

DEPARTMENT: Blue Skies

Emergent Failures:
Rethinking Cloud
Reliability at Scale

Since the conception of cloud computing, ensuring its

ability to provide highly reliable service has been of

the upmost importance and criticality to the business

objectives of providers and their customers. This has

held true for every facet of the system, encompassing

applications, resource management, the underlying

computing infrastructure, and environmental cooling.

Thus, the cloud-computing and dependability

research communities have exerted considerable

effort toward enhancing the reliability of system

components against various software and hardware

failures. However, as these systems have continued

to grow in scale, with heterogeneity and complexity

resulting in the manifestation of emergent behavior,

so too have their respective failures. Recent studies

of production cloud datacenters indicate the existence

of complex failure manifestations that existing fault tolerance and recovery strategies

are ill-equipped to effectively handle. These strategies can even be responsible for such

failures. These emergent failures—frequently transient and identifiable only at runtime—

represent a significant threat to designing reliable cloud systems. This article identifies

the challenges of emergent failures in cloud datacenters at scale and their impact on

system resource management, and discusses potential directions of further study for

Internet of Things integration and holistic fault tolerance.

Peter Garraghan
Lancaster University

Renyu Yang
University of Leeds

Zhenyu Wen
Newcastle University

Alexander Romanovsky
Newcastle University

Jie Xu
University of Leeds

Rajkumar Buyya
University of Melbourne

Rajiv Ranjan
Newcastle University

Editor:
Rajiv Ranjan
raj.ranjan@ncl.ac.uk

12
IEEE Cloud Computing Copublished by the IEEE CS and IEEE ComSoc

2325-6095/18/$33.00 USD ©2018 IEEESeptember/October 2018

 IEEE CLOUD COMPUTING

By 2020, the first centralized exascale system will be created, comprising hundreds of thousands
of nodes that provide enormous quantities of computational and storage capability. Modern
cloud datacenter operation is characterized by growing system scale and diversity in workloads
and their usage patterns, resource utilization, and application types with varied usage patterns.
Such behavior subsequently results in diverse faults, producing failures strongly influenced by
user and task behavior, resource type, workload intensity,1 and environmental factors (such as
temperature, humidity, and power) associated with cloud datacenters.

As modern cloud datacenters have continued to grow in scale and complexity, failures have be-
come the norm, not the exception. Studies of very large-scale computing systems spanning cloud
datacenters, supercomputers, high-performance computing, and clusters have demonstrated that
4% to 11% of all tasks fail,1–3 stemming from diverse sources of software and hardware faults.
This has resulted in the creation of a myriad of fault tolerance and recovery strategies focused on
enhancing the availability and reliability of datacenter components, including jobs and tasks, the
resource manager, physical nodes, storage, networking, and facility cooling.

Moreover, this has resulted in cloud datacenter operation manifesting emergent behavior—re-
sultant system behavior and operation unforeseen at design time. Empirical studies of large-scale
computing systems have indicated that such emergent behavior has also resulted in failure mani-
festation that is increasingly complex and potentially transient, stemming from correlated fault
activation types.1–4 Such failures—which we call emergent failures—are difficult to address be-
cause they represent “known unknown” and “unknown unknown” phenomena identified at sys-
tem runtime and are often difficult to reproduce.

This is a key challenge because assumptions that underpin the design of reliable systems are de-
fined at design time and are unable to adequately handle constantly changing error confinement
boundaries and failure scenarios driven by the evolution and dynamicity of cloud datacenter op-
eration. These failures impact all aspects of system operation from scheduling and instrumenta-
tion to workload execution, and even the fundamental assumptions that define failure
propagation boundaries of components.

In this article, we discuss the nature of these emergent failures in cloud datacenters and their im-
pact on resource management. We also outline potential areas that need to be addressed and fu-
ture directions for cloud reliability research to address emergent failures.

EMERGENT FAILURE FUNDAMENTALS

The Evolution of Cloud Failures
For many decades, the creation of versatile and reliable computing systems has been achieved by
defining its function and behavior (i.e., architecture, component interaction, and operational as-
sumptions) at design time, known as the development phase in the dependability community.5
Such an approach is wholly intuitive. To create a desired system, it is necessary to first explicitly
define its respective behavior to implement appropriate mechanisms ensuring its dependability.

In the context of reliability, systems are defined via expert analysis and the specification of as-
sumptions pertaining to fault and failure types, error propagation across components and system
boundaries, the necessary fault tolerance and recovery strategies, and the respective coverage
required to effectively address selected failures.

Because of the potential impact on system performance and cost, it is often considered viable to
consider only a limited scope of fault types and failure coverage owing to diminishing returns in
fault prevention. For example, a system designer can decide not to commit considerable engi-
neering effort to tolerate incredibly rare yet minor failures. Such an approach is driven by the
need to reduce the complexity of system design and to localize error recovery.

When failures do manifest outside the confines of a set of defined assumptions, maintenance is
required to conduct system repair and modification to address the fault’s root cause. In cloud dat-
acenters, as in any other complex system, it is inevitable that it is impossible to cover all types of

13September/October 2018 www.computer.org/cloud

 BLUE SKIES

faults and failures that could occur. However, cloud datacenters are and will continue to be fre-
quently exposed to conditions and scenarios that result in a large variety of faults and failure sce-
narios that were not envisioned at design time.

Dynamicity and Heterogeneity

A positive correlation exists between the resource type, workload intensity, and failure rate.1 As
workload dynamicity is an intrinsic property of cloud computing, it is difficult to forecast the
precise conditions that precipitate failure. Such dynamicity is not solely limited to the workload;
it also encompasses server power consumption, network traffic, and environmental conditions
(e.g., temperature hotspots).

This problem becomes compounded when these factors are combined. A workload can execute
on a diverse range of system architectures (refreshed by a datacenter approximately every nine
months), microprocessor types (CPU, GPU, NPU [neural processing unit], etc.), network config-
urations, and cooling technologies (air or liquid). Such heterogeneity allows cloud datacenters to
offer a variety of services while minimizing the likelihood of common-mode failure. However, it
does so at the expense of increasing the system’s exposure to different fault types and component
interactions for which the system was not originally designed.

Scale and Complexity

Cloud datacenters operating on a massive scale are exposed to more frequent and complex fail-
ure scenarios. Owing to an increase in potential system states and in the complexity of compo-
nent interactions, it can be difficult to ascertain the precise root cause of failure manifestation
and its dependencies on components across the system. Datacenter operators frequently encoun-
ter scenarios in which hundreds of failure event notifications from different components are
eventually traced to a root cause in a seemingly unrelated component event. Moreover, a system
with more components intuitively experiences higher failure frequency. Assuming identical
mean time between failure (MTBF) of components, a 10,000-node datacenter will encounter
more frequent component failures compared to a 1,000-node datacenter.

That is not to say that these conditions alone have resulted in highly unreliable systems. If that
were the case, existing cloud datacenters would not operate. However, it is an indication of two
growing trends in large-scale systems that directly threaten their reliability. First, as cloud data-
centers continue to evolve in terms of their scale, dynamicity, heterogeneity, and complexity, the
manifestation of emergent failures is also increasing. Second, it is increasingly challenging to
ensure system reliability when human-defined design assumptions for fault types, propagation,
and fault tolerance and recovery strategies might not be appropriate for the current operational
conditions of cloud datacenters.

Potential Causes of Emergent Failures
Emergent failures are types of failure that are manifested within constantly changing error propa-
gation boundaries intersecting hardware and software components, have the potential to be tran-
sient, and are identifiable only at system runtime. There exist various examples of emergent
failure phenomena in large-scale cloud datacenters, with their effects ranging from minor system
degradation to catastrophic facility outage.

Performance Interference

Virtualization encapsulates functionality to construct well-defined fault assumptions for virtual
machines (VMs). However, VMs in multitenant servers transparently share the same underlying
resources. This results in performance interference between VMs and daemon processes within
the server, increasing late-timing failure likelihood for interactive tasks. The challenge is that
such phenomena vary considerably based on workload and hardware heterogeneity, and that
VMs are not designed to mitigate effects outside of their operational boundaries.

14September/October 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

Stragglers

Stragglers are also known as tailing behavior, whereby a subset of a job executes abnormally
slower compared to typical tasks,4 resulting in late-timing failures for any jobs that enforce time-
related service-level agreements (SLAs). It has been demonstrated that 5% of task stragglers im-
pact more than half of the jobs in a datacenter.3

Understanding and mitigating stragglers is an open challenge in the distributed-systems commu-
nity. This challenge pertains to detection and forecasting because of stragglers’ transient nature
and manifestation. This problem potentially stems from a variety of sources, including daemon
processes, data skew, resource contention, component failures, server hotspots, energy manage-
ment, or a combination of any of these.

“Competing” Fault Tolerance

Fault tolerance is designed assuming defined layers of abstraction between components. For ex-
ample, a subsystem comprising multiple components (such as a VM containing an OS) can acti-
vate a particular fault-tolerance strategy to ensure that a service adheres to specified availability
and reliability requirements. However, because such components are created independently from
other system components, the fault-tolerance strategy for one subsystem can unknowingly im-
pact the service of components outside its operational boundary. Creating a VM replica can re-
sult in increased performance interference and stragglers in other VMs, or increase server
temperature, resulting in a hotspot requiring task eviction, and so on.

Cascading Recovery

Ironically, recovery strategies in cloud datacenters can also result in emergent failure manifesta-
tion. A well-documented case study of such failures is the 2017 Amazon outage. This outage re-
sulted from Amazon S3’s substantial growth over the previous few years, such that the process
of restarting S3 services and running safety checks to validate metadata integrity took longer
than expected. These delays resulted in an unintended failure cascade between recovery strate-
gies as other AWS (Amazon Web Services) services impacted by this event also began recover-
ing. These services accumulated a backlog of work during S3 disruption and themselves required
additional time to recover. The scale of this problem was identified by the Argonne National La-
boratory, which stated that such an outage demonstrated that interdependencies between datacen-
ters and network providers are not well understood, which further compounds the challenge of
creating resilient infrastructure.6

Emergent failures can also have hardware and software causes, including, but not limited to,
channel overloading, power shortages, incorrect kernel caching, unpredictably invalid memory
access due to wild or dangling pointers, unexpected race conditions in concurrent threads, kernel
or human-made bugs, and incorrect configurations. The key idea underpinning these failures is
that they are a by-product of emergent operational behavior unanticipated at system design.

Existing fault tolerance and recovery mechanisms are unable to alter their operation and cover-
age in response to any of these causes in cloud datacenters, without manual intervention after
failure occurrence. Thus, emergent failures are frequently omitted from most fault tolerance and
recovery design owing to their complexity. However, these types of failures will become more
prominent as cloud datacenters grow in scale and complexity and become even greater with the
increased prominence of the Internet of Things (IoT) and fog computing.

EMERGENT FAILURES IN
RESOURCE MANAGEMENT
Resource management is a fundamental aspect of cloud datacenter operation facilitated by de-
ployment of a resource manager (such as Kubernetes, Fuxi, YARN, and Mesos) that orchestrates
machine resources, applications, and users along with scheduling and monitoring the execution

15September/October 2018 www.computer.org/cloud

 BLUE SKIES

of jobs and tasks. Modern cloud datacenters attempt to ensure that all submitted jobs are success-
fully scheduled (in reality, 99.999%), executed, and completed without loss of correct service
perceivable by the customer. The resource scheduler attempts to achieve this by monitoring ma-
chine health, finding available resources for pending tasks, deploying binaries and launching
workloads, restarting failed jobs, and restoring state during failover.

Specifically, failures in resource managers are predominately the result of (i) time-out caused by
the overall latency aggregated from different service calls for jobs (interactive jobs that experi-
ence a slowdown and have a timing SLA imposed), and (ii) component hang or crash due to re-
source exhaustion (a faulty service or component results in insufficient resources for regular
request handling of other tasks).

The challenge is that these causes are increasingly the result of emergent failures. As shown in
Figure 1, resource managers are required to provide resources (compute, storage and network) to
increasingly various levels of abstractions (VMs, containers, batch jobs, object storage, etc.)
within large-scale dynamic cloud datacenter environments, thus making it difficult to capture
failures that transcend established component boundaries.

Figure 1. Emergent failure manifestation in cloud datacenter resource management.

We discuss three different perspectives as to how emergent failures affect resource management,
as well as how to alleviate their effects: architectural factorization to isolate failures and reduce
their propagation, runtime monitoring to detect anomaly behavior in a timely manner, and instru-
mentation for proactive prevention and tolerance.

Containerized Architecture Rethinking

Architectural Evolution

The centralized resource manager architecture7–11 is a monolithic system that contains all func-
tional components (request handler and dispatcher, communication messenger, state manager,
decision maker, etc.) contained in a single process or multiple processes. Although decentralized
scheduling12,13 can dispatch such functionality to distributed components in a loosely coupled

16September/October 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

manner, they are still logically monolithic from the holistic view. There is an increasing likeli-
hood that emergent failures will manifest from memory exhaustion (due to faulty components),
resulting in an overall crash–stop failure, unresolved deadlock in the decision maker resulting in
the slowdown of request handling, and late-timing state mismatch in the state manager leading to
the scheduling conflicts.

As a result, there has been a need to leverage submodulization and containerization of the data-
center resource manager.14 For example, the resource manager master scheduler should be able
to function in the face of various failures. To orchestrate and run containers, other system com-
ponents such as container clustering, networking, and automated deployment and monitoring are
required. For instance, Kubernetes schedules any number of container replicas across a group of
nodes. Increasingly, Kubernetes components or external plugins that would traditionally be de-
ployed within the bare metal machines are instead deployed and maintained within containers
themselves to increase management flexibility.

Fault Isolation and Propagation Prevention

Resource exhaustion15 is a leading root cause of crash–stop or timing failures in system compo-
nents. It can be caused by either a failure in a single component or other faulty and nonfaulty
component behavior outside the defined system boundaries. For example, a service that experi-
ences high latency (due to stragglers or crash failures in the network) can result in communi-
cating services experiencing resource exhaustion. Performance interference between tasks in the
same physical node results in performance degradation and resource exhaustion in other tasks.

System designers attempt to mitigate such propagation by leveraging container-based mecha-
nisms and cgroup restrictions whose operation is dictated by quantitative quality-of-service mod-
eling to define the conservatively least resource boundary of each job group. However,
determining the most appropriate parameters (and, importantly, how they should evolve in re-
sponse to changes in operational context) is an open research challenge.

Cloud Monitoring—Timely Detection and Alerting

Robust Monitoring and Alerting

At increased system scale, real-time health checking, load measurement throughput, and applica-
tion-specific errors become increasingly important. However, an outstanding issue is how to ef-
fectively monitor system health when considering the sheer volume and variety of hundreds of
millions of potential system metrics. When exposed to the manifestation of emergent failures
that can be caused by monitoring itself, traditional static threshold-based monitoring and alerting
are insufficient. A human-defined threshold might be useful to enact automated decision making
and alerting on-call technical staff. However, it might encounter difficulties in terms of false
negatives and false positives that might change in response to system usage.

Therefore, a robust anomaly detection mechanism whose sensitivity can be appropriately tuned
in accordance with the current operational context of the system is required. A potential means to
achieve this is by leveraging adaptive learning of monitoring and detection parameters that con-
siders different periodicities, parameter types, and parameter values. However, how to generate
and exploit streaming metrics to recognize outliers is intricately challenging due to the dilemma
system monitors face—selectively using partial metrics to enact fast (yet imprecise) decisions, or
exploiting a large number of metrics for more precise (yet slow) decision making.

Preventive Performance Diagnosis

In reactive solutions, a faulty running service is halted to ascertain what conditions led to emer-
gent failure manifestation to enact necessary maintenance (which has been demonstrated to be
ineffective for dealing with stragglers4). In contrast, a proactive diagnosis would ensure that user
services are minimally affected. Monitoring as many components as possible is likely to support

17September/October 2018 www.computer.org/cloud

 BLUE SKIES

failure prediction. However, in practice, not all components can be monitored, owing to the sheer
volume of data required to be collected, transmitted, and calculated.

Taking into account information pertaining to hardware and environmental factors such as fan
speed or temperature, it is highly desirable to explore the failure root causes and investigate the
interactions of system components in failures caused by multiple faults. However, it is extremely
difficult to articulate the root causes at runtime, owing to uncontrollable and intrinsic system fac-
tors. Statistical correlation among metrics can facilitate rapidly finding root causes and determin-
ing the most effective handler.

Component self-diagnosis is also beneficial to the system instrumentation. For example, under-
standing and leveraging node performance is critical for straggler mitigation and workload place-
ment. Performance refers to a node’s ability to execute parallel applications and hold
containerized services. Machine-learning techniques such as classification and regression (e.g.,
random forests, gradient-boosting trees) might be one means to achieve this. Through classifying
nodes into different categories and predicting the corresponding performance category with high
accuracy, the scheduler can rank nodes and select suitable nodes to launch latency-sensitive
tasks. This process avoids assigning speculative tasks onto nodes that are likely to be in a weak
performance state.

Cloud Scheduling and Instrumentation:
Prevention and Tolerance
Emergent failure aware design should permeate into each step and component of the cloud
scheduler. To reduce scheduling downtime, the system design should not have a single point of
failure. The ultimate vision is to realize a zero-downtime scheduler system.

Latency-Oriented Tail Mitigation Based on Redundancy

Modern cluster schedulers must deal with both latency-sensitive requests and computationally
intensive tasks (e.g., long-running HTTP services and periodic cron jobs). Redundancy is the
fundamental technique used to enhance component reliability of hardware, software, and data
storage. On the basis of multireplica component deployment, identical components can be de-
ployed.

The replication controller is typically used to track and record the health status of replicated
components. The controller should guarantee the number of provisioned replicas at any given
moment. That is, the controller should launch a new replica if a component is killed or becomes
inaccessible. For instance, in Kubernetes, the ReplicationController can autoscale and manage
microservices on the basis of resource utilization or a fixed lower or upper limit of the expected
number of replicas.

For computationally intensive tasks, the most common means to resolve stragglers is speculative
execution relying on idempotency. However, a lack of coordinated fault tolerance between com-
ponents leads to an emergent failure whereby such an action results in increased resource conten-
tion, leading to cascading latencies for new tasks. Stragglers arise even more frequently in
learning systems and distributed optimization because performance is significantly throttled by
slow communication and computation. The idempotency is invalid owing to the shared states.
Machine-learning scenario-specific mitigations such as data encoding with built-in redundancy
in certain linear-computation steps16 enable the system to complete computation to tolerate the
effects of stragglers.

User-Transparent Failover and Fault Conversion

The system designer attempts to design the resource scheduler so that it can perform failover and
self-healing (autonomous recovery) of all components, unperceived by the customer. An im-
portant consideration for conducting failover is state recovery that prominently leverages caching
or checkpointing. Intermediate states or returned results from stateless services can be cached so
that the majority of services can continue operating during intermittent failures in any related

18September/October 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

components. For more critical data or state (such as runtime memory bitmap and register values),
checkpointing can be leveraged to create snapshot backups of current system states.

Although this strategy is effective for recovering from incorrect state and data loss, the check-
pointing itself is often considerably large. Checkpointing in a 1,000-node datacenter cluster in
Alibaba over 24 hours has been reported to generate a 1.7 Gbyte checkpoint (and in high-perfor-
mance computing, checkpointing can take hours to complete),17 and as demonstrated by the 2017
Amazon outage, checkpointing can unknowingly manifest as an emergent failure itself.

Therefore, we believe that new approaches are required for checkpointing to function at scale,
such as combining hard-state backup and soft-state inference.17 However, because emergent fail-
ures cannot be anticipated, it is essential to enable the finite-state machine of system faults to be
more able to adapt in accordance to detected system faults. For example, this could be conducted
by automatic transformation of an emergent fault mode into that of a known fault mode classifi-
cation that can then accordingly tackle faults through established approaches. Once a fault is de-
termined, the components or devices (such as storage blocks or network interface controllers)
that lead to performance degradation could be temporarily isolated or removed during system
failover.

RETHINKING BEYOND CLOUDS

Holistic Fault Tolerance and Recovery
Holistic fault tolerance (HFT) has been recently introduced and could be an effective approach
for handling emergent failures. HFT relies on cross-cutting components for system recovery tai-
lored to the specific error detected and the appropriate recovery strategy for execution. The re-
covery region strictly involves system components that need to be involved for recovery for a
given error. These components, which could be located at different layers, subsystems, packages,
nodes, etc., are involved in a coordinated recovery. This approach makes it possible to reduce
system complexity to address complex failure recovery scenarios.

For example, in order to address the challenges of performance interference, it could be possible
to coordinate two VMs on the same physical node. When one VM fails to adhere to timing re-
quirements, HFT could consider performing coordinate recovery by leveraging components in
both VMs. This could be facilitated by the hypervisor altering its scheduling to provide more of
a CPU to a particular VM, and then measuring the resultant delays in both VMs to ensure satis-
factory levels of CPU share. If the two VMs are unable to do so, the hypervisor itself would then
need to make this change. If this is not possible, then a wider decision to evict and reschedule the
VM would be required that incorporates the resource manager.

IoT Integration
The presence of emergent failures is not solely confined to cloud datacenters; they can manifest
prominently in any large-scale computing system including emerging fog- and edge-computing
models supporting IoT applications. These systems are particularly susceptible to emergent fail-
ures for many of the reasons given for clouds—a dynamic and unpredictable assortment of inter-
connected virtual and physical devices. A key difference is that IoT, fog-computing, and edge-
computing systems exhibit a high degree of join–leave behavior not found within cloud compu-
ting due to their centralized nature.

If the system boundaries of interconnected components are constantly changing owing to their
usage and device composition, it is intuitive to assume that rigid fault-tolerance strategies that
are designed independently from the operational context of the greater system will be increas-
ingly infeasible. Such system environments will also likely result in “fluid” error confinement
areas for a set of components (e.g., constantly changing). Hence, we believe a future research
direction will be to investigate how to autonomously determine the optimal fault tolerance and
recovery mechanism for a given system context.

19September/October 2018 www.computer.org/cloud

 BLUE SKIES

CONCLUSION
In this article we discuss the rise of emergent failures: a growing problem toward ensuring relia-
bility in cloud datacenters and all future computing systems at scale. A central issue to address is
how to determine effective fault tolerance and recovery strategies when assumptions that define
fault types and failure scenarios are constantly changing due to cloud datacenter dynamicity,
complexity, and heterogeneity between interacting components. Two potential ways to address
this issue are (i) rethinking the nature of system abstraction allowing for holistic fault tolerance
that cross-cuts coordination of components, and (ii) exploring the concept of adaptive fault toler-
ance in response to current and forecasted operational scenarios. Moreover, further study is re-
quired by the research community to study the relationship between cloud datacenter operation
and emergent failure manifestation beyond coarse-grained analysis and observation, and toward
creating models that precisely capture system conditions that lead to failure.

ACKNOWLEDGMENTS
This work is supported by the UK Engineering and Physical Sciences Research Council
(EP/P031617/1) and the National Key Research and Development Program of China
(2016YFB1000103). Renyu Yang is the corresponding author for this article.

REFERENCES
1. B. Schroeder and A.G. Gibson, “A Large-Scale Study of Failures in High-Performance

Computing Systems,” Proceedings of the International Conference on Dependable
Systems and Networks (DSN 06), 2006, pp. 249–258.

2. P. Garraghan et al., “An Analysis of Failure-Related Energy Waste in a Large-Scale
Cloud Environment,” IEEE Transactions on Emerging Topics in Computing, vol. 2,
no. 2, 2014, pp. 166–180.

3. P. Garraghan et al., “Straggler Root Cause and Impact Analysis for Massive scale
Virtualized Cloud Datacenters,” IEEE Transactions on Services Computing, 2016.

4. J. Dean and L.A. Barroso, “The Tail at Scale,” Communications of the ACM, vol. 56,
no. 2, 2013, pp. 74–80.

5. A. Avižienis et al., “Basic Concepts and Taxonomy of Dependable and Secure
Computing,” IEEE Transactions on Dependable and Secure Computing, vol. 1, no. 1,
2004, pp. 11–33.

6. M. Thompson, “Amazon S3 Outage Highlights Resilience Issues with Cloud
Infrastructure,” Argonne National Laboratory, 2017; https://coar.risc.anl.gov/amazon-
s3-outage-highlights-resilience-issues-cloud-infrastructure.

7. A. Verma et al., “Large-scale cluster management at Google with Borg,” Proceedings
of the Tenth European Conference on Computer Systems (EuroSys 15), 2015, p. 18.

8. B. Burns et al., “Borg, Omega, and Kubernetes,” ACM Queue, vol. 14, no. 1, 2016, p.
10; https://queue.acm.org/detail.cfm?id=2898444.

9. B. Hindman et al., “Mesos: A Platform for Fine-Grained Resource Sharing in the Data
Center,” Proceedings of the 8th USENIX conference on Networked systems design and
implementation (NSDI 11), 2011, pp. 295–308.

10. V.K. Vavilapalli et al., “Apache Hadoop YARN: yet another resource negotiator,”
Proceedings of the 4th annual Symposium on Cloud Computing (SOCC 13), 2013, p.
5.

11. Z. Zhang et al., “Fuxi: a fault-tolerant resource management and job scheduling system
at internet scale,” Proceedings of the VLDB Endowment, vol. 7, no. 13, 2014, pp.
1393–1404.

12. E. Boutin et al., “Apollo: Scalable and Coordinated Scheduling for Cloud-Scale
Computing,” Proceedings of the 11th USENIX conference on Operating Systems
Design and Implementation (OSDI 14), 2014, pp. 285–300.

13. X. Sun et al., “ROSE: Cluster Resource Scheduling via Speculative Over-
Subscription,” IEEE 38th International Conference on Distributed Computing Systems
(ICDCS 18), 2018; doi.org/10.1109/ICDCS.2018.00096.

20September/October 2018 www.computer.org/cloud

 IEEE CLOUD COMPUTING

14. M. Sossa and R. Buyya, “Container-Based Cluster Orchestration Systems: A
Taxonomy and Future Directions,” ArXiv, July 2018; https://arxiv.org/abs/1807.06193.

15. B. Mauer, “Fail at Scale,” ACM Queue, vol. 13, no. 8, 2015, p. 30.
16. C. Karakus et al., “Straggler Mitigation in Distributed Optimization Through Data

Encoding,” Advances in Neural Information Processing Systems, 2017, pp. 5434–
5442.

17. R. Yang et al., “Reliable computing service in massive-scale systems through rapid
low-cost failover,” IEEE Transactions on Services Computing, vol. 10, no. 6, 2017, pp.
969–983.

ABOUT THE AUTHORS
Peter Garraghan is a lecturer in distributed systems at Lancaster University. His research
interests encompass massive-scale distributed systems, dependability, resource manage-
ment, and energy efficiency. Garraghan received a PhD in computer science from the Uni-
versity of Leeds. Contact him at p.garraghan@lancaster.ac.uk.

Renyu Yang is a research fellow at the University of Leeds and an R&D scientist at
Edgetic. His research interests include massive-scale distributed systems, resource schedul-
ing, and dependability. Yang received a PhD in computer science from Beihang University.
He is the corresponding author. Contact him at renyu.yang@edgetic.com.

Zhenyu Wen is research fellow at Newcastle University. His research interests include the
Internet of Things, distributed systems, big data analytics, and computer networks. Wen re-
ceived a PhD in cloud computing from Newcastle University. Contact him at
zhenyu.wen@newcastle.ac.uk.

Alexander Romanovsky is a chair professor of computing science at Newcastle Univer-
sity. His research interests include fault tolerance and system dependability. Romanovsky
received a PhD in computer science from St. Petersburg State Technical University. Contact
him at alexander.romanovsky@ncl.ac.uk.

Jie Xu is a chair professor of computing, the leader of a Research Peak of Excellence, and
the head of the Distributed Systems and Services group at the University of Leeds. He’s
also a cofounder of Edgetic. His research interests include large-scale distributed computing
and dependability. Xu received a PhD in advanced fault-tolerant software from Newcastle
University. Contact him at j.xu@leeds.ac.uk.

Rajkumar Buyya is a Redmond Barry Distinguished Professor at the University of Mel-
bourne. His research interests include the cloud, parallel computing, resource management,
and reliable and energy-efficient datacenters. Buyya received a PhD in computer science
from Monash University. Contact him at rbuyya@unimelb.edu.au.

Rajiv Ranjan is a chair professor of computing science and Internet of Things at Newcastle
University. His research interests include the Internet of Things and big data analytics. Ran-
jan received a PhD in computer science and software engineering from the University of
Melbourne. Contact him at raj.ranjan@ncl.ac.uk.

21September/October 2018 www.computer.org/cloud

