Modeling and Simulation of Scalable Cloud Computingenvironments and
the CloudSim Toolkit: Challenges and Opportunities

Rajkumar Buyyj Rajiv Ranjaf and Rodrigo N. Calheirds

LGrid Computing andistributedSystems (GRIDS) Laboratory
Department of Computer Science and Software Engimge
The University of Melbourne, Australia

?Department of Computer Science and Engineering
The University of New South Wales, Sydney, Ausérali

*Pontifical Catholic University of Rio Grande do Sul
Porto Alegre, Brazil
Email: {raj, rodrigoc}@csse.unimelb.edu.au, rajiv@w.edu.au

Abstract
Cloud computing aims to power the next generatiatad
centers and enables application service providerkease
data center capabilities for deploying applications
depending on user QoS (Quality of Service) requéres
Cloud applications have different composition,
configuration, and deployment requirements. Quugimtif
the performance of resource allocation policies and
application scheduling algorithms at finer detaitsCloud
computing environments for different application dan
service models under varying load, energy perfortean
(power consumption, heat dissipation), and sysiemis a
challenging problem to tackle. To simplify this gass, in
this paper we propose CloudSim: an extensible sitiou
toolkit that enables modelling and simulation ofoi
computing environments. The CloudSim toolkit sujgpor
modelling and creation of one or more virtual maxts
(VMs) on a simulated node of a Data Center, jobs] a
their mapping to suitable VMs. It also allows siatidn of
multiple Data Centers to enable a study on federatind
associated policies for migration of VMs for reliétly and
automatic scaling of applications.

1. Introduction

subscription-based services in a pay-as-you-go mtme
consumers. These services in industry are respdctiv
referred to as Infrastructure as a Service (la@B}form as
a Service (PaaS), and Software as a Service (S&a8s).
importance of these services is highlighted in eeng
report from Berkeley as: “Cloud computing, the ldmejd
dream of computing as a utility, has the potential
transform a large part of the IT industry, makidtware
even more attractive as a service” [11].
Clouds [10] aim to power the next generation data

centers by exposing them as a network of virtualises

(hardware, database, user-interface, applicatigic)oso
that users are able to access and deploy applisatiom
anywhere in the world on demand at competitive scost
depending on users QoS (Quality of Service)
requirements [1]. Developers with innovative idé&asnew
Internet services are no longer required to makgela
capital outlays in the hardware and software inftasures
to deploy their services or human expense to opetat
[11]. It offers significant benefit to IT companidsy
freeing them from the low level task of setting bigsic
hardware and software infrastructures and thus limgab
more focus on innovation and creation of businedses.
Some of the traditional and emerging Cloud-based
applications include social networking, web hosting
content delivery, and real time instrumented data
processing. Each of these application types hderedift
composition, configuration, and deployment requiata.
Quantifying the performance of scheduling and atmn
policies in a real Cloud environment for different
application and service models under different doorts
is extremely challenging because: (i) Clouds exhibi
varying demand, supply patterns, and system siz;(ig
users have heterogenous and competing QoS requitgme
The use of real infrastructures such as Amazon E@Rs
the experiments to the scale of the infrastructued

Smakes the reproduction of results an extremelyicdif

undertaking. The main reason for this being thed@dmns
prevailing in the Internet-based environments aggohd
the control of developers of resource allocatiord an
application scheduling algorithms.

An alternative is the utilization of simulation teahat
open the possibility of evaluating the hypothesi®mto
software development in an environment where ome ca
reproduce tests. Specifically in the case of Cloud
computing, where access to the infrastructure Bicur
payments in real currency, simulation-based appresc
offer significant benefits to Cloud customers biowing

them to: (i) test their services in repeatable @mtrollable established through negotiation between the service
environment free of cost; and (i) tune the perfance provider and consumers” [1]. Some examples of eimgrg
bottlenecks before deploying on real Clouds. At the Cloud computing infrastructures are Microsoft Az(iPg,
provider side, simulation environments allow evéira of Amazon EC2, Google App Engine, and Aneka [3].

different kinds of resource leasing scenarios unaeying Emerging Cloud applications such as social netwgki

load and pricing distributions. Such studies coald gaming portals, business applications, contenteiglj and
providers in optimizing the resource access cost feicus scientific workflows operate at the highest layér tioe

on improving profits. In the absence of such simiofe 5ichitecture. Actual usage patterns of many realdvo
platforms, Cloud customers and providers have g re applications vary with time, most of the time in

and-error approaches that lead to inefficient servi Quality of Service (QoS) requirements dependingime
performance and revenue generation. criticality and users’ interaction patterns (onloféline).

Considering that none of the current distributesteayn
simulators [4][7][9] offer the environment that cdre 2.2 Layered Design
directly used by the Cloud computing community, we Figure 1 shows the layered design of service-csknt
propose CloudSim: a new, generalized, and extensibl Cloud computing architecture. Physical Cloud resesr
simulation framework that enables seamless modeling along with core middleware capabilities form thesibeor
simulation, and experimentation of emerging Cloud delivering laaS. The user-level middleware aims at
computing infrastructures and application serviceBy providing PaaS capabilities. The top layer focuses
using CloudSim, researchers and industry-basedajeses application services (SaaS) by making use of sesvic
can focus on specific system design issues thatvhet to provided by the lower layer services. PaaS/Saa8cssr
investigate, without getting concerned about the level are often developed and provided by Barty service
details related to Cloud-based infrastructuressamdices. providers, who are different from laaS provider3][1
CloudSim offers the following novel features: (i)
support for modeling and simulation of large sc@leud User-Level Middleware: This layer includes the software
computing infrastructure, including data centersaa@ingle frameworks such as Web 2.0 Interfaces (Ajax, IBM
physical computing node; and (ii) a self-contaipéaiform Workplace) that help developers in creating richste
for modeling data centers, service brokers, sclimglund effecting user-interfaces for browser-based apitioa.
allocations policies. Among the unique features of The layer also provides the programming environsiantl

CloudSim, there are: (i) availability of virtualidan composition tools that ease the creation, deploynaed
engine, which aids in creation and management dtiptey execution of applications in Clouds.

independent, and co-hosted virtualized services atata

center node; and (ii) flexibility to switch betwespace- Userlevel { N } PL
shared and time-shared allocation of processingsctw 1

Virtua”zed SerViceS. These Compe”ing features Of Cloudprogramming:environmenlsandtools_)

CloudSim would speed up the development of new t B

resource allocation policies and scheduling alporét for]
Cloud Computing . :[QoS Negotiation, Admission Control, Pricing, SLA Management,

Monitoring, Execution Management, Metering, Accounting, Billing |;

Juswabeue aAndepy
Awouos3 pnojD / diwouoINy

2. Key Concepts and Terminologies

This section presents background information onouar
architectural elements that form the basis for @lou | Cloudresources —

computing. It also presents requirements of various sysemievel L"(ﬁﬁ[\ﬂ‘.ﬁ a‘ j
applications that need to scale across multiple S =W
geographically distributed data centers owned by on
more service providers. As development of resource

allocation and applica_\tion scaling techniques ahelir_t Core Middleware: This layer implements the platform
performan(_:e evajuation u_nder various operational o e| services that provide runtime environmentbding
scenanos. in a real Cloud environment |s_d|ff|camd hard)54 computing capabilities to application sersidwuilt
to repeat; we propose the use of simulation astarmate using User-Level Middlewares. Core services at ldyer
approach for achieving the same. includes Dynamic SLA Management, Accounting, Bdlin
2.1 Cloud computing Execution monitoring and management, and Pricirfge T
Cloud computing can be defined as “a type of paralhd well-known examples of servicgs operating at thjet are
distributed system consisting of a collection ofein ~ Amazon EC2, Google App Engine, and Aneka [3].

connected and virtualized computers that are dycelipi System Level: The computing power in Cloud computing

provisioned and presented as one or more unifiedenvironments is supplied by a collection of datatess,
computing resources based on service-level agmgsme

Figure 1. Layered Cloud Computing Architecture.

which are typically installed with hundreds to tbands of
servers [9]. At the System Level layer there erisissive
physical resources (storage servers and applicatiorers)
that power the data centers. These servers
transparently managed by the higher level virtaaign [8]
services and toolkits that allow sharing of theapacity
among virtual instances of servers. These VMs sokated
from each other, which aid in achieving fault taletr
behavior and isolated security context.

2.3 Federation (Inter-Networking) of Clouds

Coordinators for allocation of resources that md&sQoS
needs of hosted applications. The Cloud Exchande)C
acts as a market maker for bringing together servic

argroviders and consumers. It aggregates the infratsire

demands from the Cloud brokers and evaluates them
against the available supply currently published thg
Cloud Coordinators.

The applications that would benefit from the
aforementioned federated Cloud computing systemudiec
social networks such as Facebook and MySpace, ftonte
Delivery Networks (CDNs). Social networking sitgerve

Current Cloud Computing providers have several datadynamic contents to millions of users, whose aceasbs

centers at different geographical locations overltiternet
in order to optimally serve costumers needs arotimed
world. However,
mechanisms and policies for dynamically coordirgatin
load-shredding among different data centers in rotde
determine optimal location for hosting applicatesrvices
to achieve reasonable service satisfaction levElgrther,

interaction patterns are difficult to predict. Irergpral,
social networking websites are built using mukiréid web

existing systems does not supportapplications such as WebSphere and persistencyslaye

such as the MySQL relational database. Usuallyh eac
component will run in a different virtual machinghich
can be hosted in data centers owned by differenticCl
computing providers. Additionally, each plug-in e&per

the Cloud service providers are unable to predicthas the freedom to choose which Cloud computing

geographic distribution of users consuming theivises,
hence the load coordination must happen automigtical
and distribution of services must change in respatos
changes in the load behaviour. Figure 2 depicth sauc
service-oriented Cloud computing architecture cstirgj
of service consumer’s brokering and provider’'s damator
services that support utility-driven internetworgginof
clouds [12]: application scheduling, resource altam,
and workload migration.

Compute Cloud

Quster (VM Pool)

User User

/
/
T T O /
Cloud Broker 1 Cloud Broker|/N pypjish Offers \
i \
------ \
\

~

_
\
S N \
\

N

Request
Capacity

/) ®

-

\ Auctioneer
N

7
-~ =
Cloud Exchange
(CEx)

Cloud
Coordinator

Enterprise
Resource
Server
(Proxy)

Storage Cloud

Compute Cloud

Enterprise IT Consumer

Figure 2. Clouds and their federated network
mediated by a Cloud exchange.

The Cloud coordinator component is instantiddgeach
data center that: (i) exports the Cloud servicesthb
infrastructure and platform-level, to the federatidii)
keeps track of load on the data center and undestak
negotiation with other Cloud providers for dynare@aling
of services across multiple data centers for hagdthe
peak in demands; and (iii) monitors the application
execution and oversees that agreed SLAs are detiver
The Cloud brokers acting on behalf of service corens
(users) identify suitable Cloud service providemsotigh
the Cloud Exchange and negotiate with Cloud

provider offers the services that are more suitableun
his/her plug-in. As a consequence, a typical social
networking web application is formed by hundreds of
different services, which may be hosted by dozehs o
Cloud-oriented data centers around the world. Wirene
there is a variation in temporal and spatial ldgabf
workload, each application component must dynatyical
scale to offer good quality of experience to users.

2.4 A Case for Simulation and Related Work

In the past decade, Grids [5] have evolved as the
infrastructure for delivering high-performance seeg for
compute and data-intensive scientific applicatioi®
support research and development of new Grid
components, policies, and middleware; several Grid
simulators, such as GridSim [9], SimGrid [7], and
GangSim [4] have been proposed. SimGrid is a gener
framework for simulation of distributed applicat®ron
Grid platforms. Similarly, GangSim is a Grid sintide
toolkit that provides support for modeling of Ghdsed
virtual organisations and resources. On the otlardh
GridSim is an event-driven simulation toolkit for
heterogeneous Grid resources. It supports modefiggid
entities, users, machines, and network, includiatyvark
traffic.

Although the aforementioned toolkits are capabfe
modeling and simulating the Grid application bebewi
(execution, scheduling, allocation, and monitoririg) a
distributed environment consisting of multiple Grid
organisations, none of these are able to suppat th
infrastructure and application-level requirementssiiag
from Cloud computing paradigm. In particular, thes
very little or no support in existing Grid simulati toolkits
for modeling of on-demand virtualization enabledarce
and application management. Further, Clouds prorase
deliver services on subscription-basis in a payeasgo
model to Cloud customers. Hence, Cloud infrastmectu

modeling and simulation toolkits must provide sugpgor VMs in the Cloud. A Cloud host can be concurrently
economic entities such as Cloud brokers and Cloudshared among a number of VMs that execute apmitati
exchange for enabling real-time trading of services based on user-defined QoS specifications.
between customers and providers. Among the cuyrent The top-most layer in the simulation stack is theetJ
available simulators discussed in this paper, @igSim Code that exposes configuration related functidiealifor
offers support for economic-driven resource managgm hosts (number of machines, their specification sman),
and application scheduling simulation. applications (number of tasks and their requiresjent
Another aspect related to Clouds that should beVMs, number of users and their application typesd a
considered is that research and development in dClou broker scheduling policies. A Cloud applicatiorveleper
computing systems, applications and services arthair can generate: (i) a mix of user request distrilmgjo
infancy. There are a number of important issuest ribad application configurations; and (ii) Cloud availityi
detailed investigation along the Cloud softwareclsta scenarios at this layer and perform robust testedan the
Topics of interest to Cloud developers include ecic custom configurations already supported within the
strategies for provisioning of virtualized resowcéo CloudSim.
incoming user's requests, scheduling of application As Cloud computing is a rapidly evolving reséaacea,
resources discovery, inter-cloud negotiations, andthere is a severe lack of defined standards, taold
federation of clouds. To support and accelerate themethods that can efficiently tackle the infrastanet and
research related to Cloud computing systems, atjuits application level complexities. Hence in the neaturfe
and services; it is important that the necessaftwace there would be a number of research efforts both in

tools are designed and developed to aid researchers academia and industry towards defining core algors,
. . policies, application benchmarking based on exeauti
3. CloudSim Architecture contexts. By extending the basic functionalitideady

Figure 3 shows the layered implementation of the exposed by CloudSim, researchers would be able to
CloudSim software framework and architectural perform tests based on specific scenarios and
components. At the lowest layer is the SimJavardiec configurations, hence allowing the development ebtb
event simulation engine [6] that implements theecor practices in all the critical aspects related tooudl
functionalities required for higher-level simutaii Computing.

frameworks such as queuing and processing of events;
creation of system components (services, host, daiter,
broker, virtual machines), communication between
components, and management of the simulation clock
Next follows the libraries implementing the GridSim
toolkit [9] that support: (i) high level softwar@mponents
for modeling multiple Grid infrastructures, includi
networks and associated traffic profiles; and (ii)
fundamental Grid components such as the resoudets,

sets, workload traces, and information services. Services

The CloudSim is implemented at the next level by
programmatically extending the core functionalities

|Uger or Data

I
| Cioudiet |

[cPU

VM | "Memorv [Sta
|Provisioning| | Allo

U
tion| Allocation | Allo

exposed by the GridSim layer. CloudSim providesehov Cloud T st | | Datacenter |
support for modeling and simulation of virtualizEtbud- Resources ‘ ‘ ‘ ‘
based data center environments such as dedicate&ridsim

i Replica Replica
management interfaces for VMs, memory, storage, and orid ‘ Data Sets orid Cata’:ogue‘ o ‘ Ma’gager ‘

bandwidth. CloudSim layer manages the instantiatiod Services Information Descripti
. ’ i : Service Resource escription —workioad
execution of core entties (VMs, hosts, data center Reservation Allocation Traces

application) during the simulation period. This dayis
Core Resource Ggr:ztrla? o Network

capable of concurrently instantiating and transpiye Elements
managing a large scale Cloud infrastructure cangisf

. Simjava
thousands of system components. The fundamentasss Discrete-

LT . Events Simulati i

such as provisioning of hosts to VMs based on user _ _Event Handling Enftes ™ Timing
requests, managing application execution, and dimam
monitoring are handled by this layer. A Cloud po®rn,

who wants to study the efficacy of different padisiin Figure 3. Layered CloudSim architecture.
allocating its hosts, would need to implement hiategies One of the design decisions that we had to raskthe
at this layer by programmatically extending theecov CloudSim was being developed was whether to extelysi

provisioning functionality. There is a clear distilon at reyse existing simulation libraries and framewoskanot.
this layer on how a host is allocated to differempeting e decided to take advantage of already implemeated

proven libraries such as GridSim and SimJava tallean distribute the capacity of a core among VMs (tirhared
low-level requirements of the system. For exampig, policy), and to assign cores to VMs on demand, cor t
using SimJava, we avoided reimplementation of eventspecify other policies.

handling and message passing among components. This Each Host component instantiates a VM scheduler
saved us time and cost of software engineeringtestthg. component that implements the space-shared or time-
Similarly, the use of the GridSim framework allowesl to shared policies for allocating cores to VMs. Claydtem
reuse its implementation of networking, information developers and researchers can extend the VM slenedu
services, files, users, and resources. Since,Sandad component for experimenting with more custom alfimca
GridSim have been extensively utilized in condugtin policies. Next, the finer level details relatedtte time-
cutting edge research in Grid resource managemgnt b shared and space-shared policies are described.

several researchers. Therefore, bugs that may conigpse . .

the validity of the simulation have been alreadyed&d ?(;nze '\gfo?ﬁgnl?ethisvz/lcg”?ﬁ;tlfngke a Cloud computin

and fixed. By reusing these long validated framdwspwe . y asp) X mputing

were able to focus on critical aspects of the sydteat are infrastructure different from a Grid computing iset
massive deployment of virtualization technologiesd a

relevant to Cloud computing. At the same time tgkin t0ols. Hence. as compared to Grids. we have in d&an
advantage of the reliability of components that ao# ' e pare ' :
directly related to Clouds. extra_l layer (the virtualization) that acts as .aeo_expn and
y
hosting environment for Cloud-based applicatiowvises.

3.1. Modeling the Cloud Hence, traditional application mapping models that
The core hardware infrastructure services relatedhe assign individual application elements to computiagles
Clouds are modeled in the simulator by a Datacenterdo not accurately represent the computational abtsbin
component for handling service requests. Theseestgu Which is commonly associated with the Clouds. For
are application elements sandboxed within VMs, whic example, consider a physical data center host fhiaat
need to be allocated a share of processing power orsingle processing core, and there is a requirenoént
Datacenter's host components. By VM processing, weconcurrently instantiating two VMs on that core.eBv
mean a set of operations related to VM life cycle: though in practice there is isolation between baav
provisioning of a host to a VM, VM creation, VM (application execution context) of both VMs, thecamt of
destruction, and VM migration. resources available to each VM is constrained kytdkal

A Datacenter is composed by a set of hosts, whieh a processing power of the host. This critical faataust be
responsible for managing VMs during their life @l considered during the allocation process, to aeoégtion
Host is a component that represents a physical atingp of a VM that demands more processing power thamtiee
node in a Cloud: it is assigned a pre-configuremtessing available in the host, as multiple task units ictesirtual
capability (expressed in million of instructionsrmecond machine shares time slices of the same processieg ¢
— MIPS), memory, storage, and a scheduling polmy f To allow simulation of different policies undearying
allocating processing cores to virtual machinese Fost levels of performance isolation, CloudSim supporid
component implements interfaces that support mogeli scheduling at two levels: First, at the host lewad second,
and simulation of both single-core and multi-coogl@s. at the VM level. At the host level, it is possilite specify

Allocation of application-specific VMs to Hosts ia how much of the overall processing power of eadle ¢o
Cloud-based data center is the responsibility ef\irtual a host will be assigned to each VM. At the VM levbke
Machine Provisioner component. This component eapos VMs assign specific amount of the available progss
a number of custom methods for researchers, whishia power to the individual task units that are hostétthin its
implementation of new VM provisioning policies bedsen execution engine.

optimization goals (user centric, system centrithe At each level, CloudSim implements the time-shbaaind
default policy implemented by the VM Provisionerds space-shared resource allocation policies. To lIglear
straightforward policy that allocates a VM to thedt in illustrate the difference between these policied #reir

First-Come-First-Serve (FCFS) basis. The system effect on the application performance, in Figunsetshow
parameters such as the required number of progessina simple scheduling scenario. In this figure, & gt two
cores, memory and storage as requested by the Qgerd CPU cores receives request for hosting two VMs, eamch
form the basis for such mappings. Other complicatedone requiring two cores and running four taskssunit, t2,
policies can be written by the researchers basedhen t3 and t4 to be run in VM1, while t5, t6, t7, at@dto be
infrastructure and application demands. run in VM2.

For each Host component, the allocation of sicg Figure 4(a) presents a space-shared policyddr WMs
cores to VMs is done based on a host allocatiore Th and task units: as each VM requires two cores, only
policy takes into account how many processing caitis VM can run at a given instance of time. Therefor#2
be delegated to each VM, and how much of the peings can only be assigned the core once VM1 finishes the
core's capacity will effectively be attributed far given execution of task units. The same happens for tas&sed
VM. So, it is possible to assign specific CPU cotes within the VM: as each task unit demands only oogec
specific VMs (a space-shared policy) or to dynathica

two of them run simultaneously, and the other twe a
queued until the completion of the earlier tasksuni

Figure 4. Effects of different scheduling policies
on task execution: (a) Space-shared for VMs and
tasks, (b) Space-shared for VMs and time-shared
for tasks, (c) Time-shared for VMs, space-shared
for tasks, and (d) Time-shared for VMs and tasks.

In Figure 4(b), a space-shared policy is used fo
allocating VMs, but a time-shared policy is used fo
allocating individual task units within VM. Henceyring a
VM lifetime, all the tasks assigned to it dynamigal
context switch until their completion. This alloicat
policy enables the task units to be scheduled ataalier
time, but significantly affecting the completiomg of task
units that are ahead the queue.

In Figure 4(c), a time-shared scheduling is Used/Ms,
and a space-shared one is used for task unitbidrcase,
each VM receives a time slice of each processing, @nd
then slices are distributed to task units on spzhezed
basis. As the core is shared, the amount of proagess
power available to the VM is comparatively lesdert the
aforementioned scenarios. As task unit assignment i
space-shared, hence only one task can be allotagsath
core, while others are queued in for future corrsitiien.

Finally, in Figure 4(d) a time-shared allocatisrapplied
for both VMs and task units. Hence, the procespioger
is concurrently shared by the VMs and the sharesach
VM are concurrently divided among the task unisgrsed
to each VM. In this case, there are no queues reftire
virtual machines or for task units.

3.3. Modeling the Cloud Market

Support for services that act as a market makeblieiga
capability sharing across Cloud service providersl a
customer through its match making services iscaitto
Cloud computing. Further, these services need
mechanisms to determine service costs and pricing
policies. Modeling of costs and pricing policies as
important aspect to be considered when designiGtpad
simulator. To allow the modeling of the Cloud marKeur
market-related properties are associated to a aiter:
cost per processing, cost per unit of memory, pestunit
of storage, and cost per unit of used bandwidttst @er
memory and storage incur during virtual machineatoa.
Cost per bandwidth incurs during data transfer.id@ss
costs for use of memory, storage, and bandwidthpther
cost is associated to use of processing resourtesrited
from the GridSim model, this cost is associatech tite
execution of user task units. Hence, if VMs wereated
but no task units were executed on them, only tstscof
memory and storage will incur. This behavior may, o
course, be changed by users.

4. Design and Implementation of CloudSim
The Class design diagram for the simulator is degdiin
Figure 5. In this section, we provide finer deta@lated to
the fundamental classes of CloudSim, which aredimgl
blocks of the simulator.

DataCenter. This class models the core infrastructure
level services (hardware, software) offered by uese
providers in a Cloud computing environment. It
encapsulates a set of compute hosts that can ber eit
homogeneous or heterogeneous as regards to theuroe
configurations (memory, cores, capacity, and sw&yag
Furthermore, every DataCenter component instastiate
generalized resource provisioning component that
implements a set of policies for allocating bandhjd
memory, and storage devices.

DatacenterBroker. This class models a broker, which
is responsible for mediating between users andicgerv
providers depending on users’ QoS requirements and
deploys service tasks across Clouds. The brokargaoh
behalf of users identifies suitable Cloud servicevjers
through the Cloud Information Service (CIS) and
negotiates with them for an allocation of resourtiest
meet QoS needs of users. The researchers and system
developers must extend this class for conducting
experiments with their custom developed application
placement policies.

SANStorage.This class models a storage area network
that is commonly available to Cloud-based dataarsrfor

Figure 5: CloudSim class design diagram.

storing large chunks of data. SANStorage implements
simple interface that can be used to simulate geoeand
retrieval of any amount of data, at any time subjeche
availability of network bandwidth. Accessing filés a
SAN at run time incurs additional delays for tashitu
execution, due to time elapsed for transferringrédwpiired
data files through the data center internal network

VirtualMachine. This class models an instance of a
VM, whose management during its life cycle is the
responsibility of the Host component. As discussedier,

a host can simultaneously instantiate multiple Vil

implemented by CloudSim users through Sensor
component. Each sensor may model one specificetriigg
procedure that may cause the CloudCoordinator to
undertake dynamic load-shredding.

BWHProvisioner. This is an abstract class that models
the provisioning policy of bandwidth to VMs thatear
deployed on a Host component. The function of this
component is to undertake the allocation of network
bandwidths to set of competing VMs deployed actbss
data center. Cloud system developers and researchar
extend this class with their own policies (priofiQoS) to

allocate cores based on predefined processor gharinreflect the needs of their applications.

policies (space-shared, time-shared). Every VM camapt

has access to a component that stores the chastcter
related to a VM, such as memory, processor, storagg

the VM's internal scheduling policy, which is exted

from the abstract component called VMScheduling.

Cloudlet. This class models the Cloud-based
application services (content delivery, social roting,
business workflow), which are commonly deployedhia
data centers. CloudSim represents the complexitarof
application in terms of its computational requirerse
Every application component has a pre-assignedut&in
length (inherited from GridSim’s Gridlet componea)d
amount of data transfer (both pre and post fetchiee)
needs to be undertaken for successfully hosting th
application.

CloudCoordinator. This abstract class provides

MemoryProvisioner. This is an abstract class that
represents the provisioning policy for allocatingmory to
VMs. This component models policies for allocating
physical memory spaces to the competing VMs. The
execution and deployment of VM on a host is feasdiily
if the MemoryProvisioner component determines that
host has the amount of free memory, which is regde®or
the new VM deployment.

VMProvisioner. This abstract class represents the
provisioning policy that a VM Monitor utilizes for
allocating VMs to Hosts. The chief functionality tie
VMProvisioner is to select available host in a degater,
which meets the memory, storage, and availability
erequirement for a VM deployment. The default
SimpleVMProvisioner implementation provided witheth
CloudSim package allocates VMs to the first avddab

federation capacity to a data center. This class iSHost that meets the aforementioned requirementstsHo

responsible for not only communicating with othexep

CloudCoordinator services and Cloud Brokers
(DataCenterBroker), but also for monitoring theemil
state of a data center that plays integral rolelogd-
balancing/application scaling decision making.

monitoring occurs periodically in terms of simutatitime.
The specific event that triggers the load migratisn

are considered for mapping in a sequential ordewdver,
more complicated policies can be easily implemented
within this component for achieving optimized altions,
for example, selection of hosts based on theiritphib

The meet QoS requirements such as response time, budget

VMMAllocationPolicy. This is an abstract class
implemented by a Host component that models thieipsl
(space-shared, time-shared) required for
processing power to VMs. The functionalities ofthlass

completion time of the task units currently manadpgd
them. The least completion time among all the astegb

allocatingvalues is send to the Datacenter entity. As a tesul

completion times are kept in a queue that is qdebg

can easily be overridden to accommodate applicationDatacenter after each event processing step. téthee

specific processor sharing policies.

4.1. Entities and threading

As the CloudSim programmatically builds upon the
SimJava discrete event simulation engine, it presethe
SimJava’s threading model for creation of simulatio
entities. A programming component is referred toaas
entity if it directly extends the core Sim_Entityraponent
of SimJava, which implements the Runnable interface
Every entity is capable of sending and receivingsages

completed tasks waiting in the queue, then they are
removed from it and sent back to the user.

4.2. Communication among Entities

Figure 6 depicts the flow of communication amongeco
CloudSim entities. In the beginning of the simwatieach
Datacenter entity registers itself with the CIS o
Information Service) Registry. CIS provides datablevel
match-making services for mapping user requests to
suitable Cloud providers. Brokers acting on bebélisers

through the SimJava’s shared event queue. The gessa consult the CIS service about the list of Cloud wiffer

propagation (sending and receiving) occurs througlut
and output ports that SimJava associates with eatity in
the simulation system. Since threads incur a lahefory
and processor context switching overhead, havitayge
number of threads/entities in a simulation envirentrcan
be performance bottleneck due to limited scalahilito
counter this behavior, CloudSim minimizes the nurrdfe
entities in the system by implementing only the ecor

infrastructure services matching user's application
requirements. In case the match occurs the brodglogs
the application with the Cloud that was suggestedhe
CIs.

components (Users and Datacenters) as the inherited

members of SimJava entities. This design decis®n i
significant as it helps CloudSim in modeling a heddrge

scale simulation environment on a computing machine

(desktops, laptops) with moderate processing capaci
Other key CloudSim components such as VMs,
provisioning policies, hosts are instantiated and&lone
objects, which are lightweight and do not compede f
processing power.

Hence, regardless of the number of hosts inmalated
data center, the runtime environment
machine) needs to manage only two threads (Datacent
and Broker). As the processing of task units isdheh by
respective VMs, therefore their (task) progress tnhes
updated and monitored after every simulation sfEp.
handle this, an internal event is generated reggrtle
expected completion time of a task unit to inforhe t
Datacenter entity about the future completion exehhus,
at each simulation step, each Datacenter invokesthod
called updateVMsProcessing() for every host insystem,
to update processing of tasks running within thesviVihe
argument of this method is the current simulatioretand
the return type is the next expected completiore th a
task running in one of the VMs on a particular hdste
least time among all the finish times returned huy hosts
is noted for the next internal event.

At the host level, invocation of updateVMsPraieg()
triggers an updateGridletsProcessing() method, twhic
directs every VM to update its tasks unit statusigf,
suspended, executing) with the Datacenter entityis T
method implements the similar logic as described
previously for updateVMsProcessing() but at the \vel.
Once this method is called, VMs return the nexteexpd

(Java virtual

Figure 6. Simulation data flow.

The communication flow described so far reldateshe
basic flow in a simulated experiment. Some varretiin
this flow are possible depending on policies. Bamaple,
messages from Brokers to Datacenters may require a
confirmation, from the part of the Datacenter, abthe
execution of the action, or the maximum number bfsva
user can create may be negotiated before VM creatio

5. Experiments and Evaluation

In this section, we present experiments and evaluhat

we undertook in order to quantify the efficiency of
CloudSim in modeling and simulating Cloud computing
environments. The experiments were conducted on a
Celeron machine having configuration: 1.86GHz WikhB

of L2 cache and 1 GB of RAM running a standard Ubun
Linux version 8.04 and JDK 1.6.

To evaluate the overhead in building a simulatesu@l
computing environment that consists of a singleadat
center, a broker and a user, we performed series of
experiments. The number of hosts in the data cémtsach

experiment was varied from 100 to 100000. As thal of host at a given instance of time. We modeled ther us
these tests were to evaluate the computing power(through the DatacenterBroker) to request creatib®0
requirement to instantiate the Cloud simulation VMs having following constraints: 512MB of physical
infrastructure, no attention was given to the wserkload. memory, 1 CPU core and 1GB of storage. The apmicat
For the memory test, we profile the total physic&mory unit was modeled to consist of 500 task units, wigtth
used by the hosting computer in order to fully ansiate task unit requiring 1200000 million instructions 0(2
and load the CloudSim environment. The total defay = minutes in the simulated hosts) to be executed bosa
instantiating the simulation environment is thnet As networking was not a concern in these experigj¢ask
difference between the following events: (i) thedi at units required only 300kB of data to be transferti@énd
which the runtime environment (Java virtual machiise from the data center.

directed to load the CloudSim program; and (ii) the

instance at which CloudSim’s entities and companané

fully initialized and are ready to process events.

Figures 7 and 8 present, respectively, the amofutime
and the amount of memory is required to instanttate
experiment when the number of hosts in a data cente
increases. The growth in memory consumption (sge&ji
is linear, with an experiment with 100000 machines
demanding 75MB of RAM. It makes our simulation
suitable to run even on simple desktop computett wi
moderated processing power because CloudSim memory
requirements, even for larger simulated environsi&ain
easily be provided by such computers.

Figure 8. Memory usage in resources
instantiation.

Figure 7. Time to simulation instantiation.

Regarding time overhead related to simulation
instantiation, the growth in terms of time increase
exponentially with the number of hosts/machines.

Neverthele_ss, the time _to instantiate 100Q00 _mashis Figure 9. Tasks execution with space-shared

below 5 mm_utes, which is reasonabl_e congderneagsttale scheduling of tasks.

of the experiment. Currently, we are investigatimg cause) _))
of this behavior to avoid it in future versions@budSim. After creation of VMs, task units were submitted in

The next test aimed at quantifying the performaote 9roups of 50 (one submitted to each VM) every 10
CloudSim’s core components when subjected to userMminutes. The VM were configured to use both space-
workloads such as VM creation, task unit executibne shared and time-shared policies for allocatinggasiits to
simulation environment consisted of a data centith w the processing cores.

10000 hosts, where each host was modeled to hsivgjla Figures 9 and 10 present task units progress statiis
CPU core (1000MIPS), 1GB of RAM memory and 2TB of increase in simulation steps (time) for the spdmred test
storage. Scheduling policy for VMs was Space-shared and for the time-shared tests respectively. As etegk in

which meant only one VM was allowed to be hostec in the space-shared case every task took 20 minutes fo
completion as they had dedicated access to theepsing

core. Since, in this policy each task unit had adtsn
dedicated core, the number of incoming tasks ouesize
did not affect execution time of individual taskitsn

VM scheduler. Data center broker on behalf of tseru
requests instantiation of a VM that requires 256MdB
memory, 1GB of storage, 1 CPU, and time-shared diédu

However, in the time-shared case execution time of scheduler. The broker requests instantiation of & and

each task varied with increase in number of sulechitaks
units. Using this policy, execution time is sigoéntly
affected as the processing core is concurrentlytexon
switched among the list of scheduled tasks. Tt group
of 50 tasks was able to complete earlier than thermnes
because in this case the hosts were not over-loatidt
beginning of execution. To the end, as more taskshed
completion, comparatively more hosts became availab
for allocation. Due to this we observed improvespanse
time for the tasks as shown in Figure 10.

Figure 10. Task execution with time-shared
scheduling of tasks.

Evaluating Federated Cloud Computing Components
This experiment is aimed at testing CloudSim conepds
that form the basis for simulating federated Cloud
computing environments. To this end, a simulation
environment that models federation of 3 data cerded a
user are created. Every data center instantiatesnaor
component, which is responsible for dynamicallysaeg
the availability information related to the localdts. Next,
the sensed statistics are reported to the Clouddiwior
that utilizes the information in undertaking loadgration
decisions. We evaluate a straightforward load-ntigna
policy that performs online migration of VMs among
federated data centers only if the origin data eredbes
not have the requested number of free VM slots|aiviai.
The migration process involves the following stefi3:
creating a virtual machine instance that has thmesa
configuration, which is supported at the destimatitata
center; and (ii) migrating the Cloudlets assignedthe
original virtual machine to the newly instantiatedtual
machine at the destination data center. The feeldrat
network of data centers is created based on theldgp
shown in Figure 11.

Every data center in the system is modeled to Béve

associates one Cloudlet to each VM to be execilteese
requests are originally submitted with the Dataeert.
Each Cloudlet is modeled to be having 1800000 N&
simulation experiments were run under the following
system configurations: (i) first a federated netwaf
clouds is available, hence data centers are ableope
with peak in demands by migrating the excess ofl ltwa
the least loaded ones; and (ii) second, the datteiseare
modeled as independent entities (without federatia
the workload submitted to a data center must begssed
and executed locally.

Figure 11: A network topology of federated Data
Centers.

Table 1 shows the average turn-around time for each
Cloudlet and the overall makespan of the user eafitin
for both cases. A user application consists of @nmore
Cloudlets with sequential dependencies. The sinaumat
results reveal that the availabilty of federated
infrastructure of clouds reduces the average tuonral
time by more than 50%, while improving the makespgn
20%. It shows that, even for a very simple loadratign
policy, availability of federation brings signifioabenefits
to user’s application performance.

Table 1: Performance Results.

Performance Metrics| With Without
Federation| Federation

Average Turn Around 2221.13 4700.1

Time (Secs)

Makespan (Secs) 6613.1 8405

6. Conclusion and Future Work

The recent efforts to design and develop Cloud
technologies focus on defining novel methods, pediand
mechanisms for efficiently managing Cloud infrastaues.

computing hosts, 10GB of memory, 2TB of storage, 1 10 test these newly developed methods and policies,

processor with 1000 MIPS of capacity, and a timerst

10

researchers need tools that allow them to evaltize

hypothesis prior to real deployment in an environime
where one can reproduce tests. Simulation-based
approaches in evaluating Cloud computing systents an [2]
application behaviors offer significant benefits they
allow Cloud developers: (i) to test performancethudir
provisioning and service delivery policies in a eafable
and controllable environment free of cost; and thitune
the performance bottlenecks before real-world dgptmt
on commercial Clouds.

To meet these requirements, we developed thedSim
toolkit for modeling and simulation of extensibléoGds.
As a completely customizable tool, it allows extensand
definition of policies in all the components of tbeftware
stack, which makes it suitable as a research twdl ¢an
handle the complexities arising from simulated
environments. As future work, we are planning to [6]
incorporate new pricing and provisioning policies t
CloudSim, in order to offer a built-in support tnslate
the currently available Clouds. Modeling and sirtiola of
such environments that consist of providers encesipg
multiple services and routing boundaries presengum
challenges. They include providing support for picat
and concrete network models that capture the messag
routing and latency behavior ambient on the Interfie
address this, we intend to extend CloudSim by [8]
implementing the BRITE topology model for networgin
multiple Clouds.

Further, recent studies have revealed that detders
consume unprecedented amount of electrical povesigeh
they incur massive capital expenditure for day-dg-d
operation and management. For example, a Googke dat
center consumes power as much as a city such as San
Francisco. The socio-economic factors and environahe
conditions of the geographical region, where a dataer
is hosted directly influences total power billsuned. For
instance, a data center hosted in a location wheweer
cost is low and has less hostile weather conditiomsild
incur comparatively lesser expenditure in powelshilo
achieve simulation of the aforementioned Cloud cating
environments, much of our future work would invgate
new models and techniques for allocation of sesvit®e
applications depending on energy efficiency and
expenditure of service providers.

(3]

[4]

[5]

[7]

9]

Acknowledgements

This work is partially supported by the Australian
Department of Innovation, Industry, Science andel@esh
(DIISR) and the Australian Research Council (ARC)
through the International Science Linkage and the
Discovery Projects programs respectively. We wdikie

to thank Marcos Assuncéo for proof reading the pape

References

[1] R. Buyya, C. S. Yeo, and S. Venugopal. Market-
oriented cloud computing: Vision, hype, and reality
for delivering IT services as computing utilities.
Proceedings of the 10th IEEE International

11

Conference on High Performance Computing and
Communications2008.

D. Chappell.introducing the Azure services platfarm
White paper, Oct. 2008.

X. Chu et al. Aneka: Next-generation enterprisal gri
platform for e-science and e-business applications.
Proceedings of the 3rd IEEE International
Conference on e-Science and Grid Compytkap7.

C. L. Dumitrescu and |. Foster. GangSim: a simulato
for grid scheduling studie®roceedings of the IEEE
International Symposium on Cluster Computing and
the Grid,2005.

I. Foster and C. Kesselman (editor§he Grid:
Blueprint for a New Computing Infrastructure
Morgan Kaufmann, 1999.

F. Howell and R. Mcnab. SimJava: A discrete event
simulation library for javaProceedings of the first
International Conference on Web-Based Modeling
and Simulation1998.

A. Legrand, L. Marchal, and H. Casanova. Scheduling
distributed applications: the SimGrid simulation
framework. Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and
the Grid 2003.

J. E. Smith and R. NaiWirtual Machines: Versatile
platforms for systems and processeMorgan
Kauffmann, 2005.

R. Buyya and M. Murshed. GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computing.
Concurrency and Computation: Practice and
Experience14(13-15), Wiley Press, Nov.-Dec., 2002.

[10]A. Weiss. Computing in the clouddNetWorkey

11(4):16-25, Dec. 2007.

[11] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. &aA.

Konwinski, G. Lee, D. Patterson, A. Rabkin, |. 8tmi
M. Zaharia.Above the Clouds: A Berkel®§ew of Cloud
computing Technical Report No. UCB/EECS-2009-28,
University of California at Berkley, USA, Feb. 12009.

[12]R. Ranjan and R. Buyya. Decentralized Overlay for

Federation of Enterprise Clouddandbook of Research
on Scalable Computing Technologiés Li et. al. (ed),
IGI Global, USA, 2009 (in press).

[13]R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, Bnd

Brandic. Cloud Computing and Emerging IT Platforms:
Vision, Hype, and Reality for Delivering Computiag
the 5th Utility. Future Generation Computer Systems
25(6): 599-616, Elsevier Science, Amsterdam, The
Netherlands, June 2009.

