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Abstract—In this paper, we investigate Cloud computing re-
source provisioning to extend the computing capacity of local
clusters in the presence of failures. We consider three steps in
the resource provisioning including resource brokering, dispatch
sequences, and scheduling. The proposed brokering strategy is
based on the stochastic analysis of routing in distributed parallel
queues and takes into account the response time of the Cloud
provider and the local cluster while considering computing cost of
both sides. Moreover, we propose dispatching with probabilistic
and deterministic sequences to redirect requests to the resource
providers. We also incorporate checkpointing in some well-known
scheduling algorithms to provide a fault-tolerant environment.
We propose two cost-aware and failure-aware provisioning poli-
cies that can be utilized by an organization that operates a
cluster managed by virtual machine technology and seeks to
use resources from a public Cloud provider. Simulation results
demonstrate that the proposed policies improve the response time
of users’ requests by a factor of 4.10 under a moderate load with
a limited cost on a public Cloud.

Keywords-Resource provisioning; Cloud computing; Failure-
prone clusters; Request scheduling; Brokering.

I. INTRODUCTION

Public Cloud platforms provide easy access to an organiza-

tions’ high-performance computing and storage infrastructures

through web services. In this platform, the complexity of man-

aging an IT infrastructure is completely hidden from its users.

One particular type of Cloud service, known as Infrastructure-

as-a-Service (IaaS) provides raw computing and storage in the

form of virtual machines (VMs), which can be customized and

configured based on application demands providing massive

scalability, high availability and performance. Although, IaaS

can be used as a stand alone service, in this paper, we

integrate public Cloud services with that of an organization’

local cluster running virtual machine technology. Utilization of

public Cloud along with local cluster resources is commonly

called hybrid Cloud [24], the system used in this paper. High

performance computing applications can leverage from such

systems to execute data intensive applications for increased

performance gain.
In the literature, several works [5], [6], [16], [21] have

adopted public Cloud platforms for scientific applications.

Most of these works, however, only demonstrate performance

and monetary cost-benefits for such applications. Recently,

Assunção et al. [5] proposed scheduling strategies to integrate

resources from a public Cloud provider and local cluster. In

this work, the requests are first instantiated on cluster and in

the event more resources are needed to serve user requests,

IaaS Cloud provider virtual machines are added to the cluster.

Their strategies, however, do not take into consideration the

total cost of the hybrid Cloud when making decisions on

redirection of requests between local cluster and public Cloud.

Furthermore, the authors do not consider the trade-off between

cost and performance in case of resource failures on local

cluster. In the presence of resource failures, a job could result

in premature termination leading to undesirable completion

time. In particular, compute bound jobs such as batch programs

whose results cannot be used until the jobs are completed in

its entirety, suffer due to resource failures. We define a failure

as an event in which the system fails to operate according to

its specifications.

In this paper, we aim to provide cost-aware and failure-
aware provisioning policies to extend the capacity of existing

local cluster in the presence of resource failures. We consider

three steps in the resource provisioning policy in the hybrid

Cloud system. The first step is the resource brokering to obtain

the proportion of the input workload to be served in each

resource provider. For this purpose, we propose a generic

analytical model based on stochastic analysis of distributed

parallel queues [2]. The second step in the resource provi-

sioning is the dispatch sequence, which is the sequence of

submitting requests to providers. We propose two different

dispatch methods based on probabilistic and deterministic

sequences. The last step is scheduling of requests on resources,

which would be done through different well-known scheduling

algorithms. Our proposed policies take advantage of non-

observable queues, so they do not require any information of

the scheduler’s queues. We evaluate the proposed policies un-

der realistic workload and failure traces and consider different

performance metrics such as average weighted response time

and job slowdown.

The rest of this paper is organized as follows. In Section II,

we present the hybrid Cloud system model used in this paper.

Related work is described in Section III. Section IV presents

the generic resource provisioning policy including brokering

strategy, dispatch sequences, and scheduling algorithms. The

resource provisioning in a hybrid Cloud system with two
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resource providers is described in Section V. The performance

evaluation of the proposed policies is discussed in Section VI.

Conclusions and future work are presented in Section VII.

II. SYSTEM MODEL

In this section, we briefly present the hybrid Cloud system

model (Figure 1) used in this paper. This is based on the

InterGrid middleware designed and implemented in Cloudbus

research group1 [7].

There are two different types of resource providers as seen

in Figure 1: the local cluster running virtual machines (within

organization’s Site) and public IaaS Cloud provider. A user

launches an application on the local cluster and submits a re-

quest to the InterGrid gateway (IGG). Each user’s request has

the following characteristics: type of required virtual machine;

number of virtual machines; estimated duration of the request;

deadline of the request. When such a request arrives at the

IGG, it determines which resource provider to use. An IGG

consists of a scheduler that interacts with Virtual Infrastructure

Engine (VIE) or another IGG to schedule resources on local

cluster or IaaS Cloud provider. The VIE manages the resources

of the local cluster. The VIE and can start, pause, resume,

and stop VMs on the physical resources. IGGs have peering

arrangements that allows them to communicate and determine

when and how the resources are used between IGGs. In

such circumstances, an IGG can interact with another IGG

to provision resources from a public Cloud to fulfill the users’

requirements.

In this paper, we consider a broad rang of high-performance

applications including many different jobs requiring large

number of resources over short periods of time. Each job

(i.e., a request) could include several tasks and they might

be sensitive to communication networks in terms of delay

and bandwidth. Therefore, a request is assumed to be con-

tiguous and must be served with resources from a single

resource provider. Also, we assume requests are not deadline

constrained.

III. RELATED WORK

This section describes the related work pertaining to the

utilization of Cloud computing resources and augmenting them

with local infrastructure to increase resource availability to

solve scientific computing applications.

In [21], the authors evaluate the feasibility of Amazon data

storage service, S3, for scientific data-intensive applications.

They provide recommendations that would better suit these

applications. In particular, the authors mention that the mone-

tary costs for accessing S3 associates infinite durability, high

availability and fast access is high. By contrast, data-intensive

applications often do not always need all of these features at

once.

In [6], the authors determine the cost performance trade-

off of running an astronomy application with various work

flow models on Amazon’s S3 or Amazon’s EC2. On a Cloud,

1http://www.Cloudbus.org/
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Fig. 1. The system architecture.

the cost of purchasing the resources may vary depending on

computation, storage and communication overheads inherent

in the application. This also impacts the performance of the ap-

plication. The authors claim their application’s computational

cost outweighed the storage cost making the use of Cloud

environment profitable without degrading the performance of

their application.

Kondo et al. [16], provide a cost-benefit analysis between

desktop grids and Amazon’s elastic model. They try to answer

several questions pertaining to these two platforms. One of

the issues they address is the cost benefit of combining

desktop grids with Cloud platform to solve large scale compute

intensive applications. They conclude that hosting a desktop

grid on a Cloud would be cheaper than running on stand alone

desktop grids if bandwidth and storage requirements are less

than 100Mbits and 10TB.

In [18], the authors proposed a model that elastically extends

the physical site cluster with Cloud resources to adapt to the

dynamic demands of the application. The central component

of this model is an elastic site manager that handles resource

provisioning. The authors provide extensive implementation

and evaluation of their model.

Recently, Moschakis and Karatza [19] have evaluated the

performance of applying Gang scheduling algorithms on

Cloud. The authors address tasks that require frequent com-

munication for which Gang scheduling algorithms are suitable.

Their study is restricted to a single public Cloud which consists

of a cluster of VMs on which parallel jobs are dispatched.

In the literature on resource provisioning in Cloud com-

puting, most of the work has been on the implementation

of cost performance benefit models rather than cost-aware

performance models. In our queuing model, we take into

account the total cost of dispatching and redirecting requests

on both local cluster and public Clouds. In previous works, the

cost of local resources is ignored and the model is simplified.

Moreover, we consider the workload as the users’ requests,

which can be data or computing intensive applications.

Additionally, we incorporate resource failures into the
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model, an important issue in any distributed system, thereby

making our model a cost/failure-aware model. Moreover, our

provisioning policies are based on non-observable queues that

do not require any information about the input queue of

either local cluster or public Clouds. Therefore, in contrast

to the work by Assunção et al. [5], our proposed policies are

independent of the scheduling algorithms.

IV. THE PROPOSED GENERIC RESOURCE PROVISIONING

As mentioned earlier, the resource provisioning policy in

the system under study has three steps: resource brokering,

dispatching, and scheduling of requests. In this section, we

assume n providers and propose a generic solution for the

three resource provisioning steps.

A. Adaptive Brokering Strategy

We formulate the problem of resource brokering similar to

that of routing in the distributed parallel queues [2], [10]. That

is, we consider each resource provider as one server with a

given service rate; a scheduler that serves as an input queue;

and a broker that redirects the incoming requests to one of the

providers as shown in Figure 2.

In the following subsection, the proposed brokering strategy

finds the routing probabilities. We assume that the broker lo-

cated in front of n heterogeneous multi-server parallel queues

routes the given requests to providers according to the routing

probabilities Pi.

Requests arrive to the broker with a given distribution I ,

mean E[I] = λ−1 and variance V [I] = σ2
I . We assume the

broker holds no queues (we will elaborate on this assumption

in Section IV-B). Therefore, requests are handled immediately

by the broker upon arrival. Each resource provider is modeled

as a single queue with Mi nodes and a local scheduler.

Furthermore, we assume service time of queue i follows a

given distribution Si with mean E[Si] = μ−1
i and coefficient

of variance CSi = σSi · μi.

Another aspect of the problem that must be taken into

account is the computing cost. While commercial Cloud is

made available in a pay-as-you-go manner, the computing cost

of local infrastructure usually is not easy to estimate, as it

depends on many issues such as life time, system utilization,

system technology, etc. However, ignoring the cost of a local

infrastructure and assuming the resources are free with respect

to the Cloud resources is unrealistic. There are some obvious

source of costs that can be considered, such as high start-up

costs for purchasing hardware or power and cooling costs.

Therefore, in this model, we associate a price, Ki, to be

paid to each of provider i based on resource usage per time

unit. This parameter can be considered as the holding cost,

or weight per request per time unit at queue i. Ki can be

defined as a constant value or a function of system parameters.

For example, in Amazon’s EC2, on-demand instances have

fixed price while Spot instances have variable price which is

a function of VM demand [1].

Considering the associated cost as well as response time

of the given requests for each resource provider, the objective

Fig. 2. Model of resource brokering for n providers.

function for the broker could be expressed as follows:

min
n∑

i=1

(Ki · E[Ti]) (1)

where E[Ti] is the expected response time of requests served

at queue i and is described in the following.

Based on Figure 2, queue i has the mean inter-arrival time

E[Ii] = λ−1
i = (Piλ)

−1, so we can find its variance by Wald’s

equation [23] as follows:

V [Ii] =
σ2
IPi + λ−2(1− Pi)

P 2
i

(2)

As mentioned before, queue i has the mean service time and

the coefficient of variance μ−1
i and σSi · μi, respectively. As

the incoming requests have several VMs that potentially can

be as large as Mi nodes, we model each provider with a single

server queue. By considering general distribution for the inter-

arrival time as well as the service time, each queue can be

modeled as a GI/GI/1 FCFS queue. Therefore, we are able

to approximate the expected response time of queue i by the

following equation2 [10]:

E[Ti] =
1

μi
+

C2
Ii
− C2

Si

2(μi − λi)
(3)

where C2
Ii

is the squared coefficient of variance for the

inter-arrival time at queue i, and can be calculated using

Equation (2) as follows:

C2
Ii =

V [Ii]

E[Ii]2
= 1 + Pi(λ

2σ2
I − 1) (4)

Next, we apply Lagrange multipliers method to optimize

Equation (1) using E[Ti] from Equation (3) and assuming∑n
i=1 Pi = 1. The solution of this optimization gives the

routing probabilities Pi as follows:

Pi =
μi

λ
−

∑n
i=1 μi − λ

λ
·

√
Kiηi∑n

i=1

√
Kiηi

(5)

2There are several approximations for this queue in the literature, but we
choose one which is a good estimate for heavily loaded systems.
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where ηi can be calculated by the following equation:

ηi = λ(λ2σ2
I + λ2 + C2

Si
− λμi) (6)

Equation (5) reflects the effect of the system parameters as

well as computing costs on the routing probabilities leading

to a cost-aware brokering strategy. Moreover, the proposed

brokering strategy is based on non-observable queues which

means it does not need any information about the scheduler’s

queues. This simplifies implementation of the IGG in the

hybrid Cloud system.

B. Dispatch Sequences

The proposed adaptive brokering strategy in the previous

subsection determines only the routing probabilities (i.e. Pi).

However, it does not explain any sequence for dispatching

the incoming requests to the resource providers. Here, we

consider two dispatch sequences including probabilistic and

deterministic methods to complete the second step of resource

provisioning.

Given the routing probabilities, one way to dispatch the

requests is using a Bernoulli distribution to randomly submit

the requests. In this case, the gateway only uses routing

probabilities without any special sequencing of requests sent

to providers. In this sense, this method is memoryless as it

does not take into account which requests have been sent to

which queues. We call this method Adaptive with Random

Sequence (ARS) policy.

In contrast, we also propose another method with deter-

ministic sequence, which considers the past sequence of dis-

patching with a very limited time overhead. This method, we

call as Adaptive with Deterministic Sequence (ADS) policy.

To generate the deterministic sequence, we used the Billiard
scheme [11], determined as follows.

Suppose a billiard ball bounces in an n-dimensional cube

where each side and opposite side are assigned by an integer

value in the range of {1, 2, ..., n}. Then, a deterministic billiard

sequence is generated by a series of integer values which

shows the sides hit by the ball when shot. In [11], the

authors proposed a method to generate the billiard sequence

as follows:

ib = min
∀i

{
Xi + Yi

Pi

}
(7)

where ib is the target queue, and X and Y are vectors of

integers with size n. Xi reflects the fastest queue, and is set

to one for the fastest queue and zero for all other queues [2].

Yi keeps track of the number of requests that have been sent

to queue i and is initialized to zero. After finding the target

queue, it is updated as Yib = Yib + 1. Pi is the fraction of

requests that are sent to queue i and is the same as the routing

probabilities obtained from Equation (5).

Based on the proposed methods for dispatching, the assump-

tion about the broker without a queue would be justifiable as

the broker has only a few computation operations to make

decision about target providers for incoming requests.

C. Scheduling Algorithms

The last step in the resource provisioning is scheduling of

request on the available VMs in the resource providers. For this

purpose, we utilize three well-known scheduling algorithms

conservative, aggressive, and selective backfilling [25]. With

conservative backfilling, each request is scheduled when it is

submitted to the system, and requests are allowed to leap

forward in the queue if they do not delay other queued

requests. In aggressive backfilling (EASY), only the request at

the head of the queue, called the pivot, is granted a reservation.

Other requests are allowed to move ahead in the queue as long

as they do not delay the pivot. Selective backfilling grants

reservation to a request when its expected slowdown exceeds

a threshold. This implies, the request has waited long enough

in the queue.

We assume that each VM runs on one available node. As

a given request needs all VMs to be available for the whole

required duration, any failure event in any virtual machine

would stop execution of the whole request. The request can

be started again, if and only if all VMs become available

again. If there is a resource failure during execution we apply

checkpointing [3] technique to resume execution of the request

from where it was interrupted. We incorporate checkpointing

in our scheduling algorithms and provide a fault-tolerant

environment for serving requests in the local cluster.

V. CASE STUDY: HYBRID CLOUD WITH TWO PROVIDERS

In this section, we adopt the results of Section IV for our

specific case where we have two providers (i.e. n = 2). We

use index i = s for the local cluster and i = c for the Cloud

hereafter. Moreover, we assume that there is computing speed

homogeneity within each provider. As mentioned earlier, the

proposed policies are part of the IGG (see Section II).

To apply the proposed analytical model for brokering strat-

egy, we first need to specify the arrival distribution I . The

arrival distribution I depends on the system workload and

could be given as a general distribution with light-tails [10].

As can be seen from Equation (3), the mean service time, μi,

and coefficient of variance, CSi
are two unknown parameters.

Therefore, in the following, we determine μs and CSs
for

the local cluster and μc and CSc
for Cloud to obtain the

corresponding routing probabilities by Equation (5).

A. Runtime Model for Local Cluster

The distribution of service time in each provider depends

on the characteristics of the infrastructure as well as the input

workload. Moreover, in our analysis in Section IV, relative
response times are more important than absolute response

times. The reason is that scaling up or down of the service

times in Equation (1) does not change the routing probabilities.

Since we assume the local cluster is failure-prone, we must

consider the availability and unavailability intervals of each

resource to find out the service time distribution. We term the

continuous period of a service outage due to a failure as an

unavailability interval. A continuous period of availability is

called an availability interval. For this purpose, we use the
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proposed model by Kleinrock et al. [14] to find the mean and

coefficient of variance of completion time for W time units

of work over M transient processors, as follows:

f =
W

b
=

W

M

(ta + tu)

ta
(8)

σf

f
=

√
σ2
b√

bW
(9)

where

b =
ta

(ta + tu)
M (10)

σ2
b =

σ2
at

2
u + σ2

ut
2
a

(ta + tu)3
M (11)

Moreover, ta, tu, σ2
a and σ2

u are the mean and the variance of

availability and unavailability interval lengths, respectively.

As the input workload includes parallel requests (i.e. request

with several VMs), we consider the mean request size (W ) as

the given work to the system. We define the mean request size

by multiplying the mean number of VMs (V ) by the mean re-

quest duration (D). Hence, W = V ·D. These two parameters

are dependent on workload model (see Section VI-A).

By considering W time units of work over Ms failure-

prone nodes, we define the service rate of the cluster queue as

the reciprocal value of the mean completion time for a given

workload as follows:

μs =

(
W

Ms · τs
ta + tu

ta
+ Ls

)−1

(12)

where τs is the computing speed of the nodes in the local

cluster in terms of instruction per second, and Ls is the time to

transfer the application (e.g. configuration file or input file(s))

to the cluster through the communication network. Another

required parameter is the coefficient of variance of the cluster’

service time (i.e. CSs
) which is nothing but Equation (9). This

makes our brokering strategy failure-aware and consequently

adaptive to the system’s failure pattern [13].

B. Runtime Model for Public Cloud

Although resource failures are inevitable, but public Cloud

providers employ efficient and expensive mechanisms to man-

age resource failures. These mechanisms are mainly based

on redundancy. Hence, public Cloud providers are usually

able to provide highly reliable services to their customers [1].

Therefore, we can use Normal distribution for the request

completion time in the Cloud. This can be justified by the

central limit theorem which assures that when summing many

independent random variables (here requests completion time),

the resulting distribution tends toward a Normal distribution.

So, the service rate of the Cloud queue can be found as the

reciprocal values of the mean request completion time for a

given workload on Mc reliable nodes as follows:

μc =

(
W

Mc · τc + Lc

)−1

(13)

where τc and Lc are the computing speed and the time to

transfer the application to public Cloud provider, respectively.

It should be noted that the time to transfer output data to the

local cluster is not considered as it can be overlapped with

other computations. The coefficient of variance of the service

time can be assumed as one (i.e. CSc
= 1) to model the

performance variability in public Cloud resources [20]. This

can be the minimum value for the coefficient of variance and

should be increased on the basis of variance in performance of

Cloud resources. Moreover, this is the parameter that should be

changed to adapt the proposed performance model for different

types of resources in a public Cloud provider (e.g. different

instances in Amazon’s EC2 [1]).

Apart from the brokering strategy, other two steps of re-

source provisioning can be directly used from Section IV. For

n = 2, Xc = 1 and Xs = 0 in the billiard scheme, for our

specific case.

VI. PERFORMANCE EVALUATION

In order to evaluate the performance of the proposed

policies, we implemented a discrete event simulator using

CloudSim [4]. We used simulation as experiments are repro-

ducible and the cost of conducting experiments on a real public

cloud would be prohibitively expensive.

The performance metrics related to response times of re-

quests that are considered in all simulation scenarios are

the Average Weighted Response Time (AWRT) [9] and the

bounded slowdown [8]. The AWRT for N given requests is

defined by the following equation:

AWRT =

∑N
j=1 dj · vj · (ctj − stj)∑N

j=1 dj · vj
(14)

where vj is the number of virtual machines of request j. ctj is

the time of completion of the request and stj is its submission

time. The resource consumption (dj · vj) of each request j is

used as the weight. The AWRT measures the average time that

users must wait to have their requests completed. The bounded

slowdown metric, is defined as follows:

Slowdown =
1

N

N∑
j=1

wj +max(dj , bound)

max(dj , bound)
(15)

where wj is the waiting time of request j. Also, bound is set

to 10 seconds to eliminate the effect of very short requests [8].

We evaluate the proposed policies against another basic pol-

icy, the No-Redirection policy. This is the simplest brokering

policy with the routing probability of the local cluster set to

one (Ps = 1) and set to zero for Cloud (Pc = 0). In this

policy, all requests run only on the failure-prone local cluster.

A. Workload Model

The workload model for evaluation scenarios is obtained

from the Grid Workload Archive [12]. We used the parallel job
model of the DAS-2 system which is a multi-cluster Grid [17].

Based on the workload characterization, the inter-arrival time,

request size, and request duration follow Weibull, two-stage
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TABLE I
INPUT PARAMETERS FOR THE WORKLOAD MODEL.

Parameters Distribution/Value
Inter-arrival time Weibull (α = 23.375, 0.2 ≤ β ≤ 0.3)

No. of VMs Loguniform (l = 0.8,m = 3.5, h = 6, q = 0.9)
Request duration Lognormal (2.5 ≤ θ ≤ 3.5, σ = 1.7)

Pone 0.02
Ppow2 0.78

Loguniform and Lognormal distributions, respectively. These

distributions with their parameters are listed in Table I. It

should be noted that the number of VMs in the request

can be scaled to the system size (e.g. M nodes) by setting

h = log2M .

To find the mean number of VMs per request, we need

the probability of different number of VMs in the incoming

requests. Assume that Pone and Ppow2 are probabilities of

request with one VM and power of two VMs in the workload,

respectively. Therefore, the mean number of VMs required by

requests is given as follows:

V = Pone + 2�r�(Ppow2) + 2r (1− (Pone + Ppow2)) (16)

where r is the mean value of the two-stage uniform distribution

with parameters (l,m, h, q) as listed in Table I and can be

found as follows:

r =
ql +m+ (1− q)h

2
(17)

Additionally, the mean request duration is the mean value

of the Lognormal distribution with parameters (θ, σ) which is

given by:

D = eθ+
σ2

2 (18)

B. Experimental Setup

For each simulation experiment, statistics were gathered

for a two-month period of the DAS-2 workloads. The first

week of workloads during the warm-up phase were ignored

to avoid bias before the system reached steady-state. In our

experiments, the results of simulations are accurate within a

confidence level of 95%.

The number of resources in the local cluster and Cloud is

equal to Ms = Mc = 64 with homogeneous computing speed3

(i.e. τs = τc = 1000 MIPS). Moreover, the cost of resources

in the Cloud is considered to be five times more expensive

than the local cluster’s resources (i.e. Ks = 1, Kc = 5).

The network transfer time of the cluster is negligible as the

local resources are interconnected by a high-speed network,

Ls = 0. However, to execute the application on the public

Cloud we must send the configuration file as well as input

file(s). Therefore, we consider the network transfer time as

Lc = 64 sec., which is the time to transfer 80 MB data4 on a

10 Mbps network connection.

3This assumption is made just to focus on performance degradation due to
failure.

4This is the maximum amount of data for a real scientific workflow
application [22].

TABLE II
INPUT PARAMETERS FOR THE FAILURE MODEL.

Parameters Description Value (hours)
ta Mean availability length 22.25
σa Std of availability length 41.09
tu Mean unavailability length 10.22
σu Std of unavailability length 40.75

The failure trace for the experiments is obtained from the

Failure Trace Archive [15]. We used the failure trace of a

cluster in the Grid’5000 with 64 nodes for duration of 18

months, which includes on average 795 failure events per

node. The parameters for the failure model of Grid’5000

are listed in Table II (see [15] for more details). Also, each

experiment utilizes a unique starting point in the failure traces

to avoid bias results.

In order to generate different synthetic workloads, we

modified two parameters of the workload model, one at a

time. To change the inter-arrival time, we modified the second

parameter of the Weibull distribution (the shape parameter β)

as shown in Table I. Also, to have requests with different

duration, we changed the first parameter of the Lognormal

distribution between 2.5 and 3.5 which is mentioned in Table I.

To compute the cost of using resources from a Cloud

provider, we use the amounts charged by Amazon to run basic

virtual machines and network usage at EC2. For the total of N
requests which are submitted to the system, the cost of using

EC2 can be calculated as follows:

CEC2 = (Hc +N · Pc ·Hu)Cp + (N · Pc ·Bin)Cx (19)

where Hc is the total Cloud usage per hour. This implies, if a

request uses a VM for 40 minutes for example, the cost of one

hour is considered. N ·Pc is the fraction of requests which are

redirected to the public Cloud. Also, Hu is the startup time for

initialization of operating system on a virtual machine which

is set to 80 seconds [20]. We take into account this value

as Amazon commences charging users when the VM process

starts. Bin is the amount of data which transfer to Amazon

EC2 for each request and as it is mentioned before, it is 80

MB per request. The cost of one specific instance on EC2

(us-east) is determined as Cp and considered as 0.085 USD

per virtual machine per hour for a small instance. The cost of

data transfer to Amazon EC2 is also considered as Cx which is

0.1 USD per GB 5. It should be noted that we consider a case

where requests’ output are very small and can be transfered

to the local cluster for free [1].

C. Results and discussions

In this section, NoR, ARS, and ADS refer to the No-

Redirection, Adaptive with Random Sequence, and Adaptive

with Deterministic Sequence, respectively. Moreover, CB, SB,

and EB stand for Conservative, Selective and EASY Backfill-

ing, respectively. The same scheduling algorithms are used for

the local cluster and Cloud in all scenarios.

5All prices obtained at time of writing this paper.
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(a) Conservative Backfilling (b) Selective Backfilling (c) EASY Backfilling

Fig. 3. AWRT versus arrival rate (θ = 3.0).

The simulation results for AWRT versus arrival rate are

depicted in Figure 3 for different provisioning policies while

average request duration is kept of medium size (i.e. θ = 3.0).

For all these cases, we see that increasing the arrival rate

dramatically increases the request failure rate for AWRT in

NoR policy. On the other hand, the ARS and ADS policies

control the failure rate by redirecting the requests to the Cloud

which lead to lower AWRT. The maximum improvement

factor of using adaptive brokering with respect to NoR is

3.4, 3.7, and 5.1 times in terms of AWRT for conservative,

selective and EASY backfilling, respectively. Although, ADS

uses deterministic sequence, there is probability of changing

this sequence due to request backfilling in the local scheduler.

Therefore, the ADS achieves almost the same performance as

the ARS for all the scheduling algorithms.

Figure 4 shows AWRT against different request duration

in the moderate arrival rate (i.e. β = 0.25). It reveals that

ADS policy is slightly better than ARS for selective schedul-

ing algorithm. To be more precise, the average performance

improvement of ADS with respect to the ARS is 5.8% for

selective backfilling. In the case of conservative and EASY

backfilling there is no considerable improvement. The reason

to have some fluctuations in these figures is the effect of

backfilling in the scheduler queue due to changing of requests

duration.

Figure 5 expresses slowdown of requests versus arrival rate

for different provisioning policies with the same configura-

tion as previous experiments. Based on these figures, use of

adaptive brokering strategies decreases the request slowdown

by 4 times for conservative and selective backfilling and 10.9

times for EASY backfilling with respect to NoR policy. As it is

illustrated, by increasing the arrival rate, the gap between NoR

and adaptive brokering strategies increases. This is because the

routing probabilities are strongly dependent on the arrival rate

and adaptively redirect more requests to the Cloud to control

the system performance.

In Figure 6, request slowdown is depicted against various

request sizes for all three policies. These figures reveal that

by increasing the request duration, the slowdown decreases

while the ADS marginally surpasses ARS for the selective

and EASY backfilling. For the conservative backfilling the

performance of ARS is almost better than ADS, specially for

short request duration.

It is worth noting that the theoretical work in [2] showed

that the Billiard scheme provides optimal response time when

all queues are FCFS and service times follow the exponential

distribution. However, in our case, queues are not FCFS due

to probability of backfilling and service times are not simple

short-tailed distributions. We observed that in this situation, the

ADS policy with billiard sequence is not able to perform very

well with respect to the ARS due to perturbation of sequence

in the scheduler of the resource providers.

To analyze how the proposed policies utilize the Cloud

resources, we calculated the amount of Cloud usage and its

associated cost per month using Equation (19). We observed

that the amount of Cloud usage (Hc in Equation (19)) is the

same for all scheduling algorithms. However, as we illustrated

before in this subsection, the proposed policies have different

performance in terms of AWRT and slowdown. Moreover, this

confirms that our proposed policies are independent from the

scheduling algorithms. Recall that in the objective function of

the broker in Equation (1), both cost and response time can be

relative, so the monetary cost of Cloud usage is independent

from the broker’ cost parameters (Ki).

Table III lists the cost and the performance improvement of

all proposed polices with respect to the case of using only

the local failure-prone cluster. In each row the values are

presented for different request duration while the input load is

moderate (i.e. β = 0.25). We can observe that with a limited

cost (e.g. less than 1200 USD) per month, we can improve

the performance of users’ requests up to 4.10 in terms of

AWRT and up to 9.58 in terms of slowdown. However, by

spending more money per month, we are able to obtain up

to 5.90 and 17.61 times improvement in terms of AWRT and

slowdown, respectively. As it is illustrated in Table III, the

EASY backfilling improves dramatically in terms of AWRT

and slowdown for medium and large requests. Additionally, in

almost all cases, the ADS policy is slightly better than ARS
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(a) Conservative Backfilling (b) Selective Backfilling (c) EASY Backfilling

Fig. 4. AWRT versus request duration (β = 0.25).

(a) Conservative Backfilling (b) Selective Backfilling (c) EASY Backfilling

Fig. 5. Slowdown versus arrival rate (θ = 3.0).

policy in terms of the cost at EC2 per month.

It should be noted that, we do not consider the check-

pointing overheads in this study, as we want to focus on

effect of failures in the resource provisioning. In other words,

we show that even without time and space overheads of

checkpointing mechanism, resource provisioning from a public

Cloud substantially improve the system performance. This

improvement would be the lower bound of enhancement while

including overheads of checkpointing.

VII. CONCLUSIONS

We considered the problem of cloud computing resource

provisioning to extend the computing capacity of failure-prone

local cluster. We presented a generic resource provisioning

model based on the stochastic analysis of routing in distributed

parallel queues where the the arrival and service processes

follow general distributions. The proposed brokering strategy

is adaptive to the cost and response time of resource providers.

Both proposed policies, ARS and ADS, utilize adaptive bro-

kering strategy while ARD adopts probabilistic sequence and

ADS uses deterministic sequence to redirect the requests. The

proposed policies take advantage of non-observable queues,

so they do not require any information about the scheduler’s

queues.

Experimental results under realistic workload and failure

events reveal that both policies reduces AWRT and slowdown

of requests significantly for different scheduling algorithms,

where ADS policy shows marginally better cost than ARS.

We observed that request backfilling strongly modifies the

sequence of requests in the queues, so the ADS policy can

not achieve a considerable improvement with respect to ARS

policy. Finally, we believe that the proposed performance

model can be a practical evaluation tool that can help system

administrators to explore the design space and examine various

system parameters.
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