
�

1

Modeling and Simulation of Scalable Cloud Computing Environments and
the CloudSim Toolkit: Challenges and Opportunities

Rajkumar Buyya1, Rajiv Ranjan2 and Rodrigo N. Calheiros1,3

1 Gri d Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
2 Department of Computer Science and Engineering

The University of New South Wales, Sydney, Australia
3Pontifical Catholic University of Rio Grande do Sul

Porto Alegre, Brazil
Email: {raj, rodrigoc}@csse.unimelb.edu.au, rajiv@unsw.edu.au

Abstract

Cloud computing aims to power the next generation data
centers and enables application service providers to lease
data center capabilities for deploying applications
depending on user QoS (Quality of Service) requirements.
Cloud applications have different composition,
configuration, and deployment requirements. Quantifying
the performance of resource allocation policies and
application scheduling algorithms at finer details in Cloud
computing environments for different application and
service models under varying load, energy performance
(power consumption, heat dissipation), and system size is a
challenging problem to tackle. To simplify this process, in
this paper we propose CloudSim: an extensible simulation
toolkit that enables modelling and simulation of Cloud
computing environments. The CloudSim toolkit supports
modelling and creation of one or more virtual machines
(VMs) on a simulated node of a Data Center, jobs, and
their mapping to suitable VMs. It also allows simulation of
multiple Data Centers to enable a study on federation and
associated policies for migration of VMs for reliability and
automatic scaling of applications.

1. Introduction
Cloud computing delivers infrastructure, platform, and
software as services, which are made available as
subscription-based services in a pay-as-you-go model to
consumers. These services in industry are respectively
referred to as Infrastructure as a Service (IaaS), Platform as
a Service (PaaS), and Software as a Service (SaaS). The
importance of these services is highlighted in a recent
report from Berkeley as: “Cloud computing, the long-held
dream of computing as a utility, has the potential to
transform a large part of the IT industry, making software
even more attractive as a service” [11].

 Clouds [10] aim to power the next generation data
centers by exposing them as a network of virtual services

(hardware, database, user-interface, application logic) so
that users are able to access and deploy applications from
anywhere in the world on demand at competitive costs
depending on users QoS (Quality of Service)
requirements [1]. Developers with innovative ideas for new
Internet services are no longer required to make large
capital outlays in the hardware and software infrastructures
to deploy their services or human expense to operate it
[11]. It offers significant benefit to IT companies by
freeing them from the low level task of setting up basic
hardware and software infrastructures and thus enabling
more focus on innovation and creation of business values.

 Some of the traditional and emerging Cloud-based
applications include social networking, web hosting,
content delivery, and real time instrumented data
processing. Each of these application types has different
composition, configuration, and deployment requirements.
Quantifying the performance of scheduling and allocation
policies in a real Cloud environment for different
application and service models under different conditions
is extremely challenging because: (i) Clouds exhibit
varying demand, supply patterns, and system size; and (ii)
users have heterogenous and competing QoS requirements.
The use of real infrastructures such as Amazon EC2, limits
the experiments to the scale of the infrastructure, and
makes the reproduction of results an extremely difficult
undertaking. The main reason for this being the conditions
prevailing in the Internet-based environments are beyond
the control of developers of resource allocation and
application scheduling algorithms.

An alternative is the utilization of simulation tools that
open the possibility of evaluating the hypothesis prior to
software development in an environment where one can
reproduce tests. Specifically in the case of Cloud
computing, where access to the infrastructure incurs
payments in real currency, simulation-based approaches
offer significant benefits to Cloud customers by allowing

�

2

them to: (i) test their services in repeatable and controllable
environment free of cost; and (ii) tune the performance
bottlenecks before deploying on real Clouds. At the
provider side, simulation environments allow evaluation of
different kinds of resource leasing scenarios under varying
load and pricing distributions. Such studies could aid
providers in optimizing the resource access cost with focus
on improving profits. In the absence of such simulation
platforms, Cloud customers and providers have to rely
either on theoretical and imprecise evaluations, or on try-
and-error approaches that lead to inefficient service
performance and revenue generation.

Considering that none of the current distributed system
simulators [4][7][9] offer the environment that can be
directly used by the Cloud computing community, we
propose CloudSim: a new, generalized, and extensible
simulation framework that enables seamless modeling,
simulation, and experimentation of emerging Cloud
computing infrastructures and application services. By
using CloudSim, researchers and industry-based developers
can focus on specific system design issues that they want to
investigate, without getting concerned about the low level
details related to Cloud-based infrastructures and services.

CloudSim offers the following novel features: (i)
support for modeling and simulation of large scale Cloud
computing infrastructure, including data centers on a single
physical computing node; and (ii) a self-contained platform
for modeling data centers, service brokers, scheduling, and
allocations policies. Among the unique features of
CloudSim, there are: (i) availability of virtualization
engine, which aids in creation and management of multiple,
independent, and co-hosted virtualized services on a data
center node; and (ii) flexibility to switch between space-
shared and time-shared allocation of processing cores to
virtualized services. These compelling features of
CloudSim would speed up the development of new
resource allocation policies and scheduling algorithms for
Cloud computing.

2. Key Concepts and Terminologies
This section presents background information on various
architectural elements that form the basis for Cloud
computing. It also presents requirements of various
applications that need to scale across multiple
geographically distributed data centers owned by one or
more service providers. As development of resource
allocation and application scaling techniques and their
performance evaluation under various operational
scenarios in a real Cloud environment is difficult and hard
to repeat; we propose the use of simulation as an alternate
approach for achieving the same.

2.1 Cloud computing
Cloud computing can be defined as “a type of parallel and
distributed system consisting of a collection of inter-
connected and virtualized computers that are dynamically
provisioned and presented as one or more unified
computing resources based on service-level agreements

established through negotiation between the service
provider and consumers” [1]. Some examples of emerging
Cloud computing infrastructures are Microsoft Azure [2],
Amazon EC2, Google App Engine, and Aneka [3].

Emerging Cloud applications such as social networking,
gaming portals, business applications, content delivery, and
scientific workflows operate at the highest layer of the
architecture. Actual usage patterns of many real-world
applications vary with time, most of the time in
unpredictable ways. These applications have different
Quality of Service (QoS) requirements depending on time
criticality and users’ interaction patterns (online/offline).

2.2 Layered Design
Figure 1 shows the layered design of service-oriented
Cloud computing architecture. Physical Cloud resources
along with core middleware capabilities form the basis for
delivering IaaS. The user-level middleware aims at
providing PaaS capabilities. The top layer focuses on
application services (SaaS) by making use of services
provided by the lower layer services. PaaS/SaaS services
are often developed and provided by 3rd party service
providers, who are different from IaaS providers [13].

User-Level Middleware: This layer includes the software
frameworks such as Web 2.0 Interfaces (Ajax, IBM
Workplace) that help developers in creating rich, cost-
effecting user-interfaces for browser-based applications.
The layer also provides the programming environments and
composition tools that ease the creation, deployment, and
execution of applications in Clouds.

Cloud resources

Virtual Machine (VM), VM Management and Deployment

QoS Negotiation, Admission Control, Pricing, SLA Management,
Monitoring, Execution Management, Metering, Accounting, Billing

Cloud programming: environments and tools
Web 2.0 Interfaces, Mashups, Concurrent and Distributed

Programming, Workflows, Libraries, Scripting

Cloud applications
Social computing, Enterprise, ISV, Scientific, CDNs, ...

A
daptive M

anagem
ent

����
������	
��

���������
������	
��

System level

User level

A
utonom

ic / C
loud E

conom
y

Apps Hosting Platforms

Figure 1. Layered Cloud Computing Architecture.

Core Middleware: This layer implements the platform
level services that provide runtime environment enabling
Cloud computing capabilities to application services built
using User-Level Middlewares. Core services at this layer
includes Dynamic SLA Management, Accounting, Billing,
Execution monitoring and management, and Pricing. The
well-known examples of services operating at this layer are
Amazon EC2, Google App Engine, and Aneka [3].

System Level: The computing power in Cloud computing
environments is supplied by a collection of data centers,

�

3

which are typically installed with hundreds to thousands of
servers [9]. At the System Level layer there exist massive
physical resources (storage servers and application servers)
that power the data centers. These servers are
transparently managed by the higher level virtualization [8]
services and toolkits that allow sharing of their capacity
among virtual instances of servers. These VMs are isolated
from each other, which aid in achieving fault tolerant
behavior and isolated security context.

2.3 Federation (Inter-Networking) of Clouds

Current Cloud Computing providers have several data
centers at different geographical locations over the Internet
in order to optimally serve costumers needs around the
world. However, existing systems does not support
mechanisms and policies for dynamically coordinating
load-shredding among different data centers in order to
determine optimal location for hosting application services
to achieve reasonable service satisfaction levels. Further,
the Cloud service providers are unable to predict
geographic distribution of users consuming their services,
hence the load coordination must happen automatically,
and distribution of services must change in response to
changes in the load behaviour. Figure 2 depicts such a
service-oriented Cloud computing architecture consisting
of service consumer’s brokering and provider’s coordinator
services that support utility-driven internetworking of
clouds [12]: application scheduling, resource allocation,
and workload migration.

Figure 2. Clouds and their federated network

mediated by a Cloud exchange.

 The Cloud coordinator component is instantiated by each
data center that: (i) exports the Cloud services, both
infrastructure and platform-level, to the federation; (ii)
keeps track of load on the data center and undertakes
negotiation with other Cloud providers for dynamic scaling
of services across multiple data centers for handling the
peak in demands; and (iii) monitors the application
execution and oversees that agreed SLAs are delivered.
The Cloud brokers acting on behalf of service consumers
(users) identify suitable Cloud service providers through
the Cloud Exchange and negotiate with Cloud

Coordinators for allocation of resources that meets the QoS
needs of hosted applications. The Cloud Exchange (CEx)
acts as a market maker for bringing together service
providers and consumers. It aggregates the infrastructure
demands from the Cloud brokers and evaluates them
against the available supply currently published by the
Cloud Coordinators.

The applications that would benefit from the
aforementioned federated Cloud computing system include
social networks such as Facebook and MySpace, Content
Delivery Networks (CDNs). Social networking sites serve
dynamic contents to millions of users, whose access and
interaction patterns are difficult to predict. In general,
social networking websites are built using multi-tiered web
applications such as WebSphere and persistency layers
such as the MySQL relational database. Usually, each
component will run in a different virtual machine, which
can be hosted in data centers owned by different Cloud
computing providers. Additionally, each plug-in developer
has the freedom to choose which Cloud computing
provider offers the services that are more suitable to run
his/her plug-in. As a consequence, a typical social
networking web application is formed by hundreds of
different services, which may be hosted by dozens of
Cloud-oriented data centers around the world. Whenever
there is a variation in temporal and spatial locality of
workload, each application component must dynamically
scale to offer good quality of experience to users.

2.4 A Case for Simulation and Related Work
In the past decade, Grids [5] have evolved as the
infrastructure for delivering high-performance services for
compute and data-intensive scientific applications. To
support research and development of new Grid
components, policies, and middleware; several Grid
simulators, such as GridSim [9], SimGrid [7], and
GangSim [4] have been proposed. SimGrid is a generic
framework for simulation of distributed applications on
Grid platforms. Similarly, GangSim is a Grid simulation
toolkit that provides support for modeling of Grid-based
virtual organisations and resources. On the other hand,
GridSim is an event-driven simulation toolkit for
heterogeneous Grid resources. It supports modeling of grid
entities, users, machines, and network, including network
traffic.
 Although the aforementioned toolkits are capable of
modeling and simulating the Grid application behaviors
(execution, scheduling, allocation, and monitoring) in a
distributed environment consisting of multiple Grid
organisations, none of these are able to support the
infrastructure and application-level requirements arising
from Cloud computing paradigm. In particular, there is
very little or no support in existing Grid simulation toolkits
for modeling of on-demand virtualization enabled resource
and application management. Further, Clouds promise to
deliver services on subscription-basis in a pay-as-you-go
model to Cloud customers. Hence, Cloud infrastructure

�

4

modeling and simulation toolkits must provide support for
economic entities such as Cloud brokers and Cloud
exchange for enabling real-time trading of services
between customers and providers. Among the currently
available simulators discussed in this paper, only GridSim
offers support for economic-driven resource management
and application scheduling simulation.

Another aspect related to Clouds that should be
considered is that research and development in Cloud
computing systems, applications and services are in their
infancy. There are a number of important issues that need
detailed investigation along the Cloud software stack.
Topics of interest to Cloud developers include economic
strategies for provisioning of virtualized resources to
incoming user's requests, scheduling of applications,
resources discovery, inter-cloud negotiations, and
federation of clouds. To support and accelerate the
research related to Cloud computing systems, applications
and services; it is important that the necessary software
tools are designed and developed to aid researchers.

3. CloudSim Architecture
Figure 3 shows the layered implementation of the
CloudSim software framework and architectural
components. At the lowest layer is the SimJava discrete
event simulation engine [6] that implements the core
functionalities required for higher-level simulation
frameworks such as queuing and processing of events,
creation of system components (services, host, data center,
broker, virtual machines), communication between
components, and management of the simulation clock.
Next follows the libraries implementing the GridSim
toolkit [9] that support: (i) high level software components
for modeling multiple Grid infrastructures, including
networks and associated traffic profiles; and (ii)
fundamental Grid components such as the resources, data
sets, workload traces, and information services.

The CloudSim is implemented at the next level by
programmatically extending the core functionalities
exposed by the GridSim layer. CloudSim provides novel
support for modeling and simulation of virtualized Cloud-
based data center environments such as dedicated
management interfaces for VMs, memory, storage, and
bandwidth. CloudSim layer manages the instantiation and
execution of core entities (VMs, hosts, data centers,
application) during the simulation period. This layer is
capable of concurrently instantiating and transparently
managing a large scale Cloud infrastructure consisting of
thousands of system components. The fundamental issues
such as provisioning of hosts to VMs based on user
requests, managing application execution, and dynamic
monitoring are handled by this layer. A Cloud provider,
who wants to study the efficacy of different policies in
allocating its hosts, would need to implement his strategies
at this layer by programmatically extending the core VM
provisioning functionality. There is a clear distinction at
this layer on how a host is allocated to different competing

VMs in the Cloud. A Cloud host can be concurrently
shared among a number of VMs that execute applications
based on user-defined QoS specifications.

The top-most layer in the simulation stack is the User
Code that exposes configuration related functionalities for
hosts (number of machines, their specification and so on),
applications (number of tasks and their requirements),
VMs, number of users and their application types, and
broker scheduling policies. A Cloud application developer
can generate: (i) a mix of user request distributions,
application configurations; and (ii) Cloud availability
scenarios at this layer and perform robust tests based on the
custom configurations already supported within the
CloudSim.
 As Cloud computing is a rapidly evolving research area,
there is a severe lack of defined standards, tools and
methods that can efficiently tackle the infrastructure and
application level complexities. Hence in the near future
there would be a number of research efforts both in
academia and industry towards defining core algorithms,
policies, application benchmarking based on execution
contexts. By extending the basic functionalities already
exposed by CloudSim, researchers would be able to
perform tests based on specific scenarios and
configurations, hence allowing the development of best
practices in all the critical aspects related to Cloud
Computing.

Figure 3. Layered CloudSim architecture.

 One of the design decisions that we had to make as the
CloudSim was being developed was whether to extensively
reuse existing simulation libraries and frameworks or not.
We decided to take advantage of already implemented and

�

5

proven libraries such as GridSim and SimJava to handle
low-level requirements of the system. For example, by
using SimJava, we avoided reimplementation of event
handling and message passing among components. This
saved us time and cost of software engineering and testing.
Similarly, the use of the GridSim framework allowed us to
reuse its implementation of networking, information
services, files, users, and resources. Since,SimJava and
GridSim have been extensively utilized in conducting
cutting edge research in Grid resource management by
several researchers. Therefore, bugs that may compromise
the validity of the simulation have been already detected
and fixed. By reusing these long validated frameworks, we
were able to focus on critical aspects of the system that are
relevant to Cloud computing. At the same time taking
advantage of the reliability of components that are not
directly related to Clouds.

3.1. Modeling the Cloud
The core hardware infrastructure services related to the
Clouds are modeled in the simulator by a Datacenter
component for handling service requests. These requests
are application elements sandboxed within VMs, which
need to be allocated a share of processing power on
Datacenter’s host components. By VM processing, we
mean a set of operations related to VM life cycle:
provisioning of a host to a VM, VM creation, VM
destruction, and VM migration.

A Datacenter is composed by a set of hosts, which are
responsible for managing VMs during their life cycles.
Host is a component that represents a physical computing
node in a Cloud: it is assigned a pre-configured processing
capability (expressed in million of instructions per second
– MIPS), memory, storage, and a scheduling policy for
allocating processing cores to virtual machines. The Host
component implements interfaces that support modeling
and simulation of both single-core and multi-core nodes.

Allocation of application-specific VMs to Hosts in a
Cloud-based data center is the responsibility of the Virtual
Machine Provisioner component. This component exposes
a number of custom methods for researchers, which aids in
implementation of new VM provisioning policies based on
optimization goals (user centric, system centric). The
default policy implemented by the VM Provisioner is a
straightforward policy that allocates a VM to the Host in
First-Come-First-Serve (FCFS) basis. The system
parameters such as the required number of processing
cores, memory and storage as requested by the Cloud user
form the basis for such mappings. Other complicated
policies can be written by the researchers based on the
infrastructure and application demands.
 For each Host component, the allocation of processing
cores to VMs is done based on a host allocation. The
policy takes into account how many processing cores will
be delegated to each VM, and how much of the processing
core's capacity will effectively be attributed for a given
VM. So, it is possible to assign specific CPU cores to
specific VMs (a space-shared policy) or to dynamically

distribute the capacity of a core among VMs (time-shared
policy), and to assign cores to VMs on demand, or to
specify other policies.

Each Host component instantiates a VM scheduler
component that implements the space-shared or time-
shared policies for allocating cores to VMs. Cloud system
developers and researchers can extend the VM scheduler
component for experimenting with more custom allocation
policies. Next, the finer level details related to the time-
shared and space-shared policies are described.

3.2. Modeling the VM allocation
One of the key aspects that make a Cloud computing
infrastructure different from a Grid computing is the
massive deployment of virtualization technologies and
tools. Hence, as compared to Grids, we have in Clouds an
extra layer (the virtualization) that acts as an execution and
hosting environment for Cloud-based application services.

Hence, traditional application mapping models that
assign individual application elements to computing nodes
do not accurately represent the computational abstraction
which is commonly associated with the Clouds. For
example, consider a physical data center host that has
single processing core, and there is a requirement of
concurrently instantiating two VMs on that core. Even
though in practice there is isolation between behaviors
(application execution context) of both VMs, the amount of
resources available to each VM is constrained by the total
processing power of the host. This critical factor must be
considered during the allocation process, to avoid creation
of a VM that demands more processing power than the one
available in the host, as multiple task units in each virtual
machine shares time slices of the same processing core.
 To allow simulation of different policies under varying
levels of performance isolation, CloudSim supports VM
scheduling at two levels: First, at the host level and second,
at the VM level. At the host level, it is possible to specify
how much of the overall processing power of each core in
a host will be assigned to each VM. At the VM level, the
VMs assign specific amount of the available processing
power to the individual task units that are hosted within its
execution engine.
 At each level, CloudSim implements the time-shared and
space-shared resource allocation policies. To clearly
illustrate the difference between these policies and their
effect on the application performance, in Figure 4 we show
a simple scheduling scenario. In this figure, a host with two
CPU cores receives request for hosting two VMs, and each
one requiring two cores and running four tasks units: t1, t2,
t3 and t4 to be run in VM1, while t5, t6, t7, and t8 to be
run in VM2.
 Figure 4(a) presents a space-shared policy for both VMs
and task units: as each VM requires two cores, only one
VM can run at a given instance of time. Therefore, VM2
can only be assigned the core once VM1 finishes the
execution of task units. The same happens for tasks hosted
within the VM: as each task unit demands only one core,

�

6

two of them run simultaneously, and the other two are
queued until the completion of the earlier task units.

Figure 4. Effects of different scheduling policies
on task execution: (a) Space-shared for VMs and
tasks, (b) Space-shared for VMs and time-shared
for tasks, (c) Time-shared for VMs, space-shared
for tasks, and (d) Time-shared for VMs and tasks.

 In Figure 4(b), a space-shared policy is used for
allocating VMs, but a time-shared policy is used for
allocating individual task units within VM. Hence, during a
VM lifetime, all the tasks assigned to it dynamically
context switch until their completion. This allocation
policy enables the task units to be scheduled at an earlier
time, but significantly affecting the completion time of task
units that are ahead the queue.
 In Figure 4(c), a time-shared scheduling is used for VMs,
and a space-shared one is used for task units. In this case,
each VM receives a time slice of each processing core, and
then slices are distributed to task units on space-shared
basis. As the core is shared, the amount of processing
power available to the VM is comparatively lesser than the
aforementioned scenarios. As task unit assignment is
space-shared, hence only one task can be allocated to each
core, while others are queued in for future consideration.

 Finally, in Figure 4(d) a time-shared allocation is applied
for both VMs and task units. Hence, the processing power
is concurrently shared by the VMs and the shares of each
VM are concurrently divided among the task units assigned
to each VM. In this case, there are no queues either for
virtual machines or for task units.

3.3. Modeling the Cloud Market
Support for services that act as a market maker enabling
capability sharing across Cloud service providers and
customer through its match making services is critical to
Cloud computing. Further, these services need
mechanisms to determine service costs and pricing
policies. Modeling of costs and pricing policies is an
important aspect to be considered when designing a Cloud
simulator. To allow the modeling of the Cloud market, four
market-related properties are associated to a data center:
cost per processing, cost per unit of memory, cost per unit
of storage, and cost per unit of used bandwidth. Cost per
memory and storage incur during virtual machine creation.
Cost per bandwidth incurs during data transfer. Besides
costs for use of memory, storage, and bandwidth, the other
cost is associated to use of processing resources. Inherited
from the GridSim model, this cost is associated with the
execution of user task units. Hence, if VMs were created
but no task units were executed on them, only the costs of
memory and storage will incur. This behavior may, of
course, be changed by users.

4. Design and Implementation of CloudSim
The Class design diagram for the simulator is depicted in
Figure 5. In this section, we provide finer details related to
the fundamental classes of CloudSim, which are building
blocks of the simulator.

DataCenter. This class models the core infrastructure
level services (hardware, software) offered by resource
providers in a Cloud computing environment. It
encapsulates a set of compute hosts that can be either
homogeneous or heterogeneous as regards to their resource
configurations (memory, cores, capacity, and storage).
Furthermore, every DataCenter component instantiates a
generalized resource provisioning component that
implements a set of policies for allocating bandwidth,
memory, and storage devices.

DatacenterBroker. This class models a broker, which
is responsible for mediating between users and service
providers depending on users’ QoS requirements and
deploys service tasks across Clouds. The broker acting on
behalf of users identifies suitable Cloud service providers
through the Cloud Information Service (CIS) and
negotiates with them for an allocation of resources that
meet QoS needs of users. The researchers and system
developers must extend this class for conducting
experiments with their custom developed application
placement policies.

SANStorage. This class models a storage area network
that is commonly available to Cloud-based data centers for

�

7

storing large chunks of data. SANStorage implements a
simple interface that can be used to simulate storage and
retrieval of any amount of data, at any time subject to the
availability of network bandwidth. Accessing files in a
SAN at run time incurs additional delays for task unit
execution, due to time elapsed for transferring the required
data files through the data center internal network.

 VirtualMachine. This class models an instance of a
VM, whose management during its life cycle is the
responsibility of the Host component. As discussed earlier,
a host can simultaneously instantiate multiple VMs and
allocate cores based on predefined processor sharing
policies (space-shared, time-shared). Every VM component
has access to a component that stores the characteristics
related to a VM, such as memory, processor, storage, and
the VM’s internal scheduling policy, which is extended
from the abstract component called VMScheduling.

Cloudlet. This class models the Cloud-based
application services (content delivery, social networking,
business workflow), which are commonly deployed in the
data centers. CloudSim represents the complexity of an
application in terms of its computational requirements.
Every application component has a pre-assigned instruction
length (inherited from GridSim’s Gridlet component) and
amount of data transfer (both pre and post fetches) that
needs to be undertaken for successfully hosting the
application.

 CloudCoordinator. This abstract class provides
federation capacity to a data center. This class is
responsible for not only communicating with other peer
CloudCoordinator services and Cloud Brokers
(DataCenterBroker), but also for monitoring the internal
state of a data center that plays integral role in load-
balancing/application scaling decision making. The
monitoring occurs periodically in terms of simulation time.
The specific event that triggers the load migration is

implemented by CloudSim users through Sensor
component. Each sensor may model one specific triggering
procedure that may cause the CloudCoordinator to
undertake dynamic load-shredding.

BWProvisioner. This is an abstract class that models
the provisioning policy of bandwidth to VMs that are
deployed on a Host component. The function of this
component is to undertake the allocation of network
bandwidths to set of competing VMs deployed across the
data center. Cloud system developers and researchers can
extend this class with their own policies (priority, QoS) to
reflect the needs of their applications.

MemoryProvisioner. This is an abstract class that
represents the provisioning policy for allocating memory to
VMs. This component models policies for allocating
physical memory spaces to the competing VMs. The
execution and deployment of VM on a host is feasible only
if the MemoryProvisioner component determines that the
host has the amount of free memory, which is requested for
the new VM deployment.

VMProvisioner. This abstract class represents the
provisioning policy that a VM Monitor utilizes for
allocating VMs to Hosts. The chief functionality of the
VMProvisioner is to select available host in a data center,
which meets the memory, storage, and availability
requirement for a VM deployment. The default
SimpleVMProvisioner implementation provided with the
CloudSim package allocates VMs to the first available
Host that meets the aforementioned requirements. Hosts
are considered for mapping in a sequential order. However,
more complicated policies can be easily implemented
within this component for achieving optimized allocations,
for example, selection of hosts based on their ability to
meet QoS requirements such as response time, budget.

Figure 5: CloudSim class design diagram.

�

8

VMMAllocationPolicy. This is an abstract class
implemented by a Host component that models the policies
(space-shared, time-shared) required for allocating
processing power to VMs. The functionalities of this class
can easily be overridden to accommodate application
specific processor sharing policies.

4.1. Entities and threading
As the CloudSim programmatically builds upon the
SimJava discrete event simulation engine, it preserves the
SimJava’s threading model for creation of simulation
entities. A programming component is referred to as an
entity if it directly extends the core Sim_Entity component
of SimJava, which implements the Runnable interface.
Every entity is capable of sending and receiving messages
through the SimJava’s shared event queue. The message
propagation (sending and receiving) occurs through input
and output ports that SimJava associates with each entity in
the simulation system. Since threads incur a lot of memory
and processor context switching overhead, having a large
number of threads/entities in a simulation environment can
be performance bottleneck due to limited scalability. To
counter this behavior, CloudSim minimizes the number of
entities in the system by implementing only the core
components (Users and Datacenters) as the inherited
members of SimJava entities. This design decision is
significant as it helps CloudSim in modeling a really large
scale simulation environment on a computing machine
(desktops, laptops) with moderate processing capacity.
Other key CloudSim components such as VMs,
provisioning policies, hosts are instantiated as standalone
objects, which are lightweight and do not compete for
processing power.
 Hence, regardless of the number of hosts in a simulated
data center, the runtime environment (Java virtual
machine) needs to manage only two threads (Datacenter
and Broker). As the processing of task units is handled by
respective VMs, therefore their (task) progress must be
updated and monitored after every simulation step. To
handle this, an internal event is generated regarding the
expected completion time of a task unit to inform the
Datacenter entity about the future completion events. Thus,
at each simulation step, each Datacenter invokes a method
called updateVMsProcessing() for every host in the system,
to update processing of tasks running within the VMs. The
argument of this method is the current simulation time and
the return type is the next expected completion time of a
task running in one of the VMs on a particular host. The
least time among all the finish times returned by the hosts
is noted for the next internal event.
 At the host level, invocation of updateVMsProcessing()
triggers an updateGridletsProcessing() method, which
directs every VM to update its tasks unit status (finish,
suspended, executing) with the Datacenter entity. This
method implements the similar logic as described
previously for updateVMsProcessing() but at the VM level.
Once this method is called, VMs return the next expected

completion time of the task units currently managed by
them. The least completion time among all the computed
values is send to the Datacenter entity. As a result,
completion times are kept in a queue that is queried by
Datacenter after each event processing step. If there are
completed tasks waiting in the queue, then they are
removed from it and sent back to the user.

4.2. Communication among Entities
Figure 6 depicts the flow of communication among core
CloudSim entities. In the beginning of the simulation, each
Datacenter entity registers itself with the CIS (Cloud
Information Service) Registry. CIS provides database level
match-making services for mapping user requests to
suitable Cloud providers. Brokers acting on behalf of users
consult the CIS service about the list of Clouds who offer
infrastructure services matching user’s application
requirements. In case the match occurs the broker deploys
the application with the Cloud that was suggested by the
CIS.

Figure 6. Simulation data flow.

 The communication flow described so far relates to the
basic flow in a simulated experiment. Some variations in
this flow are possible depending on policies. For example,
messages from Brokers to Datacenters may require a
confirmation, from the part of the Datacenter, about the
execution of the action, or the maximum number of VMs a
user can create may be negotiated before VM creation.

5. Experiments and Evaluation
In this section, we present experiments and evaluation that
we undertook in order to quantify the efficiency of
CloudSim in modeling and simulating Cloud computing
environments. The experiments were conducted on a
Celeron machine having configuration: 1.86GHz with 1MB
of L2 cache and 1 GB of RAM running a standard Ubuntu
Linux version 8.04 and JDK 1.6.

To evaluate the overhead in building a simulated Cloud
computing environment that consists of a single data
center, a broker and a user, we performed series of
experiments. The number of hosts in the data center in each

�

9

experiment was varied from 100 to 100000. As the goal of
these tests were to evaluate the computing power
requirement to instantiate the Cloud simulation
infrastructure, no attention was given to the user workload.
For the memory test, we profile the total physical memory
used by the hosting computer in order to fully instantiate
and load the CloudSim environment. The total delay in
instantiating the simulation environment is the time
difference between the following events: (i) the time at
which the runtime environment (Java virtual machine) is
directed to load the CloudSim program; and (ii) the
instance at which CloudSim’s entities and components are
fully initialized and are ready to process events.

 Figures 7 and 8 present, respectively, the amount of time
and the amount of memory is required to instantiate the
experiment when the number of hosts in a data center
increases. The growth in memory consumption (see Fig. 8)
is linear, with an experiment with 100000 machines
demanding 75MB of RAM. It makes our simulation
suitable to run even on simple desktop computers with
moderated processing power because CloudSim memory
requirements, even for larger simulated environments can
easily be provided by such computers.

Figure 7. Time to simulation instantiation.

Regarding time overhead related to simulation
instantiation, the growth in terms of time increases
exponentially with the number of hosts/machines.
Nevertheless, the time to instantiate 100000 machines is
below 5 minutes, which is reasonable considering the scale
of the experiment. Currently, we are investigating the cause
of this behavior to avoid it in future versions of CloudSim.

The next test aimed at quantifying the performance of
CloudSim’s core components when subjected to user
workloads such as VM creation, task unit execution. The
simulation environment consisted of a data center with
10000 hosts, where each host was modeled to have a single
CPU core (1000MIPS), 1GB of RAM memory and 2TB of
storage. Scheduling policy for VMs was Space-shared,
which meant only one VM was allowed to be hosted in a

host at a given instance of time. We modeled the user
(through the DatacenterBroker) to request creation of 50
VMs having following constraints: 512MB of physical
memory, 1 CPU core and 1GB of storage. The application
unit was modeled to consist of 500 task units, with each
task unit requiring 1200000 million instructions (20
minutes in the simulated hosts) to be executed on a host.
As networking was not a concern in these experiments, task
units required only 300kB of data to be transferred to and
from the data center.

Figure 8. Memory usage in resources
instantiation.

Figure 9. Tasks execution with space-shared
scheduling of tasks.

After creation of VMs, task units were submitted in
groups of 50 (one submitted to each VM) every 10
minutes. The VM were configured to use both space-
shared and time-shared policies for allocating tasks units to
the processing cores.

Figures 9 and 10 present task units progress status with
increase in simulation steps (time) for the space-shared test
and for the time-shared tests respectively. As expected, in
the space-shared case every task took 20 minutes for
completion as they had dedicated access to the processing

�

10

core. Since, in this policy each task unit had its own
dedicated core, the number of incoming tasks or queue size
did not affect execution time of individual task units.

However, in the time-shared case execution time of
each task varied with increase in number of submitted taks
units. Using this policy, execution time is significantly
affected as the processing core is concurrently context
switched among the list of scheduled tasks. The first group
of 50 tasks was able to complete earlier than the other ones
because in this case the hosts were not over-loaded at the
beginning of execution. To the end, as more tasks reached
completion, comparatively more hosts became available
for allocation. Due to this we observed improved response
time for the tasks as shown in Figure 10.

Figure 10. Task execution with time-shared
scheduling of tasks.

Evaluating Federated Cloud Computing Components
This experiment is aimed at testing CloudSim components
that form the basis for simulating federated Cloud
computing environments. To this end, a simulation
environment that models federation of 3 data centers and a
user are created. Every data center instantiates a sensor
component, which is responsible for dynamically sensing
the availability information related to the local hosts. Next,
the sensed statistics are reported to the Cloud Coordinator
that utilizes the information in undertaking load-migration
decisions. We evaluate a straightforward load-migration
policy that performs online migration of VMs among
federated data centers only if the origin data center does
not have the requested number of free VM slots available.
The migration process involves the following steps: (i)
creating a virtual machine instance that has the same
configuration, which is supported at the destination data
center; and (ii) migrating the Cloudlets assigned to the
original virtual machine to the newly instantiated virtual
machine at the destination data center. The federated
network of data centers is created based on the topology
shown in Figure 11.

Every data center in the system is modeled to have 50
computing hosts, 10GB of memory, 2TB of storage, 1
processor with 1000 MIPS of capacity, and a time-shared

VM scheduler. Data center broker on behalf of the user
requests instantiation of a VM that requires 256MB of
memory, 1GB of storage, 1 CPU, and time-shared Cloudlet
scheduler. The broker requests instantiation of 25 VMs and
associates one Cloudlet to each VM to be executed. These
requests are originally submitted with the Datacenter 0.
Each Cloudlet is modeled to be having 1800000 MIs. The
simulation experiments were run under the following
system configurations: (i) first a federated network of
clouds is available, hence data centers are able to cope
with peak in demands by migrating the excess of load to
the least loaded ones; and (ii) second, the data centers are
modeled as independent entities (without federation). All
the workload submitted to a data center must be processed
and executed locally.

Figure 11: A network topology of federated Data

Centers .

Table 1 shows the average turn-around time for each
Cloudlet and the overall makespan of the user application
for both cases. A user application consists of one or more
Cloudlets with sequential dependencies. The simulation
results reveal that the availability of federated
infrastructure of clouds reduces the average turn-around
time by more than 50%, while improving the makespan by
20%. It shows that, even for a very simple load-migration
policy, availability of federation brings significant benefits
to user’s application performance.

Table 1: Performance Results.

Performance Metrics With
Federation

Without
Federation

Average Turn Around
Time (Secs)

2221.13 4700.1

Makespan (Secs) 6613.1 8405

6. Conclusion and Future Work
The recent efforts to design and develop Cloud
technologies focus on defining novel methods, policies and
mechanisms for efficiently managing Cloud infrastructures.
To test these newly developed methods and policies,
researchers need tools that allow them to evaluate the

�

11

hypothesis prior to real deployment in an environment
where one can reproduce tests. Simulation-based
approaches in evaluating Cloud computing systems and
application behaviors offer significant benefits, as they
allow Cloud developers: (i) to test performance of their
provisioning and service delivery policies in a repeatable
and controllable environment free of cost; and (ii) to tune
the performance bottlenecks before real-world deployment
on commercial Clouds.
 To meet these requirements, we developed the CloudSim
toolkit for modeling and simulation of extensible Clouds.
As a completely customizable tool, it allows extension and
definition of policies in all the components of the software
stack, which makes it suitable as a research tool that can
handle the complexities arising from simulated
environments. As future work, we are planning to
incorporate new pricing and provisioning policies to
CloudSim, in order to offer a built-in support to simulate
the currently available Clouds. Modeling and simulation of
such environments that consist of providers encompassing
multiple services and routing boundaries present unique
challenges. They include providing support for practical
and concrete network models that capture the message
routing and latency behavior ambient on the Internet. To
address this, we intend to extend CloudSim by
implementing the BRITE topology model for networking
multiple Clouds.
 Further, recent studies have revealed that data centers
consume unprecedented amount of electrical power, hence
they incur massive capital expenditure for day-to-day
operation and management. For example, a Google data
center consumes power as much as a city such as San
Francisco. The socio-economic factors and environmental
conditions of the geographical region, where a data center
is hosted directly influences total power bills incurred. For
instance, a data center hosted in a location where power
cost is low and has less hostile weather conditions, would
incur comparatively lesser expenditure in power bills. To
achieve simulation of the aforementioned Cloud computing
environments, much of our future work would investigate
new models and techniques for allocation of services to
applications depending on energy efficiency and
expenditure of service providers.

Acknowledgements
This work is partially supported by the Australian
Department of Innovation, Industry, Science and Research
(DIISR) and the Australian Research Council (ARC)
through the International Science Linkage and the
Discovery Projects programs respectively. We would like
to thank Marcos Assunção for proof reading the paper.

References
[1] R. Buyya, C. S. Yeo, and S. Venugopal. Market-

oriented cloud computing: Vision, hype, and reality
for delivering IT services as computing utilities.
Proceedings of the 10th IEEE International

Conference on High Performance Computing and
Communications, 2008.

[2] D. Chappell. Introducing the Azure services platform.
White paper, Oct. 2008.

[3] X. Chu et al. Aneka: Next-generation enterprise grid
platform for e-science and e-business applications.
Proceedings of the 3rd IEEE International
Conference on e-Science and Grid Computing, 2007.

[4] C. L. Dumitrescu and I. Foster. GangSim: a simulator
for grid scheduling studies. Proceedings of the IEEE
International Symposium on Cluster Computing and
the Grid, 2005.

[5] I. Foster and C. Kesselman (editors). The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1999.

[6] F. Howell and R. Mcnab. SimJava: A discrete event
simulation library for java. Proceedings of the first
International Conference on Web-Based Modeling
and Simulation, 1998.

[7] A. Legrand, L. Marchal, and H. Casanova. Scheduling
distributed applications: the SimGrid simulation
framework. Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and
the Grid, 2003.

[8] J. E. Smith and R. Nair. Virtual Machines: Versatile
platforms for systems and processes. Morgan
Kauffmann, 2005.

[9] R. Buyya and M. Murshed. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing.
Concurrency and Computation: Practice and
Experience, 14(13-15), Wiley Press, Nov.-Dec., 2002.

[10] A. Weiss. Computing in the clouds. NetWorker,
11(4):16–25, Dec. 2007.

[11] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica,
M. Zaharia. Above the Clouds: A Berkeley View of Cloud
computing. Technical Report No. UCB/EECS-2009-28,
University of California at Berkley, USA, Feb. 10, 2009.

[12] R. Ranjan and R. Buyya. Decentralized Overlay for
Federation of Enterprise Clouds. Handbook of Research
on Scalable Computing Technologies, K. Li et. al. (ed),
IGI Global, USA, 2009 (in press).

[13] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I.
Brandic. Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computing as
the 5th Utility. Future Generation Computer Systems,
25(6): 599-616, Elsevier Science, Amsterdam, The
Netherlands, June 2009.

