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Abstract

Research interest in Grid computing has grown signi®cantly over the past ®ve years. Management of distributed resources is one of the key
issues in Grid computing. Central to management of resources is the effectiveness of resource allocation as it determines the overall utility of
the system. The current approaches to brokering in a Grid environment are non-coordinated since application-level schedulers or brokers make
scheduling decisions independently of the others in the system. Clearly, this can exacerbate the load sharing and utilization problems of distributed
resources due to sub-optimal schedules that are likely to occur. To overcome these limitations, we propose a mechanism for coordinated sharing of
distributed clusters based on computational economy. The resulting environment, calledGrid-Federation, allows the transparent use of resources
from the federation when local resources are insuf®cient to meet its users' requirements. The use of computational economy methodology
in coordinating resource allocation not only facilitates the Quality of Service (QoS)-based scheduling, but also enhances utility delivered by
resources. We show by simulation, while some users that are local to popular resources can experience higher cost and/or longer delays, the
overall users' QoS demands across the federation are better met. Also, the federation's average case message-passing complexity is seen to be
scalable, though some jobs in the system may lead to large numbers of messages before being scheduled.
c
 2007 Elsevier B.V. All rights reserved.

1. Introduction

Clusters of computers have emerged as mainstream
parallel and distributed platforms for high-performance,
high-throughput and high-availability computing. Grid [19]
computing extends the cluster computing idea to wide-area
networks. A grid consists of cluster resources that are usually
distributed over multiple administrative domains, managed and
owned by different organizations having different resource
management policies. With the large scale growth of networks
and their connectivity, it is possible to couple these cluster
resources as a part of one large Grid system. Such large scale
resource coupling and application management is a complex
undertaking, as it introduces a number of challenges in the
domain of security, resource/policy heterogeneity, resource
discovery, fault tolerance, dynamic resource availability and
underlying network conditions.
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The resources on a Grid (e.g. clusters, supercomputers) are
managed by local resource management systems (LRMSes)
such as Condor [28] and PBS [7]. These resources can also
be loosely coupled to form campus grids using multi-clustering
systems such as SGE [22] and LSF [40] that allow sharing of
clusters owned by the same organization. In other words, these
systems do not allow their combination similar to autonomous
systems, to create an environment forcooperative federationof
clusters, which we refer as Grid-Federation.

Other related concept called Virtual Organization (VO) [19]-
based Grid resource sharing has been proposed in the literature.
Effectively, a VO is formed to solve speci®c scienti®c problems.
All the participants follow the same resource management
policies de®ned by a VO. Hence, a VO represents a socialist
world, wherein the participants have to adhere to community-
wide agreed policies and priorities. In contrast, proposed Grid-
Federation is a democratic world with complete autonomy for
each participant. Further, a participant in the federation can
behave rationally as we propose the use of economic model for
resource management. Grid-Federation users submit their job
to the local scheduler. In case local resources are not available
or are not able to meet the requirement then job is transparently
migrated to a remote resource (site) in the federation, although
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this job migration is driven by the users' QoS requirements.
In a VO, user jobs are managed by a global scheduler which
enforces resource allocation based on VO-wide policies.

Scheduling jobs across resources that belong to distinct
administrative domains is referred to assuperscheduling.
The majority of existing approaches to superscheduling [32]
in a Grid environment is non-coordinated. Superschedulers
or resource brokers such as Nimrod-G [1], Tycoon [27],
and Condor-G [21] perform scheduling related activities
independent of the other superschedulers in the system. They
directly submit their applications to the underlying resources
without taking into account the current load, priorities,
utilization scenarios of other application-level schedulers.
Clearly, this can lead to over-utilization or a bottleneck
on some valuable resources while leaving others largely
underutilized. Furthermore, these superschedulers do not have
a coordination mechanism and this exacerbates the load sharing
and utilization problems of distributed resources because sub-
optimal schedules are likely to occur.

Furthermore, end-users or their application-level super-
schedulers submit jobs to the LRMS without having knowledge
about response time or service utility. Sometimes these jobs
are queued for relatively excessive times before being actu-
ally processed, leading to degraded QoS. To mitigate such long
processing delays and to enhance the value of computation, a
scheduling strategy can use priorities from competing user jobs
that indicate varying levels of importance. This is a widely stud-
ied scheduling technique (e.g. using priority queues) [3]. To be
effective, the schedulers require knowledge of how users value
their computations in terms of QoS requirements, which usually
varies from job to job. LRMS schedulers can provide a feed-
back signal that prevents the user from submitting unbounded
amounts of work.

Currently, system-centric approaches such as Legion [13,
38], NASA-Superscheduler [33], Condor, Condor-Flock [8],
Apples [6], PBS and SGE provide limited support for QoS
driven resource sharing. These system-centric schedulers,
allocate resources based on parameters that enhance system
utilization or throughput. The scheduler either focuses on
minimizing the response time (sum of queue time and actual
execution time) or maximizing overall resource utilization of
the system and these are not speci®cally applied on a per-
user basis (user oblivious). System-centric schedulers treat all
resources with the same scale, as if they are worth the same
and the results of different applications have the same value;
while in reality the resource provider may value his resources
differently and has a different objective function. Similarly, a
resource consumer may value various resources differently and
may want to negotiate a particular price for using a resource.
Hence, resource consumers are unable to express their valuation
of resources and QoS parameters. Furthermore, the system-
centric schedulers do not provide any mechanism for resource
owners to de®ne what is shared, who is given the access and the
conditions under which sharing occurs [20].

1.1. Grid-Federation
To overcome these shortcomings of non-coordinated,

system-centric scheduling systems, we propose a new

distributed resource management model, called Grid-
Federation. Our Grid-Federation system is de®ned as a large
scale resource sharing system that consists of a coordinated fed-
eration (the term is also used in the Legion system and should
not be confused with our de®nition), of distributed clusters
based on policies de®ned by their owners (shown inFig. 1).
Fig. 1 shows an abstract model of our Grid-Federation over a
shared federation directory. To enable policy-based transparent
resource sharing between these clusters, we de®ne and model a
new RMS system, which we call Grid-Federation Agent (GFA).
Currently, we assume that the directory information is shared
using some ef®cient protocol (e.g. a peer-to-peer protocol [29,
25]). In this case the P2P system provides a decentralized
database with ef®cient updates and range query capabilities. In-
dividual GFAs access the directory information using the inter-
faces shown inFig. 1, i.e. subscribe, quote, unsubscribe, query.
In this paper, we are not concerned with the speci®cs of the in-
terface (which can be found in [30]) although we do consider
the implications of the required message-passing, i.e. the mes-
sages sent between GFAs to undertake the scheduling work.

Our approach considers the emerging computational
economy metaphor [1,36,37] for Grid-Federation. In this case
resource owners: can clearly de®ne what is shared in the
Grid-Federation while maintaining complete autonomy; can
dictate who is given access; and receive incentives for leasing
their resources to federation users. We adopt the market-
based economic model from [1] for resource allocation in our
proposed framework. Some of the commonly used economic
models [9] in resource allocation include the commodity market
model, the posted price model, the bargaining model, the
tendering/contract-net model, the auction model, the bid-based
proportional resource sharing model, the community/coalition
model and the monopoly model. We focus on the commodity
market model [39]. In this model every resource has a price,
which is based on the demand, supply and value in the Grid-
Federation. Our Economy model driven resource allocation
methodology focuses on: (i) optimizing resource provider's
objective functions, (ii) increasing end-user's perceived QoS
value based on QoS level indicators [30] and QoS constraints.

The key contribution of the paper includes our proposed
new distributed resource management model, called Grid-
Federation, which provides: (i) a market-based Grid super-
scheduling technique; (ii) decentralization via a shared feder-
ation directory that gives site autonomy and scalability; (iii)
ability to provide admission control facility at each site in the
federation; (iv) incentives for resources owners to share their
resources as part of the federation; and (v) access to a larger
pool of resources for all users. In this paper, we demonstrate,
by simulation, the feasibility and effectiveness of our proposed
Grid-Federation.

The rest of the paper is organized as follows. Section2
explores various related projects. In Section3 we summarize
our Grid-Federation and Section4 deals with various
experiments that we conducted to demonstrate the utility of
our work. We end the paper with some concluding remarks and
future work in Section5.
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Fig. 1. Grid-Federation resource sharing system. Grid-Federation consists of cluster resources that are distributed over multiple ogranisations and control domains.
Each site in the federation instantiates a GFA resource management system that exports the local resources to the federation. GFA undertakes one-to-one negotiation
as part of job superscheduling process.

2. Related work

Resource management and scheduling for parallel and
distributed systems has been investigated extensively in the
recent past (AppLes, NetSolve [12], Condor, LSF, SGE,
Legion, Condor-Flock, NASA-Superscheduler, Nimrod-G and
Condor-G). In this paper, we mainly focus on superscheduling
systems that allow scheduling of jobs across wide-area
distributed clusters. We highlight the current scheduling
methodology followed by Grid superscheduling systems
including NASA-Superscheduler, Condor-Flock (based on
P2P substrate Pastry [31]), Legion-based federation and
Resource Brokers. Furthermore, we also discuss some of the
computational economy-based Cluster and Grid systems.

The work in [33] models a Grid superscheduler archi-
tecture and presents three different distributed job migration
algorithms. In contrast to this superscheduling system, our ap-
proach differs in the following (i) the job-migration or the load-
balancing in the Grid-Federation is driven by user speci®ed
QoS constraints and resource owners' sharing policies; (ii) our
approach gives a resource owner complete autonomy over
resource allocation decision; and (iii) our superscheduling
mechanism utilizes decentralized shared federation directory
for indexing and querying the resources.

The work in [8] presents a superscheduling system that
consists of Internet-wide Condor work pools. They utilize

Pastry routing substrate to organize and index the Condor
work pool. The superscheduling mechanism is based on
system-centric parameters. In comparison with this work,
Grid-Federation is based on decentralized shared federation
directory. Further, our superscheduling scheme considers user-
centric parameters for job scheduling across the federation.

OurGrid [4] provides a Grid superscheduling middleware
infrastructure based on the P2P network paradigm. The
OurGrid community is basically a collection of a number
of OurGrid Peer (OG Peer) that communicate using P2P
protocols. Superscheduling in OurGrid is primarily driven by
the site's reputation in the community. In contrast, we propose
a more generalized resource sharing system based on real-
market models. Further, our superscheduling system focuses
on optimizing resource owners' and consumers' objective
functions.

Bellagio [5] is a market-based resource allocation system
for federated distributed computing infrastructures. Resource
allocation in this system is based on bid-based proportional
resource sharing model. Bids for resources are cleared
by a centralized auctioneer. In contrast, we propose a
decentralized superscheduling system based on commodities
markets. Resource allocation decision in our proposed system
is controlled by the concerned site, hence providing complete
site autonomy.
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Table 1
Superscheduling technique comparison

Index System name Network model Scheduling parameters Scheduling mechanism

1 NASA-Superscheduler Random System-centric Partially coordinated
2 Condor-Flock P2P P2P (Pastry) System-centric Partially coordinated
3 Grid-Federation P2P (Decentralized directory) User-centric Coordinated
4 Legion-Federation Random System-centric Coordinated
5 Nimrod-G Centralized User-centric Non-coordinated
6 Condor-G Centralized System-centric Non-coordinated
7 Our-Grid P2P System-centric Coordinated
8 Tycoon Centralized User-centric Non-coordinated
9 Bellagio Centralized User-centric Coordinated

Tycoon [27] is a distributed market-based resource
allocation system. Application scheduling and resource
allocation in Tycoon is based on decentralized isolated
auction mechanism. Every resource owner in the system
runs its own auction for his local resources. Furthermore,
auctions are held independently, thus clearly lacking any
coordination. In contrast, we propose a mechanism for
cooperative and coordinated sharing of distributed clusters
based on computational economy. We apply commodity market
model for regulating the supply and demand of resources in the
Grid-Federation.

Nimrod-G [1] is a resource management system (RMS)
that serves as a resource broker and supports deadline and
budget constrained algorithms for scheduling task-farming
applications on the platform. The superscheduling mechanism
inside the Nimrod-G does not take into account other brokering
systems currently present in the system. This can lead to over-
utilization of some resources while under-utilization of others.
To overcome this, we propose a set of distributed brokers
having a transparent coordination mechanism.

Other systems including Libra [34] and REXEC [16] apply
market methodologies for managing cluster resources within a
single administrative domain. Finally inTable 1, we summarize
various superscheduling systems based on underlying network
model, scheduling parameter and scheduling mechanism.

3. Grid-Federation: Architecture for decentralized re-
source management

(1) Grid-Federation agent: We de®ne our Grid-Federation
(shown inFig. 1) as a mechanism that enables logical coupling
of cluster resources. The Grid-Federation supports policy-
based [14] transparent sharing of resources and QoS-based [26]
job scheduling. We also propose a new computational economy
metaphor for cooperative federation of clusters. Computational
economy [1,36,37] enables the regulation of supply and
demand of resources, offers incentive to the resource owners
for leasing, and promotes QoS-based resource allocation. The
Grid-Federation consists of the cluster owners as resource
providers and the end-users as resource consumers. End-users
are also likely to be topologically distributed, having different
performance goals, objectives, strategies and demand patterns.
We focus on optimizing the resource provider's objective
and resource consumer's utility functions by using a quoting
mechanism. The Grid-Federation consists of cluster resources

distributed across multiple organizations and administrative
domains. To enable policy-based coordinated resource sharing
between these clusters, we de®ne and model a new RMS
system, which we call Grid-Federation Agent (GFA). A cluster
can become a member of the federation by instantiating a
GFA component. GFA acts as a resource coordinator in the
federated space, spanning over all the clusters. These GFAs
in the federation inter-operate using an agreed communication
primitive over the shared federation directory.

This section provides comprehensive details about our
proposed Grid-Federation, including models used for budget
and deadline calculations in the simulations of the next section.
The model de®nes the following functional modules of a GFA:
Grid Resource Manager (GRM)

The Grid resource manager is responsible for superschedul-
ing the locally submitted jobs in the federation. Further, it also
manages the execution of remote jobs in conjunction with the
LRMS on the local resource.Local jobsrefers to the jobs sub-
mitted by the local population of users, whileremote jobsrefers
to the incoming jobs from remote GRMs. A GRM provides
admission control facility at each site in the federation.Fig. 2
shows the Grid-Federation superscheduling architecture that we
propose. InFig. 2, a GFA i in the federation with modules
GRM, LRMS and DIM is shown. The GRM component of GFA
is connected to the federation queue which accepts the incom-
ing remote jobs (from the federation) as well as local jobs. All
the remote jobs are transferred to the local queue which is con-
trolled by the GFA's LRMS module. A GRM can also export the
locally submitted jobs to other sites in the federation depending
on the user speci®ed QoS requirements. The job submission and
migration process is represented by a dashed arrow inFig. 2.

A local user submits his job to the GRM which then places
it in the federation queue. GRM analyses the user's QoS
speci®cation and then sends a query message to the DIM.
The DIM returns the ®rst fastest or ®rst cheapest machine as
speci®ed in the QoS requirements. If the returned machine
is the local resource then the job is transferred to the local
queue. Otherwise, the job is transferred to a remote site in
the federation. GRMs undertake one-to-one negotiation before
submitting a job to a remote site. The GRM local to the
submitted job sends admission control negotiate message to the
remote GRM requesting a guarantee on the total job completion
time. Following this, the contacted GRM queries its LRMS.
If the LRMS reports that the job can be completed within
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Fig. 2. Grid-Federation superscheduling architecture: A GFAi in the federation with modules GRM, LRMS and DIM. GRM is connected to a federation queue
which accepts incoming remote jobs (from federation) and local jobs. All remote jobs are transferred to the local queue which is controlled by the LRMS module. A
GRM can also migrate the locally submitted jobs to other sites in the federation depending on the user speci®ed QoS requirements. A job submission and migration
process is represented by a dashed arrow in the ®gure.

the speci®ed deadline, then the admission control acceptance
message is sent to the requesting GRM. On receiving the
acceptance, the GRM sends the job. The inter-site GRM-to-
GRM negotiation scheme prevents the GRMs from submitting
unlimited amount of jobs to the resources. Further, this
approach allows autonomy for every resource domain, as they
have the capability to perform per-job basis admission control
decision. All migrated jobs are ®rst queued in the federation
queue, which are then subsequently transferred to the local
queue for ®nal execution process.

The proposed Grid-Federation mechanism can leverage
services of Grid-Bank [2] for credit management. The
participants in the system can use Grid-Bank to exchange Grid
Dollars.
Local Resource Management System (LRMS)

In our proposed Grid-Federation distributed resource
sharing system, we assume that every cluster has a generalized
RMS, such as a SGE or PBS that manages cluster wide resource
allocation and application scheduling. Most of the available
RMS packages have a centralised organisation similar to the
master-worker pool model. In the centralised organisation,
there is only one scheduling controller (master node) which
coordinates system-wide decisions. Grid resource manager
queries LRMS to acquire information about local job queue
size, expected response time for a job, and resource utilisation
status.
Distributed Information Manager (DIM )

The DIM performs tasks like resource discovery and
advertisement through well de®ned primitives. It interacts with
an underlying shared federation directory (shown inFig. 2).
Recall that we assume the directory information is shared
using some ef®cient protocol (e.g. a P2P protocol). In this
case, the P2P system provides a decentralized database with

ef®cient updates and range query capabilities. Individual GFAs
access the directory information using the interface shown in
Fig. 1, i.e. subscribe, quote, unsubscribe and query. In this
paper, we are not concerned with the speci®cs of the interface
(which can be found in [30]). The resource discovery function
includes searching for suitable cluster resources while resource
advertisement is concerned with advertising resource capability
(with pricing policy) to other clusters in the federation. The
federation directory maintains quotes or advertised costs from
each GFA in the federation. Each quote consists of a resource
description Ri , for cluster i , and a costci for using that
resource con®gured by respective cluster owners. UsingRi
and ci , a GFA can determine the cost of executing a job on
cluster i and the time taken, assuming that the clusteri has
no load. The actual load of the cluster needs to be determined
dynamically and the load can lead to changes in time taken for
job completion. In this work, we assume thatci remains static
throughout the simulations. Each GFA can query the federation
directory to ®nd thekth fastest cluster or thekth cheapest
cluster. We assume the query process is optimal, i.e. that it
takes O.logn/ messages [11] to query the directory, when
there aren GFAs in the system, we consider the number of
additional messages that are used to satisfy our Grid-Federation
scheduling process.

3.1. Decentralised market place and Grid-Federation

Grid computing assembles resources that are well managed,
powerful and well connected to the Internet. Grids present
a platform for Grid participants (GPs) to collaborate and
coordinate resource management activities. Key GPs include
the producers(Grid resource-owners) andconsumers(Grid
users). GPs have different goals, objectives, strategies, and
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supply and demand functions. GPs are topologically distributed
and belong to different administrative domains. Controlled
administration of Grid resources gives an ability to provide a
desired QoS in terms of computational and storage ef®ciency,
software or library upgrades. However, such controlled
administration of resources gives rise to various social and
political issues on which these resources are made available to
the outside world.

A resource owner invests a signi®cant amount of money in
establishing the resource such as, initial cost of buying, setting
up, maintenance cost including hiring the administrator and
expense of timely software and the hardware upgrades. There
is a complex diversity in terms of resources' usage policies,
loads and availability. Resource owners in a grid behave
as rational participants having distinct stake holdings with
potentially con¯icting and diverse utility functions. In this case,
resource owners apply resource sharing policies that tend to
maximize their utility functions [17,23]. Similarly, the resource
consumers in a grid associate QoS-based utility constraints with
their applications and expect that the constraints are satis®ed
within the acceptable limits. Every resource owner makes the
policy related decision independently that best optimizes his
objective function. Likewise, resource consumers have diverse
QoS-based utility constraints, priorities and demand patterns.

To capture the above dynamics and complexity of
Grid resource sharing environment, Grid-Federation applies
market-based economy principles for resource allocation and
application scheduling. In particular, we adopt commodity
market model. In this model, every resource owner sets up
a ®xed price based on the demand for his resources in the
decentralised market place. The resource owner advertises its
resource access cost through its local GFA service. Analyzing
different pricing algorithm based on supply and demand
function is a vast research area. Investigating how the cluster
owners determine the price [15,35,39] of their commodity is a
subject of future work.

3.2. General Grid-Federation superscheduling technique

In this section we describe our general Grid-Federation
scheduling technique. InFig. 1 a user who is local to GFA 1
is submitting a job. If the user's job QoS cannot be satis®ed
locally then GFA 1 queries the federation directory to obtain
the quote of the ®rst fastest or ®rst cheapest cluster. In this case,
the federation directory returns the quote advertised by GFA
2. Following this, GFA 1 sends a negotiate message (enquiry
about QoS guarantee in terms of response time) to GFA 2. If
GFA has too much load and cannot complete the job within
the deadline then GFA 1 queries the federation directory for
the second cheapest/fastest GFA and so on. The query-negotiate
process is repeated until GFA 3 ®nds a GFA that can schedule
the job (in this example the job is ®nally scheduled on site 3).

Every federation user must express how much he is willing
to pay, called abudget, and required response time, called a
deadline, for his job numberj . In this work, we say that a
job's QoS has been satis®ed if the job is completed within
budget and deadline, otherwise it is not satis®ed. Every cluster

in the federation has its own resource setRi which contains the
de®nition of all resources owned by the cluster and ready to be
offered.Ri can include information about the CPU architecture,
number of processors, RAM size, secondary storage size,
operating system type, etc. In this work,Ri D . pi ; � i ; 
 i /
which includes the number of processors,pi , their speed,� i
and underlying interconnect network bandwidth
 i . We assume
that there is always enough RAM and correct operating system
conditions, etc. The cluster owner chargesci per unit time or per
unit of million instructions (MI) executed, e.g. per 1000 MI.

We write Ji ; j ;k to represent thei th job from the j th user of
the kth resource. A job consists of the number of processors
required,pi ; j ;k, the job length,l i ; j ;k (in terms of instructions),
the budget,bi ; j ;k, the deadline or maximum delay,di ; j ;k and the
communication overhead,� i ; j ;k.

To capture the nature of parallel execution with message-
passing overhead involved in the real application, we
considered a part of total execution time as the communication
overhead and remaining as the computational time. In this
work, we consider the network communication overhead� i ; j ;k
for a parallel job Ji ; j ;k to be randomly distributed over the
processes. In other words, we do not consider the case e.g. when
a parallel program written for a hypercube is mapped to a mesh
architecture. We assume that the communication overhead
parameter� i ; j ;k would scale the same way over all the clusters
depending on
 i . The total data transfer involved during a
parallel job execution is given by

 . Ji ; j ;k; Rk/ D � i ; j ;k
 k: (1)

The time for jobJi ; j ;k D . pi ; j ;k; l i ; j ;k; bi ; j ;k; di ; j ;k; � i ; j ;k/ to
execute on resourceRm is

D. Ji ; j ;k; Rm/ D
l i ; j ;k

� m pi ; j ;k
C

 . Ji ; j ;k; Rk/

 m

(2)

D. Ji ; j ;k; Rm/ D
l i ; j ;k

� m pi ; j ;k
C

� i ; j ;k 
 k


 m
(3)

and the associated cost is

B. Ji ; j ;k; Rm/ D cm
l i ; j ;k

� m pi ; j ;k
: (4)

If si ; j ;k is the time thatJi ; j ;k is submitted to the system then
the job must be completed by the timesi ; j ;k C di ; j ;k.

3.3. QoS driven resource allocation algorithm for Grid-
Federation

We consider a deadline and budget constrained (DBC)
scheduling algorithm, or cost±time optimization scheduling.
The federation user can specify any one of the following
optimization strategies for their jobs:

� optimization for time (OFT) Ð give minimum possible
response time within the budget limit;

� optimization for cost (OFC) Ð give minimum possible cost
within the deadline.

For each job that arrives at a GFA, called the local GFA, the
following is done:
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(1) Setr D 1.
(2) If OFT is required for the job then query the federation

directory for ther th fastest GFA; otherwise OFC is required
and the query is made for ther th cheapest GFA. Refer to the
result of the query as the remote GFA.

(3) The local GFA sends a message to the remote GFA,
requesting a guarantee on the time to complete the job.

(4) If the remote GFA con®rms the guarantee then the job is
sent, otherwiser VDr C 1 and the process iterates through
step (2).

Recall that we assume each query takesO.logn/ messages
and hence in this work we use simulation to study how many
times the iteration is undertaken, on a per job basis and on a
per GFA basis. The remote GFA makes a decision immediately
upon receiving a request as to whether it can accept the job
or not. If the job's QoS parameters cannot be satis®ed (after
iterating up to the greatestr such that GFA could feasibly
complete the job) then the job is dropped.

Effectively, for jobJi ; j ;k that requires OFC then GFAm with
Rm is chosen such thatB. Ji ; j ;k; Rm/ D min1< m0� nf B. Ji ; j ;k;
Rm0/g, and D. Ji ; j ;k; Rm/ � si ; j ;k C di ; j ;k. Similarly, for
OFT then GFA m is chosen such thatD. Ji ; j ;k; Rm/ D
min1< m0� nf D. Ji ; j ;k; Rm0/g, andB. Ji ; j ;k; Rm/ � bi ; j ;k.

3.4. Quote value

We assume thatci remains static throughout the simulations.
In this work, we are only interested in studying the effectiveness
of our Grid-Federation superscheduling algorithm based on the
static access chargeci . In simulations, we con®gureci using the
function:

ci D f .� i / (5)

where,

f .� i / D
c
�

� i (6)

c is the access price and� is the speed of the fastest resource in
the Grid-Federation.

3.5. User budget and deadline

While our simulations in the next section use trace data for
job characteristics, the trace data does not include user speci®ed
budgets and deadlines on a per-job basis. In this case we are
forced to fabricate these quantities and we include the models
here.

For a user,j , we allow each job from that user to be given a
budget (using Eq.(4)),

bi ; j ;k D 2 B. Ji ; j ;k; Rk/: (7)

In other words, the total budget of a user over simulation is
unbounded and we are interested in computing the budget that
is required to schedule all of the jobs.

Also, we let the deadline for jobi (using Eq.(2)) be

di ; j ;k D 2 D. Ji ; j ;k; Rk/: (8)

We assign two times the value of total budget and deadline
for the given job, as compared to the expected budget spent and
the response time on the originating resource.

4. Experiments and analysis

4.1. Workload and resource methodology

We used trace-based simulation to evaluate the effectiveness
of the proposed system and the QoS provided by the proposed
superscheduling algorithm. The workload trace data was
obtained from [18]. The trace contains the real time workload
of various supercomputers/resources that are deployed at the
Cornell Theory Center (CTC SP2), Swedish Royal Institute
of Technology (KTH SP2), Los Alamos National Lab (LANL
CM5), LANL Origin 2000 Cluster (Nirvana) (LANL Origin),
NASA Ames (NASA iPSC) and San-Diego Supercomputer
Center (SDSC Par96, SDSC Blue, SDSC SP2) (SeeTable 2).
The workload trace is a record of usage data for parallel jobs
that were submitted to various resource facilities. Every job
arrives, is allocated one or more processors for a period of
time, and then leaves the system. Furthermore, every job in
the workload has an associated arrival time, indicating when
it was submitted to the scheduler for consideration. As the
experimental trace data does not include details about the
network communication overhead involved for different jobs,
we arti®cially introduced the communication overhead element
as 10% of the total parallel job execution time.

The simulator was implemented using the GridSim [10]
toolkit that allows modeling and simulation of distributed
system entities for evaluation of scheduling algorithms.
GridSim offers a concrete base framework for simulation of
different kinds of heterogeneous resources, brokering systems
and application types. This toolkit can simulate resource
brokering for resources that belong to a single administrative
domain (such as a cluster) or multiple administrative domain
(such as a grid). The core of simulation is based on
simjava[24], a discrete event simulation package implemented
in Java. The main classes of GridSim include GridResource,
GridSim, Gridlet, AllocPolicy and GridInformationService.
These classes communicate using discrete message-passing
events. To enable parallel workload simulation with GridSim,
we extend the existing AllocPolicy and SpaceShared entities.

Our simulation environment models the following basic
entities in addition to existing entities in GridSim:

� local user population Ð models the workload obtained from
trace data;

� GFA Ð generalized RMS system;
� GFA queues (federation and local) Ð placeholder for

incoming jobs from local user population and the federation;
� GFA shared federation directory Ð simulates an ef®cient

distributed query process such as peer-to-peer.

For evaluating the QoS driven resource allocation algorithm,
we assigned a synthetic QoS speci®cation to each resource
including the Quote value (price that a cluster owner charges for
service), having varying MIPS rating and underlying network
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Table 2
Workload and resource con®guration

Index Resource/Cluster
name

Trace date Processors MIPS
(rating)

Total jobs in trace Quote
(price)

NIC to network bandwidth (Gb=s)

1 CTC SP2 June96±May97 512 850 79,302 4.84 2
2 KTH SP2 Sept96±Aug97 100 900 28,490 5.12 1.6
3 LANL CM5 Oct94±Sept96 1024 700 201,387 3.98 1
4 LANL Origin Nov99±Apr2000 2048 630 121,989 3.59 1.6
5 NASA iPSC Oct93±Dec93 128 930 42,264 5.3 4
6 SDSC Par96 Dec95±Dec96 416 710 38,719 4.04 1
7 SDSC Blue Apr2000±Jan2003 1152 730 250,440 4.16 2
8 SDSC SP2 Apr98±Apr2000 128 920 73,496 5.24 4

(a) Average resource utilization (%) vs. resource name. (b) No. of jobs vs. resource name.

Fig. 3. Resource utilization and job migration plot.

communication bandwidth. The simulation experiments were
conducted by utilizing workload trace data over the total period
of 2 days (in simulation units) at all the resources. Hence,
effectively our simulation considers only a fraction of jobs
per computing site as compared to the total number of jobs
that were submitted. For example, originally 79,302 jobs were
submitted to CTC SP2 over a period of 1 year, while our
simulation considered only 417 jobs (no. of jobs submitted
over 2 days). We consider the following resource sharing
environment for our experiments:

� independent resource Ð Experiment 1;
� federation without economy Ð Experiment 2;
� federation with economy Ð Experiments 3, 4 and 5.

4.2. Experiment 1 Ð independent resources

In this experiment the resources were modeled as an
independent entity (without federation). All the workload
submitted to a resource is processed and executed locally (if
possible). In Experiment 1 (and 2) we consider, if the user
request cannot be served within a requested deadline, then it
is rejected otherwise it is accepted. In original trace, as jobs
were supposed to be scheduled on the local resource, they
were queued in until the required number of processors became
available. Effectively, no job was rejected in the original trace.
During Experiment 1 (and 2), we evaluate the performance of a
resource in terms of average resource utilization (amount of real
work that a resource does over the simulation period excluding
the queue processing and idle time), job acceptance rate (total

percentage of jobs accepted) and conversely the job rejection
rate (total percentage of jobs rejected). The result of this
experiment can be found inTable 3andFig. 3. Experiment 1 is
essentially the control experiment that is used as a benchmark
for examining the effects of using federated (with and without
economy) sharing of resources.

4.3. Experiment 2 Ð with federation

In this experiment, we analyzed the workload processing
statistics of various resources when part of the Grid-Federation
but not using an economic model. In this case the workload
assigned to a resource can be processed locally. In case a local
resource is not available then online scheduling is performed
that considers the resources in the federation in decreasing
order of their computational speed. We also quantify the jobs
depending on whether they are processed locally or migrated
to the federation.Table 4andFig. 3describe the results of this
experiment.

4.4. Experiment 3 Ð with federation and economy

In this experiment, we study the computational economy
metaphor in the Grid-Federation. In order to study economy-
based resource allocation mechanism, it was necessary to
fabricate user budgets and job deadlines. As the trace data does
not indicate these QoS parameters, we assigned them using
Eqs. (7) and (8) to all the jobs across the resources. We
performed the experiment under 11 different combinations of
user population pro®le:
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Table 3
Workload processing statistics (without federation)

Index Resource/Cluster name Average resource utilization (%) Total jobs Total jobs accepted (%) Total jobs rejected (%)

1 CTC SP2 53.492 417 96.642 3.357
2 KTH SP2 50.06438 163 93.865 6.134
3 LANL CM5 47.103 215 83.72 16.27
4 LANL Origin 44.55013 817 93.757 6.24
5 NASA iPSC 62.347 535 100 0
6 SDSC Par96 48.17991 189 98.941 1.058
7 SDSC Blue 82.08857 215 57.67 42.3255
8 SDSC SP2 79.49243 111 50.45 49.54

(a) Total incentive (Grid Dollars) vs. user population
pro®le.

(b) No. of remote jobs serviced vs. user population
pro®le.

Fig. 4. Resource owner perspective.

O FT D i andO FC D 100 i for i D 0; 10; 20; : : : ; 100.
Figs. 4±8describe the results of this experiment.

4.5. Experiment 4 Ð message complexity with respect to jobs

In this experiment, we consider the total incoming and
outgoing messages at all GFAs. The various message types
include negotiate, reply, job submission (messages containing
actual job) and job completion (message containing job output).
We quantify the number of local messages (sent from a GFA
to undertake a local job scheduling) and remote messages
(received at a GFA to schedule a job belonging to a remote GFA
in the federation). The experiment was conducted for the same
user population as explained in Experiment 3.Fig. 9 describes
the result of this experiment.

4.6. Experiment 5 Ð message complexity with respect to
system size

This experiment measures the system's performance in
terms of the total message complexity involved as the system
size grows from 10 to 50. In this case, we consider the average,
max and min number of messages (sent/recv) per GFA/per job
basis. Note that, in casen messages are undertaken to schedule
a job then it involves traversing (ifn > 2 then .n  2/=2,
else n=2) the entries of the GFA list. To accomplish larger
system size, we replicated our existing resources accordingly
(shown inTable 1). The experiment was conducted for the same
user population as explained in Experiment 3.Figs. 10and11
describe the results of this experiment.

4.7. Results and observations

4.7.1. Justifying Grid-Federation-based resource sharing
During Experiment 1 we observed that 5 out of 8 resources

remained underutilized (less than 60%). During Experiment 2,
we observed that the overall resource utilization of most of
the resources increased as compared to Experiment 1 (when
they were not part of the federation), for instance resource
utilization of CTC SP2 increased from 53.49% to 87.15%.
The same trends can be observed for other resources too
(refer to Fig. 3(a)). There was an interesting observation
regarding migration of the jobs between the resources in the
federation (load sharing). This characteristic was evident at
all the resources including CTC SP2, KTH SP2, NASA iPSC
etc. At CTC, which had a total of 417 jobs to schedule, we
observed that 324 (refer toTable 4or Fig. 3(b)) of them were
executed locally while the remaining 93 jobs migrated and were
executed at some remote resource in the federation. Further,
CTC executed 72 remote jobs, which migrated from other
resources in the federation.

The federation-based load sharing also leads to a decrease
in the total job rejection rate, this can be observed in the case
of resource SDSC Blue where the job rejection rate decreased
from 42.32% to 1.39% (refer toTables 3and4). Note that, the
average job acceptance rate, over all resources in the federation,
increased from 90.30% (without federation) to 98.61% (with
federation). Thus, for the given job trace, it is preferable to
make use of more resources, i.e. to migrate jobs. In other words,
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Table 4
Workload processing statistics (with federation)

Index Resource/Cluster
name

Average
resource
utilization (%)

Total jobs Total jobs
accepted
(%)

Total jobs
rejected (%)

No. of jobs
processed
locally

No. of jobs
migrated to
federation

No. of remote jobs
processed

1 CTC SP2 87.15 417 100 0 324 93 72
2 KTH SP2 68.69 163 99.38 0.61 110 52 35
3 LANL CM5 67.20 215 90.69 9.30 145 50 70
4 LANL Origin 77.62 817 98.89 1.10 733 75 81
5 NASA iPSC 78.73 535 99.81 0.18 428 106 129
6 SDSC Par96 79.17 189 100 0 143 46 30
7 SDSC Blue 90.009 215 98.60 1.39 105 107 77
8 SDSC SP2 87.285 111 97.29 2.70 54 54 89

(a) Average resource utilization (%) vs. user
population pro®le.

(b) No. of jobs rejected vs. user population pro®le.

Fig. 5. Resource owner perspective.

(a) No. of jobs migrated vs. user population pro®le. (b) No. of jobs locally done vs. user population pro®le.

Fig. 6. Resource owner perspective.

the job trace shows the potential for resource sharing to increase
the utilization of the system.

4.7.2. Resource owner perspective
In Experiment 3, we measured the computational economy

related behavior of the system in terms of its supply±demand
pattern, resource owner's incentive (earnings) and end-user's
QoS constraint satisfaction (average response time and average
budget spent) with varying user population distribution pro®les.
We study the relationship between resource owner's total
incentive and end-user's population pro®le.

The total incentive earned by different resource owners
with varying user population pro®le can be seen inFig. 4(a).
The result shows as expected that the owners (across all the
resources) earned more incentive when users sought OFT
(Total Incentive 2:30 � 109 Grid Dollars) as compared to OFC
(Total Incentive 2:12 � 109 Grid Dollars). During OFT, we
observed that there was a uniform distribution of the jobs
across all the resources (refer toFig. 5(a)) and every resource
owner earned some incentive. During OFC, we observed a
non-uniform distribution of the jobs in the federation (refer
to Fig. 5(a)). We observed that the resources including CTC
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(a) Average response time (Sim Units) vs. user
population pro®le.

(b) Average budget spent (Grid Dollars) vs. user
population pro®le.

Fig. 7. Federation user perspective: Excluding rejected jobs.

(a) Average response time (Sim Units) vs. user
population pro®le.

(b) Average budget spent (Grid Dollars) vs. user
population pro®le.

Fig. 8. Federation user perspective: Including rejected jobs.

SP2, LANL CM5, LANL Origin, SDSC par96 and SDSC Blue
earned signi®cant incentives. This can also be observed in
their resource utilization statistics (refer toFig. 5(a)). However,
the faster resources (e.g. KTH SP2, NASA iPSC and SDSC
SP2) remained largely underutilized and did not get signi®cant
incentives.

Furthermore, the results indicate an imbalance between the
resource supply and demand pattern. As the demand was high
for the cost-effective resources compared to the time-effective
resources, these time-effective resources remained largely
underutilized. In this case, the majority of jobs were scheduled
on the cost-effective computational resources (LANL CM5,
LANL Origin, SDSC Par96 and SDSC Blue). This is the
worst case scenario in terms of resource owner's incentive
across all the resources in the federation. Although, when
the majority of end-users sought OFT (more than 50%), we
observed uniform distribution of jobs across resources in the
federation. Every resource owner across the federation received
signi®cant incentive (refer toFig. 4(a)) and had improved
resource utilization (refer toFig. 5(a)). These scenarios show
balance in the resource supply and demand pattern.

Further, in this case (the majority of users sought OFT
(more than 50%)), the average resources in terms of cost/time
effectiveness (SDSC Par96 and SDSC Blue) made signi®cant

incentive (which can also be seen in their average utilization)
as compared to when OFC users constituted the majority
population. Probably, this is due to the computational strength
of the cost-effective resources (since LANL Origin and LANL
CM5 offered 2048 and 1024 nodes, therefore collectively they
satis®ed the majority of end-users). So, when OFT users formed
the majority it resulted in increased in¯ow of the remote jobs
to these average resources. Similar trends can be identi®ed
in their respective total remote job service count (refer to
Fig. 4(b)). Note that, total remote job service count for cost-
effective computational resources (LANL Origin, LANL CM5)
decreased considerably as the majority of end-users sought
OFT (refer toFig. 4(b)).

Fig. 6 shows job migration characteristics at various
resources with different population pro®le. We observed that
the most cost-ef®cient resource (LANL Origin) experienced
increased job migration rate in the federation as the majority of
its users opted for OFT. Conversely, for the most time-ef®cient
resource (NASA iPSC) we observed slight reduction in the job
migration rate.

Thus, we conclude that resource supply (number of resource
providers) and demand (number of resource consumers and
QoS constraint preference) pattern can determine resource
owner's overall incentive and his resource usage scenario.
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(a) No. of remote messages vs. user population pro®le. (b) No. of local messages vs. user population pro®le.

(c) Total messages vs. user population pro®le.

Fig. 9. Remote-local message complexity.

4.7.3. End users' perspective
We measured end-users' QoS satisfaction in terms of the

average response time and the average budget spent under OFC
and OFT. We observed that the end-users experienced better
average response times (excluding rejected jobs) when they
sought OFT for their jobs as compared to OFC (100% users
seek OFC) (scenario-1). At LANL Origin (excluding rejected
jobs) the average response time for users was 7:865 � 103

simulation seconds (scenario-1) which reduced to 6:176� 103

for OFT (100% users seek OFT) (refer toFig. 7(a)). The end-
users spent more budget in the case of OFT as compared
with OFC (refer toFig. 7(b)). This shows that users get more
utility for their QoS constraint parameter response time, if
they are willing to spend more budget. Overall, the end-users
across all the resources in the federation experienced improved
response time when the majority constituted OFT population.
The end-users belonging to resource LANL CM5 did not
have signi®cant change in their response time even with OFT
preference. It may be due to their job arrival pattern, that may
have inhibited them from being scheduled on the time-ef®cient
resources (though we need to do more investigation including
job arrival pattern and service pattern at various resources in
order to understand this).

Note that,Fig. 8(a) and (b) includes the expected budget
spent and the response time for the rejected jobs assuming
that they are executed on the originating resource.Fig. 5(b)
depicts the number of jobs rejected across various resources

during economy scheduling. During this experiment, we also
quanti®ed the average response time and the average budget
spent at the fastest (NASA iPSC) and the cheapest resource
(LANL Origin) when they are not part of the Grid-Federation
(without federation). We observed that the average response
time at NASA iPSC was 1:268 � 103 (without federation)
simulation seconds as compared to 1:550 � 103 (refer to
Fig. 8(a)) simulation seconds during OFT (100% users seek
OFT) (as part of federation). Accordingly, at LANL Origin the
average budget spent was 4:851� 105 (without federation) Grid
Dollars as compared to 5:189 � 105 (refer toFig. 8(b)) Grid
Dollars during OFC (100% users seek OFC) (as part of the
federation). Note that, the plotsFig. 8(a) and (b) do not include
the average response time and the budget spent for without
federation case.

Clearly, this suggests that although federation-based
resource sharing leads to better optimization of objective
functions for the end-users across all the resources in the
federation, sometimes it may be a disadvantage to the users who
belong to the most ef®cient resources (in terms of time or cost).

4.7.4. Remote and local message complexity
In Experiment 4, we measured the total number of messages

sent and received at various GFAs in the federation with varying
user population pro®les.Fig. 9 shows the plot of the local
and remote message count at various GFAs in the federation
during economy scheduling. When 100% users seek OFC,
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(a) Min messages per job vs. system size. (b) Average messages per job vs. system size.

(c) Max messages per job vs. system size.

Fig. 10. System's scalability perspective: Message complexity per job with increasing system size.

(a) Min messages per GFA vs. system size. (b) Average messages per GFA vs. system size.

(c) Max messages per GFA vs. system size.

Fig. 11. System's scalability perspective: Message complexity per GFA with increasing system size.
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we observed that resource LANL Origin received maximum
remote messages (6:407 � 103 messages) (refer toFig. 9(a))
followed by LANL CM5 (the second cheapest). LANL Origin
offers the least cost, so in this case every GFA in the federation
attempted to migrate their jobs to LANL Origin, hence leading
to increased in¯ow of the remote messages. While when 100%
users seek OFT, we observed maximum number of remote
messages at the resource NASA iPSC (refer toFig. 9(a))
followed by SDSC SP2 (the second fastest). Since, these
resources were time-ef®cient, therefore all the GFAs attempted
to transfer their jobs to them. The total messages involved
during this case was 1:948� 104 as compared to 1:024� 104

during OFC. This happened because the resources LANL
Origin and LANL CM5 had 2048 and 1024 computational
nodes and a fewer number of negotiation messages were
undertaken between the GFAs for the job scheduling.

Fig. 9(b) shows the total number of local messages
undertaken at a resource for scheduling work. The results
show, as more users sought OFT, it resulted in increased
local message count at cost-effective resources (LANL Origin,
LANL CM5). Conversely, faster resources experienced greater
remote message count. When 50% sought OFC and 50% sought
OFT, we observed uniform distribution of local and remote
messages across the federation (refer toFig. 9(a) and (b)).

To summarize, we observed a linear increase in the total
message count with increasing number of the end-users seeking
OFT for their jobs (refer toFig. 9(c)). Hence, this suggests that
the resource supply and demand pattern directly determines the
total number of messages undertaken for the job scheduling in
the computational economy-based Grid system.

Overall, it can be concluded that the population mix of
users in which 70% seek OFC and 30% seek OFT seems most
suitable from the system and a resource owner perspective. In
this case, we observed uniform distribution of jobs, incentives
across the resources. Further, this population mix does not lead
to excessive message count as compared to other population
mix having greater percentage of users seeking OFT.

4.7.5. System's scalability perspective
In Experiment 5, we measured the proposed system's

scalability with increasing numbers of resource consumers
and resource providers. The ®rst part of this experiment is
concerned with measuring the average number of messages
required to schedule a job in the federation as the system scales.
We observed that at a system size of 10, OFC scheduling
required an average 5.55 (refer toFig. 10(b)) messages as
compared to 10.65 for OFT (Fig. 10(b)). As the system scaled to
50 resources, the average message complexity per job increased
to 17.38 for OFC as compared to 41.37 during OFT. This
suggests that OFC job scheduling required lesser number of
messages than OFT job scheduling, though we need to do more
work to determine whether this is due to other factors such
as budgets/deadlines assigned to jobs. We also measured the
average number of (sent/received) messages at a GFA while
scaling the system size (refer toFig. 11). During OFC with 10
resources, a GFA sent/received an average 2:836� 103 (refer
to Fig. 11(b)) messages to undertake scheduling work in the

federation as compared to 6:039 � 103 (refer to Fig. 11(b))
messages during OFT. With 40 resources in the federation, the
average message count per GFA increased to 8:943� 103 for
OFC as regards 2:099� 104 messages for OFT.

Figs. 10(b) and 11(b) suggest that the user population
including 10%, 20% or 30% OFT seekers involves less number
of messages per job/per GFA basis in comparison to 0% OFT
seekers. However, further increase in OFT seekers generate
more messages per-job/per-GFA basis.

From Figs. 10(b) and11(b), note that the average message
count grows relatively slowly to an exponential growth in the
system size. Thus, we can expect that the average message
complexity of the system is scalable to a large system size.
More analysis is required to understand the message complexity
in this case. However, the maximum message count suggests
that some parts of the system are not scalable and we need to
do more work to avoid these worst cases, e.g. by incorporating
more intelligence into the shared federation directory.

Overall, we averaged the budget spent for all the users in
the federation during OFC and without federation (independent
resources). We observed that during OFC, the average budget
spent was 8:874� 105 Grid Dollars (we included the expected
budget spent of rejected jobs on the originating resource) as
compared to 9:359� 105 during without federation. However,
at the most popular resource (LANL Origin) the average
budget spent for local users during OFC was 5:189 � 105 as
compared to 4:851� 105 during without federation. Similarly,
we averaged the response time for all the users in the federation
during OFT and without federation. We observed that during
OFT, the average response time was 1:171 � 104 simulation
units (we included the expected response time of rejected jobs
on the originating resource) as compared to 1:207� 104 during
without federation. But at the most popular resource (NASA
iPSC) the average response time for local users during OFT
was 1:550� 103 as compared to 1:268� 103 during without
federation. Clearly, this suggests that while some users that
are local to the popular resources can experience higher cost
or longer delays during the federation- based resource sharing,
the overall users' QoS demands across the federation are better
met.

5. Conclusion

We proposed a new computational economy-based dis-
tributed cluster resource management system called Grid-
Federation. The federation uses agents that maintain and ac-
cess a shared federation directory of resource information. A
cost±time scheduling algorithm was applied to simulate the
scheduling of jobs using iterative queries to the federation
directory. Our results show that, while the users from popu-
lar (fast/cheap) resources have increased competition and there-
fore a harder time to satisfy their QoS demands, in general the
system provides an increased ability to satisfy QoS demands
over all users. The result of the QoS-based resource allocation
algorithm indicates that the resource supply and demand pattern
affects resource provider's overall incentive. Clearly, if all users
are seeking either time/cost optimization then the slowest/most
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expensive resource owners will not bene®t as much. However
if there is a mix of users, some seeking time and some seeking
cost optimization then all resource providers gain some bene®t
from the federation. In our future work we will study as to what
extent the user pro®le can change and how pricing polices for
resources lead to varied utility of the system. We will also study
how the shared federation directory can be dynamically updated
with these pricing policies which can lead to coordinated QoS
scheduling.

We analyzed how the resource supply and demand pattern
affects the system scalability/performance in terms of total
message complexity. In general, the cost±time scheduling
heuristic does not lead to excessive messages, i.e. to excessive
directory accesses and we expect the system to be scalable.
However it is clear that popular resources can become
bottlenecks in the system and so we intend to research ways
to avoid such bottle-necking behavior, principally by using
coordination via the shared federation directory. Overall, the
proposed Grid-Federation, in conjunction with a scalable,
shared, federation directory, is a favourable model for building
large scale Grid systems.
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