected. To
obtain up-to-date load information, the presence of a method for load monitoring
and load index dissemination is necessary.

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 63

Many load distribution algorithms [7][8][9][10][18] for Web server and P2P-based
systems have previously been proposed and analyzed. However, none of them can be
directly applied for dynamic load balancing among distributed inter-CDN servers.
This is due to challenges that include virtualization of multiple providers and offload-
ing requests from the primary CDN to peers based on cost, performance and load. In
such a cooperative multi-provider environment, requests are directed to sets of servers
deployed across CDNs as opposed to individual servers belonging to a single entity.
Therefore, request-redirections must occur over distributed sets of servers spanning
multiple CDNs, without having complete state information.

In an effective load distribution strategy, a load index of resources needs to be es-
timated with low computation and communication overhead. In addition, network
proximity information (distance between users and servers) is also important for load
distribution decision so that requests are directed towards nearby servers. Therefore,
an ideal load distribution strategy should realize a redirection scheme that takes traffic
load and proximity into account. In this paper, we present strategies that implement
dynamic load distribution through load and proximity-aware request-redirection
among distributed Web servers of peering CDNs. In our approach, load indices are
obtained through an asynchronous feedback mechanism and network proximity is
measured using a pinger logic with low messaging overhead. A simulation model is
developed, capturing key system components, to evaluate the performance of our ap-
proach. Experiment results show that our approach exhibits an acceptable level of
throughput even under heavy load and the proposed redirection scheme outperforms
other alternative schemes. The main contributions of this paper are twofold:

• A dynamic load distribution algorithm realizing request-redirection that reacts
to overloaded server conditions in peering CDNs by steering user requests to
optimally underloaded servers in terms of traffic load and network proximity.

• Evaluation of the proposed load distribution strategy and demonstration of its
benefits by comparing with other alternatives, as well as a sensitivity analysis
of the proposed redirection scheme using critical system parameters.

The rest of the paper is structured as follows. In Section 2, an overview of the re-
lated work is presented. A brief description of the peering CDNs is provided in Sec-
tion 3. It is followed by the proposed load distribution algorithm with request-
redirection formulation. Simulation methodology is described in Section 5. Results
are discussed in Section 6. Finally, the paper is concluded in Section 7.

2 Related Work

IETF proposes the Content Distribution Internetworking (CDI) model [13] assuming
a federation of CDNs. However, it does not specify any effective request-redirection
mechanism through which load distribution could be performed. While it recom-
mends using a supervision function or an independent third party to supervise and
manage all the CDN peers, it does not define or characterize this supervision. More-
over, it does not examine the implications of using an independent third party for load
distribution. Barbir et al. [4] present request-routing mechanisms for content net-
works. However, they do not specify any particular mechanism to redirect requests
for dynamic load distribution in peering CDNs domain.

64 M. Pathan, C. Vecchiola, and R. Buyya

CDN Brokering [5] develops a brokerage system deployed on the Internet on a
provisional basis. It presents IDNS, a specified request-routing DNS server, with a
proprietary routing mechanism. It is not aimed at an optimal load distribution strat-
egy. It only demonstrates the usefulness of brokering rather than to evaluate the redi-
rection performance for load balancing. Alzoubi et al. [2] present a load-aware IP
Anycast CDN architecture, incorporated with a route-controller, which takes server
and network load into account to realize anycasting. This work establishes the appli-
cability of anycasting as a redirection technique in CDNs. Although it is appealing,
the use of a centralized route controller could be subject to single point of failure.
Moreover, it follows a post-processing approach to offload overloaded servers, which
may not be applicable for dynamic load distribution in peering CDNs. Shnayder et al.
[17] present a trivial request distribution system for PlanetLab, which considers server
loads and known proximity information from pre-defined landmarks to route requests.
It suffers from a centralized approach for load index dissemination and arbitrary
server selections. Moreover, it is non-adaptive to dynamic changes and is not targeted
to load distribution under heavy traffic surges in practical context.

Amongst the work on load distribution strategies across geographically distributed
Web servers, efforts by Conti et al. [10] and Cardellini et al. [8] could be adverted.
The first presents a QoS-based architecture for load distribution among replicated
Web servers. However, it does not capture significant parameters such as traffic load
or network proximity for user response time estimation. The latter investigates the
impact of redirection algorithms for load sharing. It proposes a Web cluster architec-
ture where a DNS dispatcher is integrated with a redirection mechanism based on the
HTTP protocol. While their approach might be effective to handle highly skewed
load, the focus is particularly on a single domain of clustered Web servers.

In the context of modeling traffic redirection between geographically distributed
servers, work of Amini et al. [3] and Ranjan et al. [16] can be mentioned. The first
presents a model for intelligent server selections over multiple, separately adminis-
trated server pools. It does not show the effectiveness of any particular redirection or
load distribution policy. The latter presents WARD⎯an architecture for redirecting
dynamic content requests from an overloaded Internet Data Center (IDC) to a remote
replica. It is targeted to IDCs under the control of a single administrative entity.
Therefore, it does not virtualize multiple providers for request-redirection. Moreover,
it does not provide any mechanism for load distribution between IDCs.

3 Peering CDNs

In the peering CDNs architecture [15], a provider serves requests as long as it can
handle the load internally. If load exceeds its capacity, with the aid of the load distri-
bution policy deployed in the Request-Routing System (RRS), the excess requests are
offloaded to other optimally underloaded Web server(s). The initiator of each peering
negotiation is called a primary CDN; while other CDNs who agree to provide their
resources are called peering CDNs or peers. These roles are fluid and at any time a
given CDN may be either a primary or a peer. The primary CDN directly manages the
resources it has acquired, insofar that it determines what content is served and what
proportion of the incoming traffic is redirected.

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 65

Figure 1 presents an overview of the load distribution architecture for peering
CDNs. User requests for content are made to the RRS of the primary. These requests
are then forwarded either directly to its server(s), or to a peer. The RRS is composed
of principle members⎯Peering Agent (PA) to perform external resource discovery;
Mediator to perform policy-driven authoritative operations; Policy Repository (PR) to
virtualize all policies within a peering arrangement, and an adjunct member⎯Service
Repository (SR) to encapsulate the status of CDN servers. It is also equipped with a
request-redirection algorithm that assists in dynamic load distribution within a peering
arrangement of CDNs. The PA, Mediator, SR and PR collectively act as a “conduit”
for a given primary CDN, and they assist in external resource discovery.

From figure 1, we observe that some user requests of CDN 1 are served by its local
servers or the origin server (on cache miss), whereas others are being served by the
external Web servers of a peer, CDN 2. It is important to note that depending on the
load any CDN can act as a primary CDN in a peering relationship. For instance, CDN
1 acts as a primary when its users are served by the peers’ Web servers. Again, in the
same peering relationship, CDN 2 plays the role of a primary CDN when its users are
served by external Web servers from CDN N.

Fig. 1. Architecture of the load distribution system in peering CDNs

3.1 Load Distribution in Peering CDNs

Two alternatives could be examined to devise an effective load distribution strategy
for peering CDNs. In the first approach, peering could be limited to a part of each
CDN. A primary could decide to use only a subset of the surrogates of peers. Then the

66 M. Pathan, C. Vecchiola, and R. Buyya

peers have to define a "virtual CDN" or "subCDN" for use by the primary. They also
have to provide a real-time load status of each surrogate in this global subCDN using
standard metrics. The primary CDN (or an authoritative entity belonging to it) can
compare these load indices with its metrics and choose whether requests have to be
redirected to a peer. Practical constraints could be put in place to ensure that redirec-
tion minimizes cost, in terms of load and network proximity, and does not overload
peers’ servers. Alternatively, an independent third party could supervise and manage
all the CDN peers for load distribution. However, security, trust, and proprietary is-
sues make it unlikely that a CDN would agree to have an external party to make allo-
cations of its resources according to some load distribution policy.

4 Load and Proximity-Aware Dynamic Load Distribution

Our approach seeks to prevent wide oscillation in the load distribution decisions by
selecting optimal server(s) through cost minimization, taking traffic load and network
proximity into account. Since request-redirection is critical to our strategy, we first
formulate the redirection problem and then present the load distribution algorithm.

4.1 Request-Redirection Formulation

Our system consists of M Web servers from participating CDNs, with N users spread
across the system. We define a metric, redirection cost RC, for serving requests
through redirection in overload conditions. RC depends on a server’s traffic load and
network proximity (in terms of round-trip response time). The cost of serving requests
varies with different servers of the peers. More formally, RC is defined as:

⎩
⎨
⎧ ∞

=
ijij

c pl
jiR

),(

otherwise

 if ∞=ijp

where lij is the incoming traffic load from user i on server j, and pij is the network
proximity between them. It is known that a server’s response load indicates the poten-
tial load assigned to it, since request and response loads on a CDN server are linearly
correlated [2]. Therefore, the request load lij (traffic volume) can be calculated based
on the server load. A Web server j’s load is expressed as the product ujSj, where uj is
the server utilization in [0, 1] as reported by the load monitoring apparatus (me-
diator and SR) and Sj is its capacity, specified by the maximum number of serviced
requests/second as reported in the CDN server’s configuration specifications.

To consider the delay caused by inter-CDN redirection, pij is further defined as:

⎩
⎨
⎧

+
=

Dij

ij

ij Irt

rt
p

server WebCDN-interan is if

server WebCDN-intraan is if

j

j

where rtij is the response time from user i to server j and ID is the delay.
In order to minimize redirection cost during load distribution, we formulate the re-

direction problem as follows:

minimize ij

N

i

M

j
C ajiR∑∑

= =1 1

),(

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 67

subject to ja
N

i
ij ∀=∑

=

 ,1
1

∑ ∀≤ jSal jijij ,

jiaij , },1,0{ ∀∈

where aij is an indicator variable to determine whether the Web server j is in the same
CDN as user i; aij = 1 iff server j is an inter-CDN server, and aij = 0 otherwise.

Table 1. Significant properties of the request-redirection scheme

Properties Parameters Description

Activation trigger
(when)

Asynchronous (on CDN server request) Activation

Activation decision
(where)

Distributed (Gateway redirection upon requests
from distributed servers)

Implementation Status information Traffic load (correlated with
server response load = utili-
zation * capacity)

Alarm (Asyn-
chronous feed-
back)

Server selection
(how)

Minimize redirection cost from available server
list (mapping of overloaded and underloaded
server lists)

Redirection
policy

Redirected entities
(what)

User requests

 begin ...
1 while(true)
2 serveRequests(CDNi.WS); /* i∈{1,2,...,N} */
3 if receive(request from primaryCDN.WS) = true then
4 if WSList = NULL then
5 n, WSList = {Available servers from peers};
6 else
7 ucount,CDNi.uloadedWSList = {Underloaded WS list };
8 ocount,CDNi.oloadedWSList = {Overloaded WS list};
9 for j = 1 to ucount do
10 trafficLoad(CDNi.uloadedWSList[j].loadmetric);

 // Use linear correlation assumption to calculate
 // request load based on server load

11 netProximity(CDNi.unloadedWSList[j]);
12 Rc[i] = CDNi.uloadedWSList[j].trafficLoad*

 CDNi.uloadedWSList[j].netProximity);
13 do
14 opWS = selectWS(minimize Rc);
15 targetWSList = add(primaryCDN.WSList, opWS);
16 RequestRedirection();
17 while primaryCDN.oloadedWSList[k].loadmetric >=

 alarm_threshold /*k∈{1,2,...,ocount} */
18 if |targetWSList| > 1 then
19 if targetWSList.avgLoad <= alarm_threshold/2 then
20 remove least loaded server in targetWSList;

 ...
 end

Fig. 2. Load distribution algorithm (LD_minCost)

68 M. Pathan, C. Vecchiola, and R. Buyya

We can annotate our request-redirection scheme according to the classifications
presented by Cardellini et al. [8]. Table 1 summarizes the properties of the redirection
scheme used by the proposed dynamic load distribution algorithm. The first property
specifies the mechanism in which redirection is activated and where the activation
decision process is made. The next property focuses on the implementation, specify-
ing the status information used for redirection. The last property delineates the redi-
rection policy by stating the server selection strategy and the entities that are
redirected. We describe these properties in more detail in later sections.

4.2 Load Distribution Algorithm

Figure 2 presents the pseudo-code for the proposed load distribution algorithm,
named LD_minCost. It does not attempt to perform load distribution when the Web
servers of a primary CDN are working under an acceptable load. At a given time, if
an overload condition exceeding an alarm threshold is reached, as reported by a pri-
mary CDN server, servers’ status (response load) is assessed and a list of lightly
loaded servers is built from each participating CDNs (line 1 to 8). The traffic load and
network proximity for each underloaded server are measured and the redirection cost,
RC(i,j) is calculated in line 9 to 12. The optimal server from the underloaded server
list is selected such that RC(i,j) is minimized upon redirection and the server does not
get overloaded due to steered traffic. This optimal server is added to a set of usable
server list (targetWSList) maintained by the primary CDN to satisfy its content
requests. Thus, a mapping is maintained between the requests and a set of suitable
servers to serve those requests. As long as there is an overloaded primary CDN
server, a new server minimizing Rc(i, j) (except the optimal server selected earlier) is
added to this list (line 13 to 17). By using our load distribution strategy, we prevent a
Web server from going into an overloaded state and multiple servers can serve a peak
demand or a flash crowd situation. Moreover, if targetWSList contains several
Web servers and their average load decreases significantly, one Web server is re-
moved at a time from the list (line 18 to 20). It ensures that the degree of replication
for serving requests does not remain unnecessarily high when requests relinquish over
time. Moreover, it also guarantees that sufficient underloaded resources are always
available in the peering CDNs system so as to utilize them during load distribution.

4.3 Benefits of Our Approach

A major advantage of our approach over traditional DNS-based redirection systems is
that the actual user requests (eyeballs) are being redirected, opposing to the local DNS
requests as in DNS-based redirection. Therefore, we can achieve a finer grain redirec-
tion. Since load distribution is performed dynamically, any redirection changes take
effect instantly. In contrast, due to the IP-address caching in the intermediate name
server, the DNS dispatcher loses direct control on subsequent requests for a Time-To-
Live (TTL) period following address resolution, and thus causes some delay before
redirection changes have an effect [9]. We also seek to achieve high locality with
good load balancing, since requests targeted to the primary CDN stay within its do-
main as much as possible and are redirected to optimally underloaded peers only dur-
ing highly skewed load conditions. In this way, our solution does not produce widely
oscillated outcomes due to load distribution through request-redirection. Finally, our

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 69

approach seeks to neutralize any load imbalance in the system, since participating
CDNs have dynamic nature to act in primary or peering roles.

5 Methodology

While measurement studies in real testbeds could be advantageous in practice, they
may not reproduce the problems and scenarios for which the solutions are designed.
Hence, we have implemented a simulator, based on Independent Replication Method,
using the CSIM/Java1 simulation toolkit, to conduct repeatable and controlled ex-
periments that would otherwise be difficult to perform in real CDN testbeds.

5.1 Simulation Model

Figure 3 shows the reference scenario for our simulations. In this scenario, there is an
established peering arrangement, consisting of Web servers from four CDNs at differ-
ent geographical locations across the Internet. Each CDN has its own user request
stream and a set of Web servers, but delegates only a subset of them, i.e. virtual CDN
or subCDN, to take part in the peering arrangement. To provide the accurate charac-
terization of our scenario, we have simulated the main system entities: (i) Web serv-
ers, (ii) mediator, (iii) distributed SR, (iv) network congestions, and (v) end-users. In
our simulation, PA and PR have limited functionality given that we would like to em-
phasize on the load distribution strategy, rather than focusing on external resource
discovery through PA and policy enforcement through PR.

We use Transmission Control Protocol (TCP) for disseminating reliable and valid
load index and User Datagram Protocol (UDP) for network proximity measurement.
The reason for using UDP in the proximity measurement is because there are devices
which will prioritize ICMP traffic (in case of TCP) over other traffic, which if there is
congestion along the way, could skew things a bit. In addition, some service setups
such as firewalls and routers limit ICMP traffic because of various denial of service
threats. Moreover, UDP does not require acknowledgement of packets received,
which causes less messaging overhead than TCP. Since our goal is to measure prox-
imity under "realistic" traffic, using something closer is deemed more significant.

5.1.1 CDN Web Servers
We implemented the CDN servers as a set of facilities2 that provide services to user
requests. The response load of a Web server (LoadMetric) is expressed as a prod-
uct of its utilization in [0, 1] at a given time during simulation and the maximum
number of served requests/second (i.e. capacity). We use an asynchronous feedback
mechanism, which assists the Web servers to trivially measure their actual loads and
periodically update them in the SR. If a server’s load exceeds a given alarm threshold,
it signals the mediator to perform load distribution. A normal signal is sent when the
load returns below the threshold. The use of such an asynchronous feedback mecha-
nism suffice to consider a server as a candidate for receiving requests only if that
server has not declared itself critically loaded.

1 It creates process-oriented discrete-event simulation models. For more information, please

check: http://www.mesquite.com/.
2 Each facility is a simulated resource with a single server and a queue for waiting requests.

70 M. Pathan, C. Vecchiola, and R. Buyya

Web servers
from CDN 1

Web servers
from CDN 3

Web servers
from CDN 4

Web servers
from CDN 2

End-user
requests

End-user
requests

Assessment
of network
proximity

End-user
requests

Mediator
(Primary CDN)

Load Information
from Web

servers of CDN 1

`

Web Users

Proxy Server
Pinger
Logic

Web
ServersWeb

Servers

Web
Servers

SR

Global load table built
from the distributed
SR implementation

Assessment
of network
proximity

Return address of optimal
server based on load and

proximity and perform
dynamic request-redirection

CDN 1

`

SR

CDN 3

`

Web Users

SR

Assessment
of network
proximity

CDN 2

Web Users

Assessment
of network
proximity

End-user
requests

`

SR

CDN 4

Web
Users

Web
Servers

Load information

A Peering
Arrangement

of CDNs

Load Information
from Web servers

of CDN 3

Load Information
from Web servers

of CDN 4

Load Information
from Web

servers of CDN 2

Proxy Server

Pinger
Logic Proxy Server

Pinger
Logic

Proxy Server
Pinger
Logic

Fig. 3. Reference scenario for simulation

CDN servers (facilities) have no queuing delay, since they are configured to have
high capacity and large bandwidth. This approach leads to the logical implication that
servers in the simulation can handle any size of load. This assumption is necessary to
deal with request arrivals with very large processing requirements [2]. The load dis-
tribution algorithm deployed in the mediator decides, upon receiving an alarm signal,
whether a Web server is overloaded or not, depending on its load information from
the global load table maintained by the distributed SR implementation.

Table 2 shows the configuration of the list of Web servers from the participating
CDNs in the given peering arrangement. We have configured our servers according to
the specifications from Fourth Quarter 2006 SPECweb2005 Results [1]. To ano-
nymize this list, we have assigned a numeric identifier in the form WSi,
i∈{1,2,...,M} to each Web server. We have used the domain part of the DNS
name to distinguish between providers and assigned a provider identifier in the form
CDNj, j∈{1,2,...,N} to illustrate which server is acquired from the same CDN
provider. It has been found by Amini et al. [3] that a CDN provider may deploy
unique IP addresses to its geographically diverse servers. Therefore, our list of simu-
lated Web servers follows such deployments. Column 4 of Table 2 presents the capac-
ity of the Web servers, expressed as their ability to serve the maximum number of
requests/second. In order to calculate the capacity for each Web server, we normalize
the total number of multiple user sessions (SPECweb2005 reported performance) by
the number of connected client machines as reported in the results. We also model the

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 71

Table 2. Configuration of the simulated CDN Web servers

Server
ID

Provider
ID

System Capacity
(Re-
quests/sec
ond)

Service Distribution,
PDF and Properties

WS1 CDN1 Dell PowerEdge 2950,
Intel Xeon 5160 Proc-
essor

906 Pareto,
1−−ααα xk

α = 1.25, k = 1

WS2 CDN1 Dell PowerEdge 2950,
Intel Xeon X5355
Processor

1052 Pareto,
1−−ααα xk

α = 1.25, k = 1

WS3 CDN1 Dell PowerEdge 860,
Intel Xeon 3070 Proc-
essor

506 Pareto,
1−−ααα xk

α = 1.25, k = 1

WS4 CDN2 Fujitsu PRIMERGY
TX150 S5, Intel
Xeon3060 Processor

200 Log-normal,

2

2

2

)(ln

22

1 σ
μ

πσ

−− x

e
x

μ = 0.9681, σ2 = 1.5846
WS5 CDN2 Fujitsu PRIMERGY

TX300 S3, Intel
Xeon5355 Processor
8 cores, 2 chips

310

Log-normal,

2

2

2

)(ln

22

1 σ
μ

πσ

−− x

e
x

μ = 0.9681, σ2 = 1.5846
WS6 CDN3 HP ProLiant DL145

G2, AMD Opteron 285
Processor

471 Hyper-exponential,

∑
=

−
n

i

x
ii

ieP
1

λλ

μ = 0.5967, σ2 = 2.6314
WS7 CDN1 HP ProLiant DL380

G5, Intel Xeon 5160
Processor

552 Pareto,
1−−ααα xk

α = 1.25, k = 1

WS8 CDN3 HP ProLiant DL585
G2, AMD Opteron
8212 Processor

624 Hyper-exponential,

∑
=

−
n

i

x
ii

ieP
1

λλ

μ = 1.65, σ2 = 3.70
WS9 CDN3 HP ProLiant DL585

G2, AMD Opteron
8220 Processor

843 Hyper-exponential,

∑
=

−
n

i

x
ii

ieP
1

λλ

μ = 1.10, σ2 = 5.65
WS10 CDN4 HP ProLiant DL585,

AMD Opteron 885
Processor

660
Erlang,

)!1(

1

−

−−

k

ex xkk λλ

μ = 4.529, σ2 = 0.321

servers to follow different service distributions. Column 5 specifies the used service
distributions along with their Probability Distribution Functions (PDFs) and associ-
ated properties.

5.1.2 Service Registry
There is a distributed implementation of the SR in our simulation, wherein each CDN
has an SR instance to get the load status of its Web servers. While an SR instance

72 M. Pathan, C. Vecchiola, and R. Buyya

keeps a local copy of the load status of the servers in a CDN, the load information is
not necessarily propagated straightaway to the peering CDNs system. Once a peer
delegates a set of its servers to define the subCDN, the real-time state of the load of
this global subCDN or of each surrogate is passed to the global load table of SR using
standard load metrics (LoadMetric). The global load table stores the overall state
of the servers in the peering arrangement using a tuple

(Web Server, LoadMetric)

The asynchronous feedback by the Web servers allows proceeding with the opera-
tions without querying them for the updated load information. In this way, the servers
are made to decide on the tradeoff between serving requests and updating load infor-
mation. The overhead of load update messages could be high if a large number of
Web servers from the participating CDNs are present in the system. However, a given
peering arrangement is not likely to have more than a few hundred or thousand nodes
at an instant. Moreover, the load information is updated periodically and the only data
that needs to be sent is a few bytes of load index. For example: a total number of
1000 servers in a given peering arrangement, 30s update frequency and 11bytes
of data transfer for each load table entry “WebServer_ID LoadMetric” would
lead to only about 22KB/min, or less than 0.5KBps for the messaging overhead
due to the asynchronous feedback by the servers to the SR.

5.1.3 Mediator
The mediator is simulated to act as an authoritative entity in a given peering arrange-
ment. It monitors the global load table to get Web servers’ status and uses the pinger
logic to get their network proximity information, in terms of round-trip response time
(in milliseconds), assuming that they are directly correlated. The pinger logic uses the
User Datagram Protocol to send an 18bytes proximity measurement query (as UDP
packet) of the format “PING Time CRLF” to each Web server for the network
proximity measurement. Time represents the timestamp when query is sent and
CRLF represents the carriage return and line feed characters that terminate the query
message. We also set a timeout period of 1000ms to check whether the servers are
reachable. Thus, along with the proximity measurement, the pinger logic tests a Web
server’s ability to respond to a proximity measurement query, as well as its level of
responsiveness under the current load.

The pinger logic is deemed to be located close to the users so that the mediator
ideally can have the same view of the network status as the user’s browser. This ap-
proach allows estimating, reasonably accurately and possibly offline, the network
proximity between the user and CDN Web servers. It may appear that this approach
leads to a load distribution system that does not scale enough as it requires an instance
of pinger logic to be placed close to each of the numerous number of users in the
Internet. However, in practice, it is observed that most of the end-users make use of a
proxy server which filters Web accesses through caching. Content which are not
available in the proxy server are retrieved from the origin server(s) and stored locally
in a cache. Additional requests for the same content are served by the proxy until the
expiration time after which the content is considered ‘stale’. Therefore, the scalability
problem can be solved by placing the pinger logic in the proxy server. This solution is

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 73

feasible because the pinger logic is activated by the mediator for network proximity
measurement only when the requested content is not in the proxy cache.

5.1.4 Network Congestions
Two types of networks delays, namely, inter-CDN delays and intra-CDN delays are
modeled to consider the impact of network congestions on load distribution strategies.
In addition, for network proximity measurement we have simulated the UDP packet
loss (LOSS_RATE = 0.3) due to network congestions. Intra-CDN delays have
three components: (i) minimum round-trip time between server and the user browser,
(ii) queuing delays at the mediator3, and (iii) packet transmission time for each link on
the user browser and CDN Web server path. While (i) and (ii) are measured through
simulation, (iii) is modeled as average network delay of 100ms. Inter-CDN delays
are random variables that model communication latency between different geographi-
cal CDN domains. The Inter-CDN delays are 200ms in average. In the model, we do
not characterize the delays spent for address resolution of Web servers.

5.1.5 End-Users
User requests are implemented as CSIM processes4. We assume that end-users re-
quest content via their own browsers to the CDN, according to the same client-side
policy. The hidden load weight [9] is implicitly taken into account through the user
distribution to CDNs, as requests to different CDNs are properly weighed and are
distributed to the servers in a given peering arrangement.

Alike the Internet access workloads, these user requests exhibit self-similarity. A
self-similar process has observable bursts in all time scales. It exhibits long-range
dependence, where values at any instance are typically correlated with all future val-
ues. This self-similar nature in user requests can be described by using a heavy-tailed
distribution [11][12]. Therefore, user requests to each CDN Web server follow a
highly variable Pareto distribution with Probability Density Function (PDF),

kxkxkxf ≥>= −− ,0 , ,)(1 αα αα

where the weight of the tail of the distribution is determined by α < 2.

5.2 Schemes and Metrics for Comparison

We experiment with three other load distribution policies and compare their perform-
ances. The LD_RR policy uses a Round-Robin (RR) approach to redirect excess re-
quests to a server, exceeding the alarm threshold, to all the available underloaded
servers of participating CDNs in a cyclic order. In LD_PRR policy, request-
redirection is performed using a Probability-based Round Robin (PRR) approach. The
probability is based on the residual capacity of servers in a given peering arrangement
using the latest server load index. The LD_LL policy uses a very simple approach that
performs load distribution by redirecting excess requests to the least loaded server.
Just for comparison purpose, we also consider no redirection which tries to assign
requests to the closest server, without considering the load.

3 The queuing delay at the mediator occurs for any possible congestion during load distribution

in a given peering CDNs arrangement.
4 CSIM processes are objects, based on Java threads, which make use of simulated resources.

74 M. Pathan, C. Vecchiola, and R. Buyya

For performance comparisons we first use the number of ongoing requests at each
server. A desirable scheme should keep the number below the capacity limit of each
server all the time. We use server utilization to demonstrate the performance of the
proposed redirection scheme. To emphasize the impact of redirection on load distribu-
tion of primary CDN servers, we define maximum utilization at a given instant as the
highest utilization at that instant among all primary CDN servers. Specifically, the
major performance criterion is the cumulative frequency of maximum utilization, i.e.
the probability that the maximum utilization of the primary CDN is below a certain
value. By focusing on the highest utilization among all primary CDN servers, we can
deduce whether the primary CDN is overloaded or not.

6 Experiment Results

In this section, simulation results are presented to evaluate performance of the pro-
posed request-redirection scheme that is used to perform load distribution in peering
CDNs. We also provide a critical assessment of our approach highlighting its benefits.
We run our simulations based on the reference scenario in Figure 2, with CDN 1 as
the primary and others as the peering CDNs. Our results are obtained from ten simula-
tion runs, where each run is for a duration of 10000s. In our simulations, we con-
sider 80% of a server’s utilization as the alarm_threshold.

6.1 Server Load

We first present the number of connections at each server in different redirection
schemes. Figure 4 shows the number of concurrent requests at each server over time.
For the clarity of presentation we use two scales⎯Scale 1 and Scale 2⎯to show the
concurrent flows at servers of primary and peering CDNs, respectively.

Since server load is not taken into account in the no redirection policy and user re-
quests are sent to the closest server, from Figure 4(a) we observe that the load at only
a few servers, in the primary CDN domain, grow significantly. For example: through-
out the simulation, Server 1 and Server 2 receive more requests than their capacity.
Unless they are provisioned with enough capacity to serve more concurrent connec-
tions, they will end up dropping many requests. In Figure 4(b), we see that LD_RR
performs some load distribution by sending extra requests to the underloaded servers
from primary and peering CDNs. However, it does not take cost (in terms of traffic
load and proximity) into account and can potentially lead to high redirection cost.
Figure 4(c) presents the performance of LD_PRR. Since it assigns some probability to
the underloaded servers based on their residual capacity, it redirects more requests to
the server(s) with high probability. Therefore, it performs some load distribution but
may cause sudden surge to a particular server and thus lead to imbalance load situa-
tions. For example: during simulation time 8 and 10 (x10000s), Server 1 receives
many more requests than its capacity. LD_LL does not perform well as it fails to dis-
tribute loads to multiple servers. As for instance, from Figure 4(d), we observe that as
simulation time passes, Server 1 receives more requests than its capacity specifically
during simulation times 2, 4, 6, and 8 (x10000s), and Server 7 constantly receives

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 75

extra requests than what it can handle. In Figure 4(e), we present the performance of
LD_minCost. The main objective of LD_minCost is to redirect extra requests in an
imbalanced load situation, minimizing the redirection cost in terms of traffic load and
network proximity, without violating the (practical) server capacity constraints. We
observe from the figure that none of the primary CDN servers operate beyond their
capacity during simulation. In order to prevent wide oscillation in the load distribution
decisions, incoming requests to the primary CDN stay within its domain as much as
possible and only cross the inter-CDN barrier during excessive load imbalance. Since
redirection cost is taken into account, requests are served by the optimally under-
loaded servers, in terms of network cost. As a result, a few primary CDN servers re-
ceive only relatively few requests, while other better located servers run close to their
capacity. In addition, service disruptions (or request dropping) are minimized as
LD_minCost leads to optimal server selections. Moreover, any dynamic load changes,
e.g. sudden load increase in Server 9 at simulation time 5 (x10000s), are also taken
into account and load is distributed in a timely fashion. Therefore, even under high
traffic surges such as flash crowds, our redirection scheme performs well.

6.2 Server Utilization

Figure 5 presents the utilization of the servers in the peering CDNs arrangement for
each request-redirection scheme. Here, we observe that LD_minCost performs bet-
ter than the other redirection schemes in order to perform load distribution of the
overloaded primary CDN servers. With no redirection, most of the primary CDN
servers receive excessive traffic and utilization stays over the alarm threshold.
While LD_RR and LD_PRR demonstrate similar characteristics to perform some
load balancing, none of them reduces utilization of all the primary CDN servers
below the threshold. LD_LL policy fails to perform load distribution among multi-
ple servers and always overloads Server 1 and Server 2. On the other hand,
LD_minCost exhibits the best performance by reducing all the primary CDN utili-
zation below the threshold. Since requests stay within the primary CDN domain as
much as possible to minimize redirection cost, a better located server, e.g. Server 3,
may show more utilization than its allies. However, still the primary CDN operates
under an acceptable level of load.

It is also evident from Figure 6, which presents the average utilization of the pri-
mary CDN system in each redirection scheme. LD_RR, LD_PRR, and LD_LL do not
reduce the average utilization significantly below the threshold. Therefore, with these
schemes primary CDN servers may be unable to receive more requests during sudden
excessive traffic (flash crowds) in future and thus requests may have to be redirected
outside the domain. With LD_minCost the average utilization of the primary CDN
system is significantly brought down and makes its servers possible to cope with suc-
ceeding traffic outbursts.

6.3 Redirection Performance

In Figure 7, we show the average redirection percentage in each scheme. For the clar-
ity of presentation we use two scales⎯Scale 1 and Scale 2⎯to respectively plot the

76 M. Pathan, C. Vecchiola, and R. Buyya

redirection percentage from LD_minCost and other schemes (LD_RR, LD_PRR, and
LD_LL). It shows that our redirection scheme assists in redirecting more requests
over time in case of load imbalance. On the other hand, LD_RR, LD_PRR, and
LD_LL do not show a high redirection percentage under traffic surge. Therefore,
many requests are dropped as incoming requests arrive to a primary CDN server and
find that the server operating at its highest capacity. Thus, the inability to redirect
more requests in these schemes can lead to significant service disruptions.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

Simulation Time [x10000s]

C
on

cu
rr

en
t F

lo
w

s
at

 E
ac

h
S

er
ve

r
[S

ca
le

 1
: P

ri
m

ar
y

C
D

N
]

0

20

40

60

80

C
on

cu
rr

en
t F

lo
w

s
at

 E
ac

h
S

er
ve

r
[S

ca
le

 2
: P

ee
ri

ng
 C

D
N

s]

(a) No Redirection

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Simulation Time [x10000s]

C
on

c
ur

re
nt

 F
lo

w
s

a
t E

a
ch

 S
e

rv
e

r
[S

ca
le

 1
: P

ri
m

a
ry

 C
D

N
]

0

20

40

60

80

100

120

C
on

cu
rr

en
t F

lo
w

s
 a

t
E

ac
h

 S
er

v
er

[S
c

al
e

2
: P

ee
ri

ng
 C

D
N

s]

(b) LD_RR

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

Simulation Time [x10000s]

C
o

nc
u

rr
en

t F
lo

w
s

 a
t E

ac
h

S
er

v
er

[S
c

al
e

1:
 P

ri
m

ar
y

C
D

N
]

0

20

40

60

80

100

C
on

cu
rr

e
nt

 F
lo

w
s

at
 E

a
ch

 S
e

rv
er

[S
ca

le
 2

: P
e

er
in

g
 C

D
N

s
]

(c) LD_PRR

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10

Simulation Time [x10000s]

C
on

cu
rr

en
t F

lo
w

s
at

 E
ac

h
S

er
ve

r
[S

ca
le

 1
: P

ri
m

ar
y

C
D

N
]

0

20

40

60

80

C
on

cu
rr

en
t F

lo
w

s
at

 E
ac

h
S

er
ve

r
[S

ca
le

 2
: P

ee
ri

ng
 C

D
N

s]

(d) LD_LL

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Simulation Time [x10000s]

C
on

cu
rr

en
t F

lo
w

s
at

 E
ac

h
S

er
ve

r
[S

ca
le

 1
: P

ri
m

ar
y

C
D

N
]

0

40

80

120

160

200

240

C
on

cu
rr

en
t F

lo
w

s
at

 E
ac

h
S

er
ve

r
[S

ca
le

 2
: P

ee
ri

ng
 C

D
N

s]

(e) LD_minCost

CDN 1: Server 1
CDN 1: Server 2
CDN 1: Server 3
CDN 1: Server 7
CDN 2: Server 4
CDN 2: Server 5
CDN 3: Server 6
CDN 3: Server 8
CDN 3: Server 9
CDN 4: Server 10

Fig. 4. Number of concurrent requests for each scheme

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 77

0

0.2

0.4

0.6

0.8

1

Server 1 Server 2 Server 3 Server 7 Server 4 Server 5 Server 6 Server 8 Server 9 Server
10

CDN 1 CDN 2 CDN 3 CDN 4

CDN Servers

 U
ti

li
za

ti
o

n
No redirection

LD_RR

LD_PRR

LD_LL

LD_minCost

Fig. 5. Server utilization for each scheme

0

0.2

0.4

0.6

0.8

1

A
ve

ra
g

e
U

ti
li

za
ti

o
n

No
Redirection

 LD_RR LD_PRR LD_LL LD_minCost

Request-Redirection Schemes

Fig. 6. Average utilization of the primary CDN system for each scheme

39

39.5

40

40.5

1 2 3 4 5 6 7 8 9 10

Simulation Time [x10000s]

R
ed

ir
ec

ti
o

n
 P

er
ce

n
ta

g
e

[S
ca

le
 1

]

19

19.5

20

20.5

21

R
ed

ir
ec

ti
o

n
 P

er
ce

n
ta

g
e

[S
ca

le
 2

]

LD_minCost
LD_RR
LD_PRR
LD_LL

Fig. 7. Redirection percentage in each scheme

78 M. Pathan, C. Vecchiola, and R. Buyya

0

0.2

0.4

0.6

0.8

1

0.4 0.5 0.6 0.7 0.8 0.9 1

Maximum Utilization [Primary CDN]

C
um

ul
at

iv
e

Fr
eq

ue
nc

y

No Redirection
LD_RR
LD_PRR
LD_LL
LD_minCost

Fig. 8. Comparison of the request-redirection schemes

Figure 8 summarizes the performance of the request redirection schemes in terms
of cumulative frequency of maximum utilization of primary CDN servers. It shows
that LD_minCost has a probability of 1.0 of not causing any primary CDN server to
exceed 80% utilization (threshold). From the figure we can see that other schemes
such as LD_RR, LD_PRR and LD_LL do not perform well. Specifically, they exhibit
a probability of 0.5 of not causing any Web server to exceed the threshold. Moreover,
as predicted, with no redirection there is very low probability of only 0.25 that pri-
mary CDN servers will operate under the threshold.

0

0.2

0.4

0.6

0.8

1

0.75 0.8 0.85 0.9 0.95 1

Utilization [Primary CDN]

P
ro

b
 (

N
o

t
O

ve
rl

o
ad

ed
 S

er
ve

r)

LD_RR
LD_PRR
LD_LL
LD_minCost

Fig. 9. Sensitivity to system utilization for each scheme

6.4 Sensitivity Analysis

We now show performance comparison of the request-redirection schemes through a
sensitivity analysis for the primary CDN, considering critical parameters such as sys-
tem utilization and end-user request distribution. We use the probability that no server
of the primary CDN is overloaded as the performance metric. Changing other system
parameters, such as the average number of requests, total simulation time or user

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 79

think time do not show noticeable differences among the redirection approaches.
Therefore, we do not present those results here.

0

0.2

0.4

0.6

0.8

1

1 1.3 1.5 1.8 2

Pareto Parameter [α]

P
ro

b
 (

M
ax

 U
ti

li
za

ti
o

n
 <

 0
.9

)

LD_RR

LD_PRR

LD_LL

LD_minCost

Fig. 10. Sensitivity to end-user distribution for each scheme

In Figure 9, we compare the sensitivity to the system utilization for the primary
CDN in each redirection scheme, using the probability that no server in its domain is
overloaded as the performance metric. Therefore, we vary the alarm threshold from
0.75 to 1. We observe that our redirection scheme, LD_minCost, shows the best result
in all the cases. Analogous conclusion can be drawn when we vary the distribution of
users among the CDNs. Figure 10 shows the probability that no server has a utiliza-
tion higher than 90% as a function of the shape parameterα, which is varied from 1
(high variability) to 2 (moderate variability). We change the performance metric
(threshold) from 80% to 90% to show the novelty of our scheme even under highly
variable request pattern.

7 Conclusion and Future Work

In this paper, we present a dynamic load distribution algorithm that uses load and
proximity-aware request-redirection to alleviate any load imbalance in a peering
CDNs system. In our approach, when any CDN Web server in a peering CDNs ar-
rangement reaches an overload condition exceeding the alarm threshold, the load dis-
tribution strategy reacts to redirect loads by selecting available optimally underloaded
server(s), while not compromising network proximity. We validate our proposal with
the aid of simulation, considering practical constraints and significant system parame-
ters; and demonstrate its performance using performance metrics such as number of
ongoing connections, server utilization and the cumulative frequency of maximum
utilization. We also perform a sensitivity analysis of our redirection scheme by taking
critical system parameters into account.

To the best of our knowledge, no prior work in the CDN domain has attempted to
perform load distribution in peering CDNs through a request-redirection mechanism
which takes network cost (in terms of load and network proximity) into account and

80 M. Pathan, C. Vecchiola, and R. Buyya

cope up with practical constraints in CDN domain. Our approach can alleviate prob-
lems with the commonly used DNS-dispatching policies for load balancing, which
does not provide sufficient control on user requests, e.g. it can have as little as 5% of
requests in many instances [9]. Moreover, DNS-dispatching is less useful for fine-
grained server selections. On the other hand, our approach achieves a significant level
of granularity, since the actual user requests are redirected during load distribution
among the Web servers in peering CDNs. Therefore, it endeavors to produce optimal
Web server selections in a given peering arrangement of CDNs, even under degener-
ated load conditions.

Our future work includes performing experiments in the real-world settings, such
as PlanetLab, to validate the methodology presented in this paper. Our future work5
also includes developing a proof-of-the-concept prototype implementation for peering
CDNs, in order to demonstrate the real-time application of our load distribution strat-
egy. We also plan to develop efficient resource dissemination and discovery algo-
rithms for discovering resources from disparate CDNs. Thus, we will exploit the ca-
pabilities of peering CDNs to avoid network hotspots to further enhance our ap-
proach. As far as the simulation is concerned, we aim to adopt traces of the Internet
traffic for load characterization purposes. The use of actual CDN traces will help us to
obtain reasonable load and network proximity estimates, which could be refined over
time to improve their accuracy, in response to changes in the network.

Acknowledgement

We would like to thank Marcos Assunção, SungJin Choi, Mustafizur Rahman and
Rajiv Ranjan from the University of Melbourne, Australia for sharing thoughts and
for making incisive comments and suggestions on this paper. We are also thankful to
anonymous reviewers for their valuable and constructive comments to improve the
paper’s structure, quality and readability. This work is supported in part by the Aus-
tralian Research Council (ARC), through the discovery project grant and Department
of Education, Science and Training (DEST), through the International Science Link-
age (ISL) grant.

References

[1] Standard Performance Evaluation Corporation (2008), http://www.spec.org/
[2] Alzoubi, H.A., Lee, S., Rabinovich, M., Spatscheck, O., Van der Merwe, J.E.: Anycast

CDNs revisited. In: Proc. of the 17th International Conference on World Wide Web, pp.
277–286. ACM Press, New York (2008)

[3] Amini, L., Shaikh, A., Schulzrinne, H.: Modeling redirection in geographically diverse
server sets. In: Proc. of the 12th International Conference on World Wide Web, pp. 472–
481. ACM Press, New York (2003)

[4] Barbir, A., Cain, B., Nair, R., Spatscheck, O.: Known content network (CN) request-
routing mechanisms. IETF RFC 3568 (July 2003)

5 For more information about our efforts on peering CDNs, please visit the project Web site at

www.gridbus.org/cdn.

 Load and Proximity Aware Request-Redirection for Dynamic Load Distribution 81

[5] Biliris, A., Cranor, C., Douglis, F., Rabinovich, M., Sibal, S., Spatscheck, O., Sturm, W.:
CDN brokering. Computer Communications 25(4), 393–402 (2002)

[6] Buyya, R., Pathan, M., Vakali, A. (eds.): Content Delivery Networks. Springer, Germany
(2008)

[7] Cardellini, V., Colajanni, M., Yu, P.S.: Dynamic load balancing on Web-server sys-tems.
IEEE Internet Computing 3(3), 28–39 (1999)

[8] Cardellini, V., Colajanni, M., Yu, P.S.: Redirection algorithms for load sharing in distrib-
uted Web-server systems. In: Proc. of 19th IEEE International Conference on Distributed
Computing Systems, Austin, Texas, USA (May 1999)

[9] Colajanni, M., Yu, P.S., Cardellini, V.: Dynamic load balancing in geographically distrib-
uted heterogeneous Web servers. In: Proc. of the 18th International Conference on Dis-
tributed Computing Systems, pp. 295–302 (1998)

[10] Conti, M., Gregori, E., Panzieri, F.: QoS-based architectures for geographically replicated
Web servers. In: Cluster Computing, vol. 4, pp. 109–120. Kluwer Academic Publishers,
The Netherlands (2001)

[11] Crovella, M.E., Bestavros, A.: A self-similarity in World Wide Web traffic: evidence and
possible causes. IEEE/ACM Transactions on Networking 5(6) (1997)

[12] Crovella, M.E., Taqqu, M.S., Bestavros, A.: Heavy-tailed probability distributions in the
World Wide Web. In: A Practical Guide To Heavy Tails, pp. 3–26. Birkhauser Boston
Inc., Cambridge (1998)

[13] Day, M., Cain, B., Tomlinson, G., Rzewski, P.: A model for content internetworking.
IETF RFC 3466 (February 2003)

[14] Pallis, G., Vakali, A.: Insight and perspectives for content delivery networks. Communi-
cations of the ACM 49(1), 101–106 (2006)

[15] Pathan, M., Broberg, J., Bubendorfer, K., Kim, K.H., Buyya, R.: An architecture for vir-
tual organization (VO)-based effective peering of content delivery networks. In: UP-
GRADE-CN 2007, In Proc. of the 16th IEEE International Symposium on High Perform-
ance Distributed Computing, California, USA (June 2007)

[16] Ranjan, S., Karter, R., Knightly, E.: Wide area redirection of dynamic content by Internet
data centers. In: Proc. of 23rd Annual IEEE Conference on Computer Communications
(2004)

[17] Shnayder, V.: Load and proximity aware request distribution. Princeton University Report
(2003), http://citeseer.ist.psu.edu/636009.html

[18] Zhu, Y., Hu, Y.: Efficient, proximity-aware load balancing for DHT-based P2P systems.
IEEE Transactions on Parallel and Distributed Systems 16(4), 349–361 (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

