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Abstract- Cloud computing is a promising cost efficient service 
oriented computing platform in the fields of science, 
engineering, business and social networking for delivering the 
resources on demand. Big Data Clouds is a new generation data 
analytics platform using Cloud computing as a back end 
technologies, for information mining, knowledge discovery and 
decision making based on statistical and empirical tools. 
MapReduce scheduling models for Big Data computing operate 
in the cluster mode, where the data nodes are pre-configured 
with the computing facility for processing. These MapReduce 
models are based on compute push model- pushing the logic to 
the data node for analysis, which is primarily for minimizing or 
eliminating data migration overheads between computing 
resources and data nodes. Such models, however, substantially 
perform well in the cluster setups, but are infelicitous for the 
platforms having the decoupled data storage and computing 
resources. In this paper, we propose a Genetic Algorithm based 
scheduler for such Big Data Cloud where decoupled 
computational and data services are offered as services. The 
approach is based on evolutionary methods focussed on data 
dependencies, computational resources and effective utilization 
of bandwidth thus achieving higher throughputs. 
 
Keywords: Big Data, Cloud computing, Data Intensive 
Scheduling, Genetic algorithms, Big Data Clouds. 
 

I. INTRODUCTION 

Big Data Cloud is an emerging data analytics platform 
for collecting, organizing and analyzing large data sets 
for discovering patterns and useful information. Big Data 
Cloud could be categorized into two types; one with 
enough computing resources at the data node, similar to a 
cluster setup, and the second with decoupled 
computational and data resources spread across several 
geographical locations. Big Data Analytics 0 are 
emerging data science paradigms for exploiting the large 
scale, multi-dimensional, and rapidly growing data for 
the intrinsic information extraction using computational 
and statistical methods. These analytics have wide spread 
applications in several fields like social networking 
analysis, business forecasting, financial domain analysis, 
scientific analysis etc. Big Data computing differs from 
traditional Data warehousing (OLTP/OLAP) 
technologies in terms of the data storage, organization, 
collection, processing tools and methods used for data 
analysis. Data warehousing deals with the operational 
data which is mostly structured, however, Big Data 

computing addresses both historical and operational data 
which is structured as well unstructured data. 
MapReduce scheduling models [2] are primarily focussed 
on computing at the data nodes, such models are 
desirable for the applications that are demanding larger 
data volumes, but with minimal computing resources for 
processing. These techniques are attempted for collocated 
data and computing resources, however, may result in the 
degraded performance when the resources are decoupled. 
On the other side, traditional job scheduling approaches 
such as match making, optimizes either the computing 
time or the data migration overheads, however, both are 
not addressed together due to the limitations in such 
methods. Hence, MapReduce models and match making 
models are not tailored for scientific computing platforms 
where the resources are decoupled, and the requirement 
is to optimize both computing and data consolidation 
overheads. The adoption of this model is described in our 
earlier work for satellite data product generation [3]. To 
address such Big Data scientific workloads, we propose a 
scheduling methodology based on data grouping and 
optimizing mechanisms. The work in this paper is 
focussed on scheduling the jobs which are demanding 
multiple data sets that are spawned across several storage 
repositories, and the data demanded by such jobs are 
either similar or may have overlap in the data regions. 
 
Genetic Algorithms (GA) [4][5] are the optimization 
techniques, used to solve NP class problems for finding 
an approximately optimal solutions. GA is a model of 
machine learning that derives the behaviour from a 
metaphor of the processes of evolution in nature.  GA is 
executed iteratively on a set of coded chromosomes, 
called a population, with three basic genetic operators 
such as selection, crossover and mutation. Each member 
of the population is called a chromosome (or individual) 
that undergoes evolution carrying the fittest 
chromosomes to the next generations. This process is 
repeated until the specified maximum numbers of 
generations are reached or the optimal fittest value is 
obtained. In this paper, we describe a scheduling model 
based on GA and the model is evaluated and compared 
with earlier works such as match making and other 
heuristics techniques through the simulated data. 
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The rest of the paper is organized as follows. Section II 
describes the related work, Section III describes the 
system architecture, Section IV describes the 
methodology, and GA problem formulation, Section V 
describes results with simulated data, and Section VI 
presents conclusions and future work. 
 

II. Related Work 

Previous works on scheduling in Data Grids [6][7]have 
been more concerned with the relationship between job 
assignment and data replication based on computation 
and data proximity. Mohammed et.al [8] discussed a 
Close-to-Files algorithm, searching the entire solution 
space for a combination of computational and storage 
resources for minimizing the processing time with the 
restriction of one dataset per job for execution. 
 
Srikumar [9]described scheduling the distributed data 
intensive applications on global grids based on a set 
coverage approach for cost and time minimizing 
problems. This approach is based on the availability of 
both computation and data resources; however, data 
transfer from replicated sites and the selection of efficient 
computing nodes for minimizing the execution times are 
not addressed.  
 
Big Data computing frameworks such as Apache Hadoop 
[10] is an open source implementation for MapReduce 
scheduling methods; the examples are Fair [11], Capacity 
[12], and Throughput [13]. Fair Scheduler is a pluggable 
group scheduler where in each group gets equal time 
slots for computation. Capacity Scheduler is similar to 
FIFO within each queue, but limiting the maximum 
resources per queue. Throughput Scheduler reduces 
overall job completion time on heterogeneous cluster by 
actively assigning tasks to computing nodes based on the 
server capabilities. Shared Scan Schedulers S3[14]allows 
sharing the scan of a common file for multiple jobs 
arriving at different time intervals thus improving the 
performance of multiple jobs which are operating on a 
common data file.  
 
In this paper, we discuss a scheduling methodology, 
where computational resources and data storages are 
decoupled with the data replicated over storage 
repositories which are geographical dispersed. Here, the 
problem is focussed on grouping the jobs based on the 
data requirements, and the objective is to minimize the 
total makespan considering both computational resources 
and communication bandwidth effectively. 
 

III. System Architecture and Workflow 

The system architecture is depicted in Figure 1 with four 
basic elements like scheduling broker, computing 
infrastructure providers, data providers, and 

analytics/applications developers/users. Compute 
providers offers a large scale computing infrastructure, 
data providers service the data on demand, scheduler 
broker periodically collects the jobs from the pool and 
determines the effective schedule to increase system 
throughput. 
 

 
Figure 1. System Architecture 

 
The workflow is depicted in Figure 2.  The major 
activities in the workflow are:  a) grouping the job based 
on the common/overlap data which we call as the family 
construction, b) determining the data workloads between 
compute and replicated sites, and c) discovering the 
optimal schedule to minimize the turnaround time of the 
jobs. These activities are explained below. 

 
Figure 2. Workflow 

 
i. Family construction: The jobs with common/overlap 

data are grouped together, called “family”. To discover 
the grouping, metadata attributes such as object 
identifiers, and key/value descriptions are used as 
parameters. Object identifiers uniquely identify the 
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objects in a bucket, and the object metadata is a set of 
name-value pairs for describing the data content. Object 
based storage mechanisms such as Openstack Swift 
[15], and Amazon S3 [16] offers object keys and the 
associated metadata tagged with the files/objects. Object 
metadata is of two types- system metadata and user-
defined metadata. System metadata describes the object 
creation dates, storage class information etc., and the 
user-defined metadata tags the additional information 
for the objects. First, we apply the query to discover the 
jobs with similar object identifier tags, followed by 
key/value pair combination for finding the 
common/overlap data. However, the discussed methods 
are limited, but, these could be extended to other data 
overlap/commonality computing techniques.   

ii. Determining data workloads: The data workload is 
determined based on the available bandwidth between 
the replicated sites and the compute nodes.  Network 
traces based on round trip time over a time period is 
used as parameter (weight factor for the data channel)in 
our model to estimate the amount of data to be 
transferred from each of the replicated sites. 

iii. Optimal Schedule: The schedule is based on steady 
state genetic approach using turnaround time 
minimization as fitness value. 

iv. Data and applications migration: Based on the 
schedule map, data and application services would be 
migrated to the compute nodes. 

v. Execution: Jobs execution on the compute nodes, and 
the deletion of the temporary and migrated data sets from 
the computing nodes. 

vi. Result: Final result sent to the end user. 
 

IV. METHODOLGY 

Here, we discuss the methodology for family 
construction, notations and problem formulation. 
 
A. Family construction 
Graph data structure, we call here as family graph is used 
for grouping the jobs. In the family graph, job is 
represented as node and the data required by both the jobs 
(adjacent nodes) is represented by the edge. A sample 
family graph with 7 jobs numbered from 1 to 7, and three 
data sets named from X1 to X3 are shown in Figure 3 .  

 
Figure 3. Family graph 

The graph indicates that the jobs 1, 2, 3, and 4 require the 
data with id X1, the jobs 1 and 4 require the data with id 
X2, and jobs 5, 6 and 7 require the data with id X3 for 
processing. The families are formed by computing the 
connected components of the graph. The graph in Figure 
3, results in two connected components with the nodes 1, 
2, 3, and 4 for the first component, the nodes with 5, 6, 
and 7 for the second component. The resultant connected 
components form two groups or two family jobs which 
are to be processed further. 
 
B. Notations used 
Mathematical notations for the problem formulation are 
described in Table 1.   

 
Table 1.Mathematical Notations 

J = Total number of jobs 
N= Total number of computing nodes in the grid 
H= Total number of data service/providers  
F= Total number of families 
wf= Total number of jobs in the family f.  
TDfi = Data Make Span(Consolidation time) in 
minutes of the family f�F on Node i. 
rhi =Estimated packet transmission time in seconds 
between data provider h�H to compute node i�N. 
Xf= Amount of data required in GB for the family 
f�F. 
xfhi = Data chunk in GB from the data provider h�H 
to compute node i�N for the family f�F. 
�hi= Weight assignment to the channel from data 
provider h�H to compute node i�N. 
TRji = Turnaround time of the job j on node i. 
TSji= Setup time of the job j on node i. 
TAj= Arrival Time of the job j. 
Δfi = Decision variable. 
δfi   = Assignment variable. 

 
C. Objective Function 
The objective is to minimize the turnaround time of the 
jobs over the computing nodes. 
 

Minimize � � � TRji ∆fiδ
f
j

F

f=1

N

i=1

J

j=1

 

 

  δf
j  = �0   if  j�f 

1   if  j�f
� 

TRji   =  TDfi wf⁄ +  TSji +  TLji  − TAj  
 
where 
� TRji: Turnaround time of the job jЄf on computing 

node i. 
� TDfi: Data consolidation of the family f on computing 

node i. 
� TSji: Setup time of the job jЄf, on computing node i. 
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� TLji: Length of the job j�f, on computing node i. 
� TAj: Arrival /Submission time of the job j�f. 
 
subject to the following constraints  
� A family is assigned to either one compute node or 

none. 

� ∆fi

N

i=1

≤ 1 for f = 1,2, … . F 

  ∆fi∈ {0,1} 
� Compute node can have either none or many families 

assigned to it 

� ∆fi

F

f=1

≥ 0 for f = 1,2, … . N 

  ∆fi∈ {0,1} 
 
D. Determining the data consolidation time 
Network traces between the computing resources and data 
hosts/providers are used to estimate the channel 
bandwidth availability. Such stored network traces over a 
time period for example 15 minutes are used as parameter 
to estimate the data quantity to migrate from each of the 
data providers to compute node. Below we will discuss 
the procedure for computing the percentage of the data to 
be obtained from each of the data providers to the 
compute nodes. Let us denote the compute node by i, data 
provider by h, job by j, and the family by f. 
 
The families are constructed using the family graph as 
discussed in the section IVA. The family may have one or 
more jobs if they have common data. If each family 
consist of only one job, then F=J, otherwise F<J. Let wf be 
the number of jobs in the family f also called weight of 
the family, then w1+w2+…..+wF=J. In the family job 
scheduling problem, data consolidation time is same for 
all the jobs that belong to the same family. Data 
Consolidation time is defined as the maximum time to 
consolidate the data from the identified data providers to 
the compute node. Data Consolidation time 	
�� , is the 
maximum time required to bring the data from the data 
provider(s) to the compute node i for the family f, and is 
defined as 

	
�� =  max
h=1,H

(xf
hi ∗ rhi ) … … … … … … … (1) 

 
Where xf

hi is the chunk size and rhi is the estimated time 
from the previous historical traces, for the family f from 
data provider h to compute node i. xf

hi can be computed as 
below. 

xf
hi = ρhi ∗ Xf………………………(2) 

 
Where Xf is total data size required for the family f, and 
�hi denotes the weight assigned to the channel from host h 
to compute node i, is defined as 

ρhi =  (1 rhi⁄ ) ∑ (1 rli⁄ )H
i=1⁄ … … … …..(3) 

 
The time is estimated using the previous history of packet 
transmissions over a time period. Simplifying equation 
(1),using equations (2) and (3), we get 

	
�� =  (1 rhi⁄ ) �(1 rli⁄ )
H

i=1

� ∗ Xf ∗ rhi  

        = Xf / ∑ (1 rli⁄ )H
i=1  

 
Family to node mapping is represented as the weight 
matrix. The problem can be solved as the bipartite 
assignment problem, but the limitations are, a node can 
have maximum of one family assigned, although it has 
enough processing elements for handling more than one 
family. Hence, this problem reduces to 0/1 knapsack 
which can be solved using greedy, dynamic programming 
or evolutionary techniques like genetic algorithms. In the 
proposed group scheduling, three possible schedules may 
occur for the computing nodes during execution, such as: 

(i) No family assigned. 
(ii) With exactly one family assigned. 
(iii) More than one family assigned. 

 
Based on the schedules described as above for a compute 
node, we discuss below the GA problem formulation, 
chromosome representation, scheduling algorithm and the 
results obtained with the simulated data. 
 
E. GA problem formulation 
Steady State GA [5]is used by replacing percentage of 
chromosomes across the generations until the solution 
converges or till the maximum number of generation is 
reached. Genetic algorithm library (GALib) [17]  is used 
for implementation.  

 
i. Chromosome representation 
We choose integer based data structure for genomes 
representation. The gene index represents the familyid, 
and the genome indicates the compute nodeid to which 
the family is mapped. The data structure of the 
chromosome is shown Figure 4.  
 

 
Figure 4.Sample Chromosome 

 
Consider F families to be mapped onto N computing 
nodes. Each family f will go to only one computing node, 
whereas a computing node may or may not be assigned 
with families. This yields a possible assignment size of NF 

which is an exponential large value. Let us assume that 
there are 9 families and 10 computing nodes. Figure 4 
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represents that familyid=2 is assigned to nodeid=4, 
familyid=1 is assigned to nodeid=2, and so on. From the 
above figure it is also seen that nodeid=4 has been 
assigned with familyid=2 and 5; nodeid=2 has been 
assigned with familyid=1,4 and 8 and nodeid=6, 7, 8, 9 
and 10 have not been assigned to any family.  
 

ii. Evolve method 
An initial population of chromosomes are selected at 
random and the fitness function is applied. The fittest 
chromosomes are carried to the next generation based on 
the Steady State overlap percentage of chromosomes. The 
process is repeated either till the maximum preliminary 
runs are completed or the convergence of the objective 
value is achieved. In order to choose the fittest 
chromosomes for the next generation the operators like 
crossover and mutations are used. The next generation 
chromosomes are created by genetically mating fitter 
individuals of the current generation.  
 

iii. Scheduling algorithm 
Table 2 describes the fitness function pseudo code and 
Table 3 discusses the proposed GA for scheduling the 
family jobs using the fitness function. 
 

Table 2. Fitness Function pseudo code 
 

Algorithm. Fitness function F pseudo code 
Input: Chromosome C 
Output: Turnaround time of the schedule 

1 Turnaround time T:= 0 
2 For all genes in the Chromosome C perform 

the following steps do 
3 read gene index f and genome value i 
4   Compute the jobs {J}� to f.  
5 For all j�J do 
6 Estimate data consolidation time TDfi, 

compute total jobs Wf in family f. 
7 Compute setup time TSfi, estimated job 

length on node i, TLji and arrival time 
TAj. 

8 Compute the turnaround time TRji of job 
j �J on computing node i. 

9 TRji= TDfi/Wf + TSfi+ TLji-TAj 
10 T  := T + TRji 
11  end for 
12 until end of chromosome 
13 return T; 

 
Table 3. GA for schedule discovery 

 
Algorithm: Scheduling Algorithm pseudo code 
Input: Population, Generations, Crossover percent, 
Mutation percent, Gene length, Percentage of 

chromosome to carry  forward(P,g,c,m,l,r) 
Output: A Schedule for all the jobs 
1. Initial Run: Randomly generate population P 
chromosomes. 
2. Repeat  
3. Calculate the fitness of all chromosomes using 
Fitness function F 
4. Arrange the population in the ascending order 

of fitness value 
5. Copy the r best chromosomes to new 

population. 
6. for the remaining chromosomes; perform the 

crossover with percent c and mutation with 
percent m. Copy the new off springs to new 
population. 

7. Replace the current population with the new 
population 

8. Until maximum generations or convergence. 
 

V. Experiments and Results 
 
We have used CloudSim toolkit [18] with its new 
capabilities for file replication, simulated object storage 
identifiers for the data sets to simulate the Big Data 
Clouds environment.  We use a simulated network with 
computation and data storage nodes spread at several 
locations as shown in Table 4, depicting: (a) 4 locations 
CHYD, CBGL, CMUB, CDEL having 7, 6, 7 and 8 
virtual computing resources. These 28 virtual compute 
resources provide an aggregate of 1400 processing 
elements.(b) 4 locations that provide 40 data storage 
nodes with corresponding simulated bandwidths. 
 
The following experiments are conducted in the order 
described below. 
� Data consolidation Analysis: Experiments are 
conducted to analyse the data transfer and consolidation 
timings from single site vs. the multiple replicated data 
sites considering the network traces over a time period. 
 
� Determining optimal probabilistic values of genetic 
operators: Experiments are conducted to derive the 
optimal values of Genetic Algorithm (GA) operators for 
cross over, mutation and types of crossovers. 

 
� Comparing with match making and heuristic 
techniques: The algorithm is compared with match 
making techniques like Data First, Compute First, and 
heuristics such as Simulated Annealing (SA). 

 
� Comparison with Non family scheduling: The 
algorithm is compared with Non family i.e. without 
grouping the jobs. 
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Table 4. Simulated configuration of Big Data Clouds 

*1-7 indicates a total of 7 numbers. 
#200/100Mbps-200Mbps indicate randomly generated 
PEs with a maximum of 200 for each compute provider, 
with the network channel bandwidth randomly simulated 
between 100Mbps to 200 Mbps. 
##0/100 Mbps to 200Mbps represents the randomly 
generated data source without computing elements, the 
bandwidth varying from 100 to 200 Mbps for a total of 
five data providers. 
 
The experiment are simulated for a total of 1000 jobs 
with 40 virtual data providers and the network traces 
generated randomly between the virtual computing nodes 
and data providers. Based on the network traces average 
packet transmission times is estimated over a time period 
from data provider to computing nodes.  
 

A. Data consolidation analysis 
Graph 1depicts the data consolidation times when the 
single data storage and multiple replicated storage 
repositories are used. The results indicate that, data 
migration time from replicated sites is better than from a 
single site. 
 

 
 

Graph 1. Data Transfer Times in replicated vs. Single 

B. Determining the probability values for genetic 
operators 
The experiments are conducted to determine the genetic 
operators and the probability values essential for the GA 
operators, for an upper limit of 1000 jobs over a schedule 
period is discussed. Several experiments are conducted to 
determine the crossover operator among one point, two 
point, uniform, and roulette wheel. The experiments are 
performed by fixing the cross over and mutation 
operators to 0.9 and 0.01 and varying the population 
length and generations to study the convergence of the 
fitness value.  The conducted experiments are shown in 
Table 5, the resultant fitness values from the experiments 
are depicted in  
Graph 2.  
 

Table 5.Experiments to determine genetic operators 

Exp. no Pop. 
Length 

Total no. of 
generations 

1,2 100 100 
3,4 100 200 
5,6,7 200 100 
8 200 100 
9,10,11,12 200 200 

 
The experiments indicated in  
Graph 2 determine the roulette wheel has better 
convergence across the generations while compared to 
the other genetic operators. Hence, the roulette wheel 
operator is selected for cross over operations for the next 
level experiments. 
 

 
 

Graph 2. Fitness value comparison for genetic operators 

In the next step, the experiments are conducted for 
determining the cross over and mutation probabilities 
while fixing the roulette wheel cross over operator. The 
experiments are conducted for 200 generations, with an 
initial cross over probability value of 0.5, up to 0.9, with 
an increasing value of 0.1 in each step.  The 
corresponding fitness values obtained are depicted in  
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Graph 3. The results indicate roulette wheel cross over 
operator with the probability value of 0.9 has better 
convergence over the other experimented probability 
values. 
 

 
 

Graph 3. Fitness value convergence across generations 
 
Experiments are performed with varying mutation 
probabilities to determine the appropriate mutation ratio 
by fixing cross over operator of 0.9 and roulette wheel, 
the experiments shown in Graph 4 indicates with 
mutation probability of 0.1 has the better convergence 
fitness value. 

 
Graph 4. Mutation probability 

C. Comparing with other techniques  
The proposed GA is compared with match making and 
heuristic techniques discussed below.  Here, two types of 
match making techniques such as Minimum Data 
consolidation First and Minimum Compute First are used. 
Later, heuristic technique such as Simulated Annealing 
techniques is discussed. The obtained results are 
compared with the proposed GA approach which is 
depicted in Graph 5. 
 

 
Graph 5. Comparing GA with other techniques 

� Minimum Data consolidation First at node – In this 
mapping, a compute resource that ensures minimum data 
consolidation time is selected for the family. 
� Minimum Compute First – In this mapping, a 
compute resource that ensures the minimum computation 
time is selected for the family.  
� Simulated Annealing- In this mapping heuristics are 
applied by discarding the worst fit values from the 
current state to the next state and moving towards the 
best selection. 
The results indicate that Minimum Compute First 
technique has resulted in larger makespan while 
compared to Minimum Data First and SA techniques. 
Minimum Data First and Simulated Annealing 
techniques have almost the same makespan value with 
performance better than Minimum Computer Fist 
technique.  However, the proposed GA has resulted in 
minimal makespan while compared to matchmaking 
techniques and SA. This could be due to the natural 
evolution procedures of GA and fitness functions used to 
obtain the near optimal solution.  
 
D. Performance comparison of family vs. non family 
scheduling 
Experiments are conducted for analyzing the turnaround 
times for the families and non-families from a single 
storage vs. replicated storage. The results depicted in 
Graph 6, illustrate that turnaround time is less from the 
replicated sites while compared to the results from the 
single site, which is due to the minimal data 
consolidations from replicated sites. 
 
Another set of experiments are performed for analysing 
the turnaround times of family vs. non family scheduling. 
This is carried out by applying the data 
migration/consolidation from the replicated sites to the 
selected computing nodes. 

200

300

400

500

600

700

800

1 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s 

va
lu

e

Generation. No

0.9 0.8 0.7 0.6 0.5

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

1 20 40 60 80 100 120 140 160 180 200

Fi
tn

es
s v

al
ue

Generation. No

0.001 0.005 0.01 0.015 0.02 0.1 0.5

0

5000

10000

15000

20000

25000

100 200 300 400 500 600 700 800 900 1000

M
ak

ep
an

 (
Si

m
. U

ni
ts

)

No. of Jobs

GA SA MinDataFirst MinComputeFirst

102



 

 
Graph 6.Turnaround times of Non Family 

Graph 7 illustrates, the jobs with the family grouping has 
resulted in minimal turnaround time while compared to 
the non-family. This is due to the data consolidation 
carried out one time for the entire family job. This would 
reduce the data migration overheads for each job and 
reduce the network bandwidth consumptions. However, 
for few jobs the resultant turnaround time is more while 
compared to non-family scheduling, which could be due 
to the grouping that has resulted in longer data 
consolidations and computing times for the jobs.  The 
longer data consolidations is due to more numbers of  jobs 
in the family, and the longer computing times is due to the 
availability of minimal computing elements at the selected 
compute node than actually demanded for processing. 

 

 
 
Graph 7. Turnaround Times for Family vs. Non 
Family 
 

VI. Conclusions and Future Work 
 
The proposed family/group scheduling model addresses 
the data intensive problems to minimize the turnaround 
time of the jobs where the computing and data resources 
are decoupled. The jobs with common data are grouped 

together, based on the family graph and connected 
components to which a parallel data approach is applied. 
 
Steady state GA is applied to discover the optimal 
schedule. The results are illustrated for the both family 
and non-family schedules from a single site and multiple 
replicated sites. The results indicate that, data migration 
from replicated sites show performance improvement 
over a single site. The experiments also show that family 
schedule performs better over the non-family schedule, 
whenever the grouped jobs do not exceed the available 
node capacity.   
 
The connected components of the graph are used for 
grouping, which is a compute intensive process. In future, 
it is proposed to use Rough Set theory for the grouping. 
The algorithm is tested with time shared scheduling 
policy. In future the studies would be conducted on space 
mechanisms such as buddy system, DHC (Distributed 
Hierarchical Control), Ouster out matrix, and bin packing. 
The algorithm would be modified to map the family job to 
the node where data is already present, which would 
eliminate the data consolidation time. 
The system throughput is decreased while the family 
capacity exceeds the available node capacities. Hence, a 
study is required to schedule such families, by adding a 
penalty to the total compute time, so that the better node 
could be selected for scheduling. This paper addresses the 
migration of the data based on network traces over a time 
period; however, a detailed study is required to train the 
system for different network traffic conditions. The 
proposed algorithm can be extended for deadline and 
budget constraints. Presently, the model executes the jobs 
after the data is consolidated for the family; however, the 
studies can be conducted for the execution soon after the 
data for the job is made available. 
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