
 1

GTPE: A Thread Programming Environment for the Grid

Harold Soh, Shazia Haque, Weili Liao, Krishna Nadiminti and Rajkumar Buyya

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne

ICT Building, 111 Barry Street, Carlton, Melbourne, Australia

{shsoh, haques, wlliao}@students.cs.mu.oz.au, {kna, raj}@csse.unimelb.edu.au

Abstract

Grid computing has emerged as a viable method

for solving computational and data intensive

problems, applicable over various domains from

business computing to scientific research.

However, grid environments are largely

heterogeneous, distributed and dynamic,

increasing the complexities involved in developing

grid applications. Several software constructs

have been developed to provide programming

environments that hide these complexities,

simplifying grid application development. In this

paper, we present the Grid Thread Programming

Environment (GTPE) for the Gridbus Broker [1],

a software grid resource broker developed at the

GRIDS Lab, University of Melbourne. GTPE is

implemented in pure Java and consists of a thread

library that interacts with the Gridbus broker to

provide transparent access to grid services. As

such, GTPE provides a finer level of application

control while freeing the developer from the

complexities introduced by grid resource

management. This paper describes architecture,

overall design, implementation and performance

evaluation of the grid thread programming

environment.

1. INTRODUCTION

Grid applications are the next-generation network

applications for solving the world’s computational

and data-intensive intensive problems and support

integrated and secure use of a variety of shared and

distributed resources such as high-performance

computers, workstations, data repositories,

instruments, and even sensors. However, the

heterogeneous and dynamic nature of the grid

requires that grid applications not only be high

performing but also robust and fault-tolerant.

Designing and implementing applications that

possess such features from the ground up is often

difficult. As such, several middleware

programming environments have been developed

to provide grid management services, with the aim

to reducing the complexities involved with grid

application development. One such programming

environment is provided by the Gridbus Broker [1]

through an extensive Java Application

Programming Interface (API).

The Gridbus Broker, developed at the GRIDS

Lab at the University of Melbourne, is a software

component that permits access heterogeneous

resources transparently, providing services such as

resource discovery, secure access, scheduling,

monitoring, and job submission [3]. Although

application development using the Gridbus

Broker’s object-orientated API is straightforward,

there exist certain drawbacks when working

directly with the API. The coarse-grain nature of

jobs, the units of work assigned to a grid node,

requires them to be implemented as separate

executable binaries and copied over to the nodes

for execution. Programmers using the Gridbus API

are often required to develop two programs; one to

interact with the Gridbus broker and another that

performs the actual computational work. The

application interfacing to the Gridbus broker is

required to specify low-level constructs such as

copy, execute commands and program arguments.

While the task of specifying these parameters is

not difficult, it may be tedious for applications

utilizing a large number of different job programs

and detracts focus from the original problem task.

Additionally, since the grid is a heterogeneous

environment, it may be necessary to provide

different recompilations of the job programs

(unless they are in Java bytecode) or develop

conversion plug-ins.

We argue that for certain applications it is more

intuitive to be able to think of the computations as

functions or threads that could be “executed” from

within the application. Using a thread library

would allow programmers to develop a self-

contained grid application, distributing threads for

 2

execution instead of programs. This frees the

programmer from having to specify application-

descriptors or lower-level commands. Threads also

afford the programmer an additional amount of

flexibility as it is possible to work with thread

level objects using methods not possible with

external job programs.

This paper presents the Grid Thread

Programming Environment (GTPE), a

programming environment implemented in Java

utilizing the Gridbus Broker API. GTPE further

abstracts the task of grid application development,

automating grid management while providing a

finer level of logical program control. In the

following section, we describe the design and

architecture of the GTPE system. Section 3

discusses the GTPE implementation, with an

emphasis on the services provided. This is

followed by a section on performance testing

utilizing a sample application developed using

GTPE. This paper concludes with known

limitations of the current system and

considerations for future work.

2. ARCHITECTURE

In this section, we present a high-level overview of

Grid-Thread Programming Environment that uses

services provided by the Gridbus Resource Broker

for deploying threads on global Grids. The GTPE

is architected with the following primary design

objectives:

1. Usability and Portability. The

heterogeneous nature of resources on the grid

requires that programs running on them be largely

processor and architecture independent. Hence, a

grid programming environment should be geared

towards designing applications that are able to run

successfully on different machines.

2. Flexibility. The grid programming

environment needs to support a large class of grid

applications and impose as few restrictions as

possible.

3. Performance. One of the main

advantages of working on the grid is the high

performance that can be obtained by parallel

execution. A grid programming environment

should ensure that quality of service is maintained

in a dynamic environment.

4. Fault Tolerance. Resources are not

globally administered in the grid and hence, can

join and exit the grid at any time. There is also

exists a non-zero probability that a resource will

fail during computation. As such, grid

programming environments have to provide

mechanisms for detecting changes to the grid

environment and recovery services.

5. Security. Grid applications will normally

be executed on remote servers across multiple

administrative domains. Security is hence a

concern and it is necessary to ensure secure access

to these resources and the protection of

information during transport of code and data.

To support these design objectives, GTPE was

implemented in pure Java as a layer on top of the

Gridbus Broker API. GTPE is responsible for

thread management and interfacing to the broker

which provides grid services. Figure 1 illustrates

an architecture block-diagram of GTPE. GTPE

consists of two main components, the

GridApplication class and the GridThread class.

The GridThread object forms the atomic unit of

remote, independent work. All user defined grid

threads derive from the GridThread abstract base

class. The subclass has to override the start and the

callback methods. The start method is executed on

the remote nodes and hence, the computational

work intended for remote execution should be

defined in this method. The callback method is

executed at the local client node once the thread

has finished executing on the remote node and has

been transported back. The callback method can

be used for a variety of functions including the

aggregation of results and the reporting of thread

completion to the user.

The GridApplication object is responsible for

thread management and providing near-transparent

access to the grid via the Gridbus broker. The class

presents a single point of control to the

programmer. GridThreads are added to a

GridApplication object for execution on remote

nodes. The GridApplication object provides

mechanisms to capture and restore thread states, as

well as job wrapping and thread monitoring

services.

The Gridbus-Thread Programming

Environment architecture is relatively simple and

supports the aforementioned design objectives.

GTPE is implemented in pure Java and as such,

benefits from its “write-once-run-anywhere”

model. User derived grid threads are inherently

portable and able to run on any system which

provides access to a Java Virtual Machine.

Performance is supported via dynamic

scheduling and modern Java compilers, which are

able to able to generate Java code capable of

execution speeds comparable to traditional high-

performance languages [4]. Secure access and job

submission to remote nodes is supported via the

 3

User Application

Grid Thread Programming

Environment (GTPE)

Gridbus Broker

Grid Fabric (Middleware, Resources etc.)

Local Node

Remote Node

 User Threads
(derived from GridThread)

Scheduler

User GridThread

Array

JobsJobsJobs

 User Threads
(derived from GridThread)
 User GridThreads
(derived from GridThread)

Thread to Job

Wrapper

Serialized Thread StatesSerialized Thread StatesSerialized

Thread States

State Capture

Job Monitor

Job Monitor

Interface

Figure 1: Grid Thread Programming Environment (GTPE) Architecture.

Gridbus broker and thread monitoring provides a

mechanism for detecting thread failures on remote

nodes.

3. DESIGN AND IMPLEMENTATION

We now present the implementation of GTPE

layer based on the architecture described in the

previous section. Figure 2 illustrates the main

components of GTPE and the methods

implemented in each class.

3.1. Resource Discovery and Access

The GridApplication class provides the

addComputeServer method that permits users to

specify applicable grid resources. Version 2.0 of

the Gridbus broker (and hence, GTPE) supports

the following a range of middleware for

computational resources (Globus v2.4 and v3.2,

Alchemi v0.8, and Unicore Gateway v41) and data

resources (SRB v3.x and Globus Replica Catalog)

[3]. If no resources are specified, a set of servers is

loaded from the resources.xml file, which specifies

default resources and their attributes. The Gridbus

broker manages access to these systems, providing

secure access via proxies and credentials [3].

3.2. Thread Object State Capture and Job

Wrapping

To capture objects into a form which can be

distributed, GTPE utilizes Java serialization. The

GridThread base class implements the

java.io.Serializable interface and two static

methods, serializeMe (to write the thread object to

a state file) and loadMe (to load an object from a

serialized state file)
1
. As such, all derived

1

 Future work involves permitting serializeMe and

loadMe member functions to be overridden in subclasses.

This would allow developers to specify more optimized

serialization methods.

 4

Figure 2: UML Diagram of the GTPE Main Components.

subclasses are serializable by default. Serialization

is automated by the GridApplication class and is

transparent to the user application. A Java

ArrayList, threads, to utilized store and manage

the GridThreads. When a thread is added to the

ArrayList, it is immediately serialized to a state

file with a unique filename. This state file is

grouped together with the user derived GridThread

class file (obtained using Java class inspection),

and the GridThread class file and wrapped into a

Gridbus broker job along with the appropriate low-

level copy and execute commands. The job object

is then added to the Gridbus broker for scheduling

and submission to a suitable grid node.

3.3. Thread Scheduling

The Gridbus broker utilizes the concept of a

computational economy [5] and version 2.0

provides five different scheduling types; cost-

optimized, time-optimized, cost-and-time-

optimized, cost-and-data-optimized and time-and-

data-optimized [3]. It is possible to set the

scheduling algorithm used via the setScheduler

method providing the application developer with

the flexibility of selecting the most optimal

scheduling approach for the task. If no scheduler is

specified, the GridApplication defaults to using the

cost-optimized approach.

3.5. Thread Execution and Monitoring

Thread scheduling, distribution, execution and

monitoring is started by calling the

GridApplication.start method. The start method

can only be called once per session to prevent the

spawning of multiple resource brokers. At the

remote node, the main function in the GridThread

base class detects the appropriate user defined

subclass and instantiates the appropriate thread

object via Java reflection. The loadMe method is

called to restore the thread’s serialized state and

the thread’s start method is invoked. When the

start method returns, the thread’s state is serialized

to a file on disk via the serializeMe method and

transported back to the local node.

To provide thread monitoring services, the

GridApplication class implements the

Gridbus.broker.event.JobListener interface. Each

GridThread has an associated status variable which

stores one of four possible execution states;

notsubmmited, running, finished or failed. The

default status is the notsubmmited state and

remains unchanged while it is waiting for transport.

When the thread has been submitted to the remote

node, its status variable is updated to running. If a

thread successfully completes, its state in the

threads ArrayList is updated by de-serializing the

finished thread state file, its status is set to finished

and the thread’s callback method is called. If a

thread fails during execution, an error report is

generated and its status is changed to failed.

 5

3.6. Additional Functionality

GTPE provides additional functionality to

minimize the effort necessary to work with grid

threads. A barrier function is implemented

allowing users to synchronize threads and the

getThreads method is available for retrieving

threads that have been added to the threads array.

These methods are especially useful when

aggregating results or performing some final

analysis which requires all threads to have

completed execution. Hence, unlike regular broker

jobs, it is possible to work with updated threads

after execution on a remote node. Additionally, the

stop method is provided to terminate the

scheduling and distribution of threads.

4. GTPE PERFORMANCE

EVALUATION

To evaluate the performance characteristics of

applications utilizing GTPE, we created a sample

application, PrimeFinder, which computes the

number of primes smaller than a supplied

parameter N utilizing T number of threads. For our

purposes, PrimeFinder was not heavily optimized

and distributes work among threads in the

following naïve fashion: For a given N and T, the

thread Ti (where i = 2, 3…, T) performs a

primality test all numbers in the set:

{2i – 1+ 2jT for j = 0, 1, 2, 3…, k where (2i - 1 +

2kT) ≤ N}.

For example, for N = 10 and T = 2, thread T0

evaluates {1, 5, 9} and T1 evaluates {3, 7}. Figure

3 shows the basic algorithm of the PrimeFinder

sample application
2
.

Our test bed consisted of two resources,

belle.cs.mu.oz.au and manjra.cs.mu.oz.au, both

based in the GRIDS laboratory, at the Department

of Computer Science and Software Engineering,

University of Melbourne. Table 1 lists the

configuration of both resources.

We then evaluated the performance of the grid-

enabled sample application by recording and

comparing the execution times for varying values

of N and T. Note that if T is one, then GridThreads

are not utilized and the algorithm is run locally on

2
 We acknowledge that the number 2 is always skipped

when using this algorithm. However, since we are only

interested in the total count of primes smaller than N, we

take into account this special case by evaluating 1 as

prime.

a single resource (belle.cs.mu.oz.au). Table 2

below lists the performance results obtained from

our tests and Figure 3 graphs our results for the

PrimeFinder with T = 1, 2, 4, 8 and 14. Our results

show that for values of N larger than 50 million, a

performance increase of approximately 300 to 360

percent (as compared to the non-threaded

performance results) when utilizing 8 or more

GridThreads.

int startPoint = 2*threadID – 1;

int stopPoint = N;

int step = 2*numberOfThreads;

public void start() {

total = 0;

 for (int i=startPoint;

i<=stopPoint; i=i+step){

 if (isPrime(i)) total++;

 }

}

public boolean isPrime(int N) {

 int max = (int) Math.sqrt(N);

 for (int div = 2; div <= max;

div++) {

 if (N % div ==0)

 return false;

 }

 return true;

}

Figure 3: Basic algorithm of the PrimeFinder

sample application

We also observe that the performance gains

obtained from utilizing a larger number of threads

is non-linear and in certain cases, detrimental. This

result is can be explained by the fact that

increasing the number of threads also increases the

overhead associated with thread transport and

management. Hence, there exists an optimal

number of threads for each input N, after which

the addition of more threads would only serve to

decrease overall performance. We expect this

result to be applicable across all applications

developed with GTPE.

5. RELATED WORK

There has been a significant amount of research

devoted to building grid programming

environments. Similar work involving Java

distributed threads include a thread extension [6]

to KaRMI [7] and JavaParty [8]. KaRMI is an

optimized implementation of Java’s Remote

 6

Method Invocation (RMI) and serialization. RMI

provides communication across distributed virtual

machines, allowing Java applications to reference

and access remotely exported objects. JavaParty

provides remote objects to Java by declaration,

simplifying multi-threaded cluster programming in

Java. Other projects which use a middleware

library to implement distributed computing in Java

include Ibis [9], FarGo [10], JavaSymphony [11]

and J-Orchestra [12]. A grid-enabled message

passing variant utilizing Java is G-JavaMPI [13].

Server NameServer NameServer NameServer Name ConfigurationConfigurationConfigurationConfiguration Grid MiddlewareGrid MiddlewareGrid MiddlewareGrid Middleware

belle.cs.mu.oz.au IBM eServer with 4 IA-32 CPUs. Globus v2.4

manjra.cs.mu.oz.au Linux Cluster with 13 IA-32 CPUs Globus v2.4

Table 1: Testbed resources

N (Maximum Search Value)
Threads

20000000 30000000 40000000 50000000 60000000 70000000

1* 97.43 173.45 261.86 359.55 466.62 581.59

2 87.96 124.24 166.32 229.61 279.61 337.17

4 67.19 88.99 117.91 146.96 175.01 198.82

6 74.09 95.63 124.41 153.85 175.35 217.88

8 74.32 82.60 105.37 120.50 136.45 167.21

10 88.90 97.28 120.51 136.08 167.21 190.71

12 74.98 90.08 105.82 134.82 151.39 173.92

14 92.69 106.69 107.39 116.97 137.90 161.15

 *Run locally without using GTPE.

Table 2: PrimeFinder execution time (seconds) with increasing N utilizing varying number of threads.

Execution Time (s) with parameters N and T threads.

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

20000000 30000000 40000000 50000000 60000000 70000000

N

T
im

e
 (

s
)

Non-GT 2 Threads 4 Threads 8 Threads 14 Threads

Figure 3: Bar Graph of PrimeFinder execution time (seconds) with increasing N utilizing 1, 2, 4, 8

and 14 threads.

 7

Another approach has been to provide JVMs

which are inherently aware of distributed resources.

A Distributed JVM (DJVM) offers a single system

image view to Java threads and can provide

parallel execution for regular Java Threads.

Projects involving DJVMs include JESSICA2 [14],

cJVM[15], Java/DSM [16]. The main drawback of

this method is that the DJVM has to be installed on

every node for it to be effective. Hence, this work

is more applicable to locally administered clusters.

Other notable grid programming environments

include Alchemi [17], The Grid Application

Toolkit (GAT) [18], GridRPC [2] and Grid

Superscalar [19]. Alchemi is a Microsoft .NET

grid computing framework developed at the

GRIDS lab which provides a thread programming

environment similar to that provided by GTPE.

The Grid Application Toolkit (GAT) provides a set

of coordinated, generic and flexible APIs that can

be accessed from a variety of programming

languages. GridRPC is a Remote Procedure Call

(RPC) model and API providing standard RPC

services on grids. Grid Superscalar is a relatively

new programming environment which

automatically parallelizes a sequential application

by automatically detecting task concurrency and

dependencies.

6. CONCLUSIONS AND FUTURE

WORK

The main objective of implementing GridThreads

library for Gridbus Broker was to minimize the

entry barriers associated with grid applications

development. Implemented as a pure Java layer on

top of the Gridbus broker API, the GTPE

programming environment combines the services

provided by the broker with the flexibility and

portability of Java threads. This gives developers

greater application control while avoiding the

finer-level complexities associated with grid

resource management.

Although GTPE is a currently a stable working

environment, it is very much preliminary work and

we plan to extend its functionality to provide

developers with a fully-featured programming

environment. Our plans for future work on GTPE

include:

1. Usability improvements. It may be

possible to eliminate the GridApplication class,

integrating its functionality into the GridThread

class or the Gridbus Broker, thereby simplifying

the thread model. We also plan to explore the

possibility of extending the model to include

thread grouping for delivery to the same resource.

2. Flexibility improvements. Threads built

utilizing GTPE currently have to be self contained.

We plan to augment GTPE to automatically

discover file dependencies.

3. Performance improvements. The

serialization methods used in GTPE could be

optimized and enhanced to provide better

performance. As stated in Section 2, we plan to

allow developers to override the serialization

methods and provide optimal implementations that

best fit their applications.

4. Fault tolerance. GTPE currently does

not provide much functionality for the recovery or

resubmission of failed threads.

5. Additional features. An interesting area

of work would be to develop an efficient method

of inter-thread communication both locally and

globally. This can be perhaps be achieved using

Java’s RMI or a more efficient implementation,

such as KaRMI.

References

[1] S. Venugopal, R. Buyya and L. Winton, “A

Grid Service Broker for Scheduling

Distributed Data-Oriented Applications on

Global Grids”, Technical Report, GRIDS-TR-

2004-1, Grid Computing and Distributed

Systems Laboratory, University of Melbourne,

Australia, February 2004.

[2] C. Lee and D. Talia. “Grid programming

models: Current tools, issues, and directions.”,

In Grid Computing: Making The Global

Infrastructure a Reality, F. Berman, A. Hey,

and G. Fox, editors, John Wiley & Sons, 2003.

[3] K. Nadiminti, S. Venugopal, H. Gibbins, and

R. Buyya, The Gridbus Grid Service Broker

and Scheduler (2.0) User Guide, Technical

Report, GR IDS-TR-2005-4, Grid Computing

and Distributed Systems Laboratory,

University of Melbourne, Australia, Apri l 22,

2005.

[4] J. Bull, L. Smith, L. Potttage, and R. Freeman.

“Benchmarking Java against C and Fortran for

Scientific Applications.”, In ACM 2001 Java

Grande/ISCOPE Conf., pp 97-105, 2001.

[5] R. Buyya, D. Abramson, and J. Giddy, An

Economy Driven Resource Management

Architecture for Global Computational Power

Grids, presented at Proceedings of the 2000

International Conference on Parallel and

Distributed Processing Techniques and

Applications (PDPTA 2000), June 26-29,

2000, Las Vegas, USA, CSREA Press, USA,

2000.

 8

[6] B. Haumacher, T. Moschny, J. Reuter, and

W.F. Tichy. Transparent Distributed Threads

for Java, in Proceedings of the 5th

International Workshop on Java for Parallel

and Distributed Computing in conjunction with

the International Parallel and Distributed

Processing Symposium (IPDPS 2003), 2003, p.

136, Nice, France, IEEE Computer Society,

ISBN-0769-5192-61.

[7] M. Philippsen, B. Haumacher, and C. Nester.

More efficient serialization and RMI for Java.

Concurrency: Practice and Experience, 12(7),

pp. 495–518, May 2000.

[8] M. Philippsen and M. Zenger. JavaParty -

transparent remote objects in Java.

Concurrency: Practice and Experience, 9(11),

pp. 1225–1242, 1997.

[9] R. V. van Nieuwpoort, J. Maassen, R. Hofman,

T. Kielmann, and H. E. Bal. Ibis: an Efficient

Java-based Grid Program ming Environment.

In Joint ACM Java Grande – ISCOPE 2002

Conference, pages 18–27, Seattle, Washington,

USA, November 2002.

[10] O. Holder, I. Ben-Shaul, and H. Gazit,

“Dynamic layout of distributed applications in

FarGo.” In International Conference on

Software Engineering, pp. 163–173, 1999.

[11] T. Fahringer, “JavaSymphony: A system for

development of locality-oriented distributed

and parallel Java applications.” In Proceedings

of the IEEE International Conference on

Cluster Computing (CLUSTER 2000), 2000.

[12] E. Tilevich and Y. Smaragdakis, “J-Orchestra:

Automatic Java application artitioning.” In B.

Magnusson, editor, ECOOP 2002 -Object-

Oriented Programming, volume 2374 of

Lecture Notes in Computer Science, pp. 178–

204. Springer-Verlag, 2002.

[13] L. Chen, C. Wang, and F.C. Lau, “A grid

middleware for distributed Java computing

with MPI binding and process migration

supports.” J. Comput. Sci. Technol. 18, 4 (Jul.

2003), pp. 505-514, 2003

[14] W. Zhu, C. Wang, and F. Lau. “Jessica2: A

distributed java virtual machine with

transparent thread migration support.”, In

IEEE Fourth International Conference on

Cluster Computing, Chicago, USA, September

2002.

[15] Y. Aridor, M. Factor, and A. Teperman,

“CJVM: A Single System Image of a JVM on

a Cluster.”, In International Conference on

Parallel Processing, pp. 4–11, 1999.

[16] W. Yu and A. L. Cox. “Java/DSM: A Platform

for Heterogeneous Computing.”, Concurrency

- Practice and Experience, 9(11), pp. 1213–

1224, 1997.

[17] A. Luther, R. Buyya, R. Ranjan & S.

Venugopal, Alchemi: A .NET-based Grid

Computing Framework and its Integration into

Global Grids, Technical Report, GRIDS-TR-

2003-8, Grid Computing and Distributed

Systems Laboratory, University of Melbourne,

Australia, December 2003.

[18] Gridlab Grid Application Toolkit:

http://www.gridlab.org/gat

[19] R.M. Badia, J. Labarta, R. Sirvent, J.M. Perez,

J.M. Cela, and R. Grima, “GRID superscalar:

a programming paradigm for GRID

applications”, CEPBA_IBM Research

Institute, UPC, Spain, January, 2004.

