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Emergent Failures: 
Rethinking Cloud 
Reliability at Scale 

Since the conception of cloud computing, ensuring its 

ability to provide highly reliable service has been of 

the upmost importance and criticality to the business 

objectives of providers and their customers. This has 

held true for every facet of the system, encompassing 

applications, resource management, the underlying 

computing infrastructure, and environmental cooling. 

Thus, the cloud-computing and dependability 

research communities have exerted considerable 

effort toward enhancing the reliability of system 

components against various software and hardware 

failures. However, as these systems have continued 

to grow in scale, with heterogeneity and complexity 

resulting in the manifestation of emergent behavior, 

so too have their respective failures. Recent studies 

of production cloud datacenters indicate the existence 

of complex failure manifestations that existing fault tolerance and recovery strategies 

are ill-equipped to effectively handle. These strategies can even be responsible for such 

failures. These emergent failures—frequently transient and identifiable only at runtime—

represent a significant threat to designing reliable cloud systems. This article identifies 

the challenges of emergent failures in cloud datacenters at scale and their impact on 

system resource management, and discusses potential directions of further study for 

Internet of Things integration and holistic fault tolerance. 
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By 2020, the first centralized exascale system will be created, comprising hundreds of thousands 
of nodes that provide enormous quantities of computational and storage capability. Modern 
cloud datacenter operation is characterized by growing system scale and diversity in workloads 
and their usage patterns, resource utilization, and application types with varied usage patterns. 
Such behavior subsequently results in diverse faults, producing failures strongly influenced by 
user and task behavior, resource type, workload intensity,1 and environmental factors (such as 
temperature, humidity, and power) associated with cloud datacenters. 

As modern cloud datacenters have continued to grow in scale and complexity, failures have be-
come the norm, not the exception. Studies of very large-scale computing systems spanning cloud 
datacenters, supercomputers, high-performance computing, and clusters have demonstrated that 
4% to 11% of all tasks fail,1–3 stemming from diverse sources of software and hardware faults. 
This has resulted in the creation of a myriad of fault tolerance and recovery strategies focused on 
enhancing the availability and reliability of datacenter components, including jobs and tasks, the 
resource manager, physical nodes, storage, networking, and facility cooling. 

Moreover, this has resulted in cloud datacenter operation manifesting emergent behavior—re-
sultant system behavior and operation unforeseen at design time. Empirical studies of large-scale 
computing systems have indicated that such emergent behavior has also resulted in failure mani-
festation that is increasingly complex and potentially transient, stemming from correlated fault 
activation types.1–4 Such failures—which we call emergent failures—are difficult to address be-
cause they represent “known unknown” and “unknown unknown” phenomena identified at sys-
tem runtime and are often difficult to reproduce. 

This is a key challenge because assumptions that underpin the design of reliable systems are de-
fined at design time and are unable to adequately handle constantly changing error confinement 
boundaries and failure scenarios driven by the evolution and dynamicity of cloud datacenter op-
eration. These failures impact all aspects of system operation from scheduling and instrumenta-
tion to workload execution, and even the fundamental assumptions that define failure 
propagation boundaries of components. 

In this article, we discuss the nature of these emergent failures in cloud datacenters and their im-
pact on resource management. We also outline potential areas that need to be addressed and fu-
ture directions for cloud reliability research to address emergent failures. 

EMERGENT FAILURE FUNDAMENTALS 

The Evolution of Cloud Failures 
For many decades, the creation of versatile and reliable computing systems has been achieved by 
defining its function and behavior (i.e., architecture, component interaction, and operational as-
sumptions) at design time, known as the development phase in the dependability community.5 
Such an approach is wholly intuitive. To create a desired system, it is necessary to first explicitly 
define its respective behavior to implement appropriate mechanisms ensuring its dependability. 

In the context of reliability, systems are defined via expert analysis and the specification of as-
sumptions pertaining to fault and failure types, error propagation across components and system 
boundaries, the necessary fault tolerance and recovery strategies, and the respective coverage 
required to effectively address selected failures. 

Because of the potential impact on system performance and cost, it is often considered viable to 
consider only a limited scope of fault types and failure coverage owing to diminishing returns in 
fault prevention. For example, a system designer can decide not to commit considerable engi-
neering effort to tolerate incredibly rare yet minor failures. Such an approach is driven by the 
need to reduce the complexity of system design and to localize error recovery. 

When failures do manifest outside the confines of a set of defined assumptions, maintenance is 
required to conduct system repair and modification to address the fault’s root cause. In cloud dat-
acenters, as in any other complex system, it is inevitable that it is impossible to cover all types of 
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faults and failures that could occur. However, cloud datacenters are and will continue to be fre-
quently exposed to conditions and scenarios that result in a large variety of faults and failure sce-
narios that were not envisioned at design time. 

Dynamicity and Heterogeneity 

A positive correlation exists between the resource type, workload intensity, and failure rate.1 As 
workload dynamicity is an intrinsic property of cloud computing, it is difficult to forecast the 
precise conditions that precipitate failure. Such dynamicity is not solely limited to the workload; 
it also encompasses server power consumption, network traffic, and environmental conditions 
(e.g., temperature hotspots). 

This problem becomes compounded when these factors are combined. A workload can execute 
on a diverse range of system architectures (refreshed by a datacenter approximately every nine 
months), microprocessor types (CPU, GPU, NPU [neural processing unit], etc.), network config-
urations, and cooling technologies (air or liquid). Such heterogeneity allows cloud datacenters to 
offer a variety of services while minimizing the likelihood of common-mode failure. However, it 
does so at the expense of increasing the system’s exposure to different fault types and component 
interactions for which the system was not originally designed. 

Scale and Complexity 

Cloud datacenters operating on a massive scale are exposed to more frequent and complex fail-
ure scenarios. Owing to an increase in potential system states and in the complexity of compo-
nent interactions, it can be difficult to ascertain the precise root cause of failure manifestation 
and its dependencies on components across the system. Datacenter operators frequently encoun-
ter scenarios in which hundreds of failure event notifications from different components are 
eventually traced to a root cause in a seemingly unrelated component event. Moreover, a system 
with more components intuitively experiences higher failure frequency. Assuming identical 
mean time between failure (MTBF) of components, a 10,000-node datacenter will encounter 
more frequent component failures compared to a 1,000-node datacenter. 

That is not to say that these conditions alone have resulted in highly unreliable systems. If that 
were the case, existing cloud datacenters would not operate. However, it is an indication of two 
growing trends in large-scale systems that directly threaten their reliability. First, as cloud data-
centers continue to evolve in terms of their scale, dynamicity, heterogeneity, and complexity, the 
manifestation of emergent failures is also increasing. Second, it is increasingly challenging to 
ensure system reliability when human-defined design assumptions for fault types, propagation, 
and fault tolerance and recovery strategies might not be appropriate for the current operational 
conditions of cloud datacenters. 

Potential Causes of Emergent Failures 
Emergent failures are types of failure that are manifested within constantly changing error propa-
gation boundaries intersecting hardware and software components, have the potential to be tran-
sient, and are identifiable only at system runtime. There exist various examples of emergent 
failure phenomena in large-scale cloud datacenters, with their effects ranging from minor system 
degradation to catastrophic facility outage. 

Performance Interference 

Virtualization encapsulates functionality to construct well-defined fault assumptions for virtual 
machines (VMs). However, VMs in multitenant servers transparently share the same underlying 
resources. This results in performance interference between VMs and daemon processes within 
the server, increasing late-timing failure likelihood for interactive tasks. The challenge is that 
such phenomena vary considerably based on workload and hardware heterogeneity, and that 
VMs are not designed to mitigate effects outside of their operational boundaries. 
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Stragglers 

Stragglers are also known as tailing behavior, whereby a subset of a job executes abnormally 
slower compared to typical tasks,4 resulting in late-timing failures for any jobs that enforce time-
related service-level agreements (SLAs). It has been demonstrated that 5% of task stragglers im-
pact more than half of the jobs in a datacenter.3 

Understanding and mitigating stragglers is an open challenge in the distributed-systems commu-
nity. This challenge pertains to detection and forecasting because of stragglers’ transient nature 
and manifestation. This problem potentially stems from a variety of sources, including daemon 
processes, data skew, resource contention, component failures, server hotspots, energy manage-
ment, or a combination of any of these. 

“Competing” Fault Tolerance 

Fault tolerance is designed assuming defined layers of abstraction between components. For ex-
ample, a subsystem comprising multiple components (such as a VM containing an OS) can acti-
vate a particular fault-tolerance strategy to ensure that a service adheres to specified availability 
and reliability requirements. However, because such components are created independently from 
other system components, the fault-tolerance strategy for one subsystem can unknowingly im-
pact the service of components outside its operational boundary. Creating a VM replica can re-
sult in increased performance interference and stragglers in other VMs, or increase server 
temperature, resulting in a hotspot requiring task eviction, and so on. 

Cascading Recovery 

Ironically, recovery strategies in cloud datacenters can also result in emergent failure manifesta-
tion. A well-documented case study of such failures is the 2017 Amazon outage. This outage re-
sulted from Amazon S3’s substantial growth over the previous few years, such that the process 
of restarting S3 services and running safety checks to validate metadata integrity took longer 
than expected. These delays resulted in an unintended failure cascade between recovery strate-
gies as other AWS (Amazon Web Services) services impacted by this event also began recover-
ing. These services accumulated a backlog of work during S3 disruption and themselves required 
additional time to recover. The scale of this problem was identified by the Argonne National La-
boratory, which stated that such an outage demonstrated that interdependencies between datacen-
ters and network providers are not well understood, which further compounds the challenge of 
creating resilient infrastructure.6 

Emergent failures can also have hardware and software causes, including, but not limited to, 
channel overloading, power shortages, incorrect kernel caching, unpredictably invalid memory 
access due to wild or dangling pointers, unexpected race conditions in concurrent threads, kernel 
or human-made bugs, and incorrect configurations. The key idea underpinning these failures is 
that they are a by-product of emergent operational behavior unanticipated at system design. 

Existing fault tolerance and recovery mechanisms are unable to alter their operation and cover-
age in response to any of these causes in cloud datacenters, without manual intervention after 
failure occurrence. Thus, emergent failures are frequently omitted from most fault tolerance and 
recovery design owing to their complexity. However, these types of failures will become more 
prominent as cloud datacenters grow in scale and complexity and become even greater with the 
increased prominence of the Internet of Things (IoT) and fog computing. 

EMERGENT FAILURES IN  
RESOURCE MANAGEMENT 
Resource management is a fundamental aspect of cloud datacenter operation facilitated by de-
ployment of a resource manager (such as Kubernetes, Fuxi, YARN, and Mesos) that orchestrates 
machine resources, applications, and users along with scheduling and monitoring the execution 
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of jobs and tasks. Modern cloud datacenters attempt to ensure that all submitted jobs are success-
fully scheduled (in reality, 99.999%), executed, and completed without loss of correct service 
perceivable by the customer. The resource scheduler attempts to achieve this by monitoring ma-
chine health, finding available resources for pending tasks, deploying binaries and launching 
workloads, restarting failed jobs, and restoring state during failover. 

Specifically, failures in resource managers are predominately the result of (i) time-out caused by 
the overall latency aggregated from different service calls for jobs (interactive jobs that experi-
ence a slowdown and have a timing SLA imposed), and (ii) component hang or crash due to re-
source exhaustion (a faulty service or component results in insufficient resources for regular 
request handling of other tasks). 

The challenge is that these causes are increasingly the result of emergent failures. As shown in 
Figure 1, resource managers are required to provide resources (compute, storage and network) to 
increasingly various levels of abstractions (VMs, containers, batch jobs, object storage, etc.) 
within large-scale dynamic cloud datacenter environments, thus making it difficult to capture 
failures that transcend established component boundaries. 

 

Figure 1. Emergent failure manifestation in cloud datacenter resource management. 

We discuss three different perspectives as to how emergent failures affect resource management, 
as well as how to alleviate their effects: architectural factorization to isolate failures and reduce 
their propagation, runtime monitoring to detect anomaly behavior in a timely manner, and instru-
mentation for proactive prevention and tolerance. 

Containerized Architecture Rethinking 

Architectural Evolution 

The centralized resource manager architecture7–11 is a monolithic system that contains all func-
tional components (request handler and dispatcher, communication messenger, state manager, 
decision maker, etc.) contained in a single process or multiple processes. Although decentralized 
scheduling12,13 can dispatch such functionality to distributed components in a loosely coupled 
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manner, they are still logically monolithic from the holistic view. There is an increasing likeli-
hood that emergent failures will manifest from memory exhaustion (due to faulty components), 
resulting in an overall crash–stop failure, unresolved deadlock in the decision maker resulting in 
the slowdown of request handling, and late-timing state mismatch in the state manager leading to 
the scheduling conflicts. 

As a result, there has been a need to leverage submodulization and containerization of the data-
center resource manager.14 For example, the resource manager master scheduler should be able 
to function in the face of various failures. To orchestrate and run containers, other system com-
ponents such as container clustering, networking, and automated deployment and monitoring are 
required. For instance, Kubernetes schedules any number of container replicas across a group of 
nodes. Increasingly, Kubernetes components or external plugins that would traditionally be de-
ployed within the bare metal machines are instead deployed and maintained within containers 
themselves to increase management flexibility. 

Fault Isolation and Propagation Prevention 

Resource exhaustion15 is a leading root cause of crash–stop or timing failures in system compo-
nents. It can be caused by either a failure in a single component or other faulty and nonfaulty 
component behavior outside the defined system boundaries. For example, a service that experi-
ences high latency (due to stragglers or crash failures in the network) can result in communi-
cating services experiencing resource exhaustion. Performance interference between tasks in the 
same physical node results in performance degradation and resource exhaustion in other tasks. 

System designers attempt to mitigate such propagation by leveraging container-based mecha-
nisms and cgroup restrictions whose operation is dictated by quantitative quality-of-service mod-
eling to define the conservatively least resource boundary of each job group. However, 
determining the most appropriate parameters (and, importantly, how they should evolve in re-
sponse to changes in operational context) is an open research challenge. 

Cloud Monitoring—Timely Detection and Alerting 

Robust Monitoring and Alerting 

At increased system scale, real-time health checking, load measurement throughput, and applica-
tion-specific errors become increasingly important. However, an outstanding issue is how to ef-
fectively monitor system health when considering the sheer volume and variety of hundreds of 
millions of potential system metrics. When exposed to the manifestation of emergent failures 
that can be caused by monitoring itself, traditional static threshold-based monitoring and alerting 
are insufficient. A human-defined threshold might be useful to enact automated decision making 
and alerting on-call technical staff. However, it might encounter difficulties in terms of false 
negatives and false positives that might change in response to system usage. 

Therefore, a robust anomaly detection mechanism whose sensitivity can be appropriately tuned 
in accordance with the current operational context of the system is required. A potential means to 
achieve this is by leveraging adaptive learning of monitoring and detection parameters that con-
siders different periodicities, parameter types, and parameter values. However, how to generate 
and exploit streaming metrics to recognize outliers is intricately challenging due to the dilemma 
system monitors face—selectively using partial metrics to enact fast (yet imprecise) decisions, or 
exploiting a large number of metrics for more precise (yet slow) decision making. 

Preventive Performance Diagnosis 

In reactive solutions, a faulty running service is halted to ascertain what conditions led to emer-
gent failure manifestation to enact necessary maintenance (which has been demonstrated to be 
ineffective for dealing with stragglers4). In contrast, a proactive diagnosis would ensure that user 
services are minimally affected. Monitoring as many components as possible is likely to support 
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failure prediction. However, in practice, not all components can be monitored, owing to the sheer 
volume of data required to be collected, transmitted, and calculated. 

Taking into account information pertaining to hardware and environmental factors such as fan 
speed or temperature, it is highly desirable to explore the failure root causes and investigate the 
interactions of system components in failures caused by multiple faults. However, it is extremely 
difficult to articulate the root causes at runtime, owing to uncontrollable and intrinsic system fac-
tors. Statistical correlation among metrics can facilitate rapidly finding root causes and determin-
ing the most effective handler. 

Component self-diagnosis is also beneficial to the system instrumentation. For example, under-
standing and leveraging node performance is critical for straggler mitigation and workload place-
ment. Performance refers to a node’s ability to execute parallel applications and hold 
containerized services. Machine-learning techniques such as classification and regression (e.g., 
random forests, gradient-boosting trees) might be one means to achieve this. Through classifying 
nodes into different categories and predicting the corresponding performance category with high 
accuracy, the scheduler can rank nodes and select suitable nodes to launch latency-sensitive 
tasks. This process avoids assigning speculative tasks onto nodes that are likely to be in a weak 
performance state. 

Cloud Scheduling and Instrumentation:  
Prevention and Tolerance 
Emergent failure aware design should permeate into each step and component of the cloud 
scheduler. To reduce scheduling downtime, the system design should not have a single point of 
failure. The ultimate vision is to realize a zero-downtime scheduler system. 

Latency-Oriented Tail Mitigation Based on Redundancy 

Modern cluster schedulers must deal with both latency-sensitive requests and computationally 
intensive tasks (e.g., long-running HTTP services and periodic cron jobs). Redundancy is the 
fundamental technique used to enhance component reliability of hardware, software, and data 
storage. On the basis of multireplica component deployment, identical components can be de-
ployed. 

The replication controller is typically used to track and record the health status of replicated 
components. The controller should guarantee the number of provisioned replicas at any given 
moment. That is, the controller should launch a new replica if a component is killed or becomes 
inaccessible. For instance, in Kubernetes, the ReplicationController can autoscale and manage 
microservices on the basis of resource utilization or a fixed lower or upper limit of the expected 
number of replicas. 

For computationally intensive tasks, the most common means to resolve stragglers is speculative 
execution relying on idempotency. However, a lack of coordinated fault tolerance between com-
ponents leads to an emergent failure whereby such an action results in increased resource conten-
tion, leading to cascading latencies for new tasks. Stragglers arise even more frequently in 
learning systems and distributed optimization because performance is significantly throttled by 
slow communication and computation. The idempotency is invalid owing to the shared states. 
Machine-learning scenario-specific mitigations such as data encoding with built-in redundancy 
in certain linear-computation steps16 enable the system to complete computation to tolerate the 
effects of stragglers. 

User-Transparent Failover and Fault Conversion 

The system designer attempts to design the resource scheduler so that it can perform failover and 
self-healing (autonomous recovery) of all components, unperceived by the customer. An im-
portant consideration for conducting failover is state recovery that prominently leverages caching 
or checkpointing. Intermediate states or returned results from stateless services can be cached so 
that the majority of services can continue operating during intermittent failures in any related 
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components. For more critical data or state (such as runtime memory bitmap and register values), 
checkpointing can be leveraged to create snapshot backups of current system states. 

Although this strategy is effective for recovering from incorrect state and data loss, the check-
pointing itself is often considerably large. Checkpointing in a 1,000-node datacenter cluster in 
Alibaba over 24 hours has been reported to generate a 1.7 Gbyte checkpoint (and in high-perfor-
mance computing, checkpointing can take hours to complete),17 and as demonstrated by the 2017 
Amazon outage, checkpointing can unknowingly manifest as an emergent failure itself. 

Therefore, we believe that new approaches are required for checkpointing to function at scale, 
such as combining hard-state backup and soft-state inference.17 However, because emergent fail-
ures cannot be anticipated, it is essential to enable the finite-state machine of system faults to be 
more able to adapt in accordance to detected system faults. For example, this could be conducted 
by automatic transformation of an emergent fault mode into that of a known fault mode classifi-
cation that can then accordingly tackle faults through established approaches. Once a fault is de-
termined, the components or devices (such as storage blocks or network interface controllers) 
that lead to performance degradation could be temporarily isolated or removed during system 
failover. 

RETHINKING BEYOND CLOUDS 

Holistic Fault Tolerance and Recovery 
Holistic fault tolerance (HFT) has been recently introduced and could be an effective approach 
for handling emergent failures. HFT relies on cross-cutting components for system recovery tai-
lored to the specific error detected and the appropriate recovery strategy for execution. The re-
covery region strictly involves system components that need to be involved for recovery for a 
given error. These components, which could be located at different layers, subsystems, packages, 
nodes, etc., are involved in a coordinated recovery. This approach makes it possible to reduce 
system complexity to address complex failure recovery scenarios. 

For example, in order to address the challenges of performance interference, it could be possible 
to coordinate two VMs on the same physical node. When one VM fails to adhere to timing re-
quirements, HFT could consider performing coordinate recovery by leveraging components in 
both VMs. This could be facilitated by the hypervisor altering its scheduling to provide more of 
a CPU to a particular VM, and then measuring the resultant delays in both VMs to ensure satis-
factory levels of CPU share. If the two VMs are unable to do so, the hypervisor itself would then 
need to make this change. If this is not possible, then a wider decision to evict and reschedule the 
VM would be required that incorporates the resource manager. 

IoT Integration 
The presence of emergent failures is not solely confined to cloud datacenters; they can manifest 
prominently in any large-scale computing system including emerging fog- and edge-computing 
models supporting IoT applications. These systems are particularly susceptible to emergent fail-
ures for many of the reasons given for clouds—a dynamic and unpredictable assortment of inter-
connected virtual and physical devices. A key difference is that IoT, fog-computing, and edge-
computing systems exhibit a high degree of join–leave behavior not found within cloud compu-
ting due to their centralized nature. 

If the system boundaries of interconnected components are constantly changing owing to their 
usage and device composition, it is intuitive to assume that rigid fault-tolerance strategies that 
are designed independently from the operational context of the greater system will be increas-
ingly infeasible. Such system environments will also likely result in “fluid” error confinement 
areas for a set of components (e.g., constantly changing). Hence, we believe a future research 
direction will be to investigate how to autonomously determine the optimal fault tolerance and 
recovery mechanism for a given system context. 
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CONCLUSION 
In this article we discuss the rise of emergent failures: a growing problem toward ensuring relia-
bility in cloud datacenters and all future computing systems at scale. A central issue to address is 
how to determine effective fault tolerance and recovery strategies when assumptions that define 
fault types and failure scenarios are constantly changing due to cloud datacenter dynamicity, 
complexity, and heterogeneity between interacting components. Two potential ways to address 
this issue are (i) rethinking the nature of system abstraction allowing for holistic fault tolerance 
that cross-cuts coordination of components, and (ii) exploring the concept of adaptive fault toler-
ance in response to current and forecasted operational scenarios. Moreover, further study is re-
quired by the research community to study the relationship between cloud datacenter operation 
and emergent failure manifestation beyond coarse-grained analysis and observation, and toward 
creating models that precisely capture system conditions that lead to failure. 
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