
Jeeva: Enterprise Grid Enabled Web Portal for

Protein Secondary Structure Prediction

Chao Jin
 #
, Jayavardhana Gubbi

*
, Rajkumar Buyya

 #
, Marimuthu Palaniswami

*

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Melbourne, VIC 3010, Australia

{chaojin,

raj}@csse.unimelb.edu.au

*
Department of Electrical and Electronic Engineering

The University of Melbourne, Melbourne, VIC 3010, Australia

{jrgl,

swami}@ee.unimelb.edu.au

Abstract—This paper presents a Grid portal for protein

secondary structure prediction developed by using services of

Aneka, a .NET-based enterprise Grid technology. The portal is

used by research scientists to discover new prediction structures

in a parallel manner. An SVM (Support Vector Machine)-based

prediction algorithm is used with 64 sample protein sequences as

a case study to demonstrate the potential of enterprise Grids.

I. INTRODUCTION

The structure of protein plays a key role in the structure-

based design of drugs for the treatment of various diseases.

However, it is still a challenge to find out protein structure

based on its sequence, and the dependence on experimental

methods may not yield protein structures fast enough to keep

up with the requirement of current industry. Fortunately, the

energy landscape theory [24] enables a framework for the

development of algorithms to predict the structure of unknown

proteins based on their sequence, which is known as protein

structure prediction.

From the perspective of computer science, protein structure

prediction is a computing intensive task [5]. Since the

prediction of protein structure is a complex task, it is usually

sub-divided into two phases. The first one is secondary

structure prediction and the second one is super secondary

structure prediction, leading to tertiary structure, i.e., the

specific atomic positions in three-dimensional space. As the

first phase of protein structure prediction, accurate secondary

structure prediction is a key element for correctly acquiring

tertiary structure.

A large number of algorithms [2][6][9][11] have been

proposed for protein secondary structure prediction. To

facilitate the collaboration between protein scientists across

the world, it is a necessity for researchers to share their

algorithms and results with colleagues dispersed at different

geographical locations. Furthermore, to speed up the process

of finding out new protein structures, we need a proper

computational platform which simplifies the development of

new prediction algorithms and improves the efficiency at the

same time. For example, machine learning methods are

currently used for secondary structure prediction. In particular,

SVM (Support Vector Machines) based prediction has many

advantages compared with other solutions [13]. However, its

computing intensive nature demands an improvement on its

efficiency by parallel processing.

In order to address the above two issues, Grid computing

offers important solutions. Grid computing [10] provides

faster computation facilities for minimizing the time required

for solving problems, supporting on-demand access to

distributed computing resources from multiple organisations,

and enabling the creation of community computing

application portal services.

This paper proposes and presents the design, development

and deployment of an interactive web-based portal, called

Jeeva, for quick discovery of protein secondary structure

prediction. In particular, our platform aims to support the

following capabilities:

• A collaborative environment to encourage and assist the

deployment of new prediction algorithms in a parallel way,

particularly for those amateur researchers with less well-

developed skills and expertise on parallel programming.

• An easy for use environment for public users to access

prediction algorithms released in our web portal and to

manage their prediction history results in an online manner.

Jeeva web portal system consists of an interactive web

interface and a Grid middleware. With the interactive web

interface, users can submit prediction requests for protein

secondary structures, collect results, and manage the history of

prediction data. By means of the Grid middleware, researchers

can not only deploy their prediction applications in a

distributed environment easily, but also monitor and manage

the execution in the distributed environment. The Grid

enablement of Jeeva is achieved by using Aneka [27], which

is a .NET-based Grid software system for the creation of

enterprise Grid environments.

We use an SVM-based protein secondary structure

prediction algorithm [13] as a case study to show the usage of

Jeeva, and experiments to evaluate the performance and

scalability of our platform.

The remainder of this paper is organized as follows.

Section II provides a discussion on related work. Section III

describes the background on SVM-based prediction. Section

IV presents the architecture, design, and implementation of

Jeeva. Section V shows the experimental evaluation of the

system through the chosen SVM based prediction algorithm.

Section VI concludes the paper with pointers to future work.

II. RELATED WORK

Protein secondary structure prediction is based on the

prediction of protein 1-D structure from the sequence of

aminoacid residues in the target protein [3]. Several methods

have been proposed to find out the secondary structure based

on physico-chemical properties and homology. The most

popular secondary structure prediction methods currently in

use include [1], [7], [11], [16], [19]. A detailed review of

secondary structure algorithms until the year 2000 can be

found in [1].

Recently, some significant work has been done on

secondary structure prediction using Support Vector Machines.

Hua and Sun [22] used SVMs and profiles of the multiple

alignments from HSSP database as features and reported a Q3

score as 73.5% on the CB513 dataset [11]. In 2003, Ward [15]

reported 77% with PSI-BLAST [21] profiles on a small set of

proteins. In the same year Kim and Park [9] reported an

accuracy of 76.6% on the CB513 dataset using PSI-BLAST

Position Specific Scoring Matrix (PSSM). Nguyen and

Rajapakse [17][18] explored several multi-class recognition

schemes and reported a highest accuracy of 72.8% on RS126

dataset using a two stage SVM. Guo [14] used a dual layered

SVM with profiles and reported a highest accuracy of 75.2%

on the CB513 dataset. More recently, Hu [8] reported the

highest accuracy of 78.8% on a RS126 dataset using a novel

encoding scheme.

A few of the above methods are made available in web

servers for online access and utilization. As far as the authors

are aware, none of the secondary structure prediction systems

based on SVM is available through the web service

technology. A few other servers supporting homology

modeling, neural networks and hidden markov models,

include PHD [2], PROF-King [19], PSIPred [7], JPred [11],

SAMT99-Sec [16], and SCRATCH [12]. The SCRATCH

web server uses a SVM for disulphide bridge prediction and a

recursive neural network for secondary structure prediction.

Predictor@Home [20] is using contributory resources for

predicting the tertiary structure of proteins over the BOINC [6]

platform. However, their secondary prediction algorithm runs

locally in a sequential manner.

III. BACKGROUND ON SVM-BASED PREDICTION

An SVM based secondary structure prediction algorithm is

used in [13]. Briefly, this method investigates the effect of the

physico-chemical and statistical properties on protein

secondary structure prediction along with evolutionary

information in the form of position specific scoring matrix

(PSSM). SVMs [26] are usually employed for classification

and the outputs of SVM are converted to posterior

probabilities for multi-class classification. For the web

enabled system, we use the Chou-Fasman parameters and

physico-chemical parameters along with evolutionary

information in the form of position specific scoring matrix

(PSSM) as features. The SVM implementation used in Jeeva

is SVMLight [25].

It is well known that testing new input data by using SVM

is relatively slow compared to other machine learning

approaches. In case of protein structure prediction, the

problem becomes more complex as the training size of the

data is very large, i.e. in the order of tens of thousands. For

multi-class classification in secondary structure prediction,

many SVMs are required. In our case, for three class

classification, six SVM models are required. This

considerably increases the computational complexity. As each

of these classifiers is independent of each other, it is obvious

that parallelizing them has profound effects in the final time

taken for predicting the secondary structure. In our current

web enabled system, each classifier is taken as an independent

task supported by the task programming model in Aneka.

Fig. 1 illustrates the flow chart of the SVM based algorithm.

There are 3 phases: initial, classification and final prediction

phases. During the initial phase, the algorithm reads a protein

sequence, submits it to PSI-BLAST [21] to obtain the PSSM

features and finally generates feature vector for classification.

A new dataset from CATH [4] (version 2.6.0) is created.

This set has been used to train the system for all predictions
1
.

At the first stage of dataset preparation, proteins with

sequence length greater than 40 and resolution of at least 2

Ang are selected. We use UniqueProt [23] with an HSSP-

value of 0 to eliminate identical sequences. Out of 10,000

proteins, 504 proteins which have the sequence identity of less

than 15% are retained. There are 97,593 residues with the

1 http://www.ee.unimelb.edu.au/ISSNIP/bioinf/

BLAST

Create Data Vector

H
H

 C
la

ssifier

S
S

 C
la

ssifier

T
T

 C
la

ssifier

H
S

 C
la

ssifier

S
T

 C
la

ssifie
r

T
H

 C
la

ssifier

Predict Final Secondary Structure

Initial

Phase

Classification

Phase

Final

Phase

Fig. 1 Flow chart of The SVM based Prediction Algorithm.

average sequence length of 194.

The classification phase is performed by six classifiers: HH,

SS, TT, HS, ST and TH. Generally, the prediction of

secondary structure is a three class (H, E, C) pattern

recognition problem. The SVM method proposed in Gubbi et.

al. [13] uses six classifiers which include three one vs one

classifiers (H/E, E/C, C/H) and three one vs rest classifiers

(H/~H, E/~E, C/~C). Multi-class classification is performed

by combining the outputs of the six binary classifiers. Each of

the six classifiers will read the data vector from the initial

phase and generate corresponding classification result. Finally,

the prediction result will be based on all of these six

classification results in the final phase.

IV. ARCHITECTURE AND DESIGN

This section presents the architecture of Jeeva, including

the design of a web portal over the Aneka platform and its

support for an SVM based prediction algorithm. We will

briefly discuss background Aneka technology and its task

programming model whose services are utilized in the

realization of Jeeva portal.

A. Aneka and Task Model

Aneka is a .NET-based enterprise Grid software platform,

which allows the creation of enterprise Grid environments.

Each Aneka node consists of a configurable container hosting

several mandatory services and other optional services. The

mandatory services provide the basic capabilities required in a

distributed system, such as communications between Aneka

nodes, security, and membership. Optional services can be

installed to support the implementation of different

programming models in Grid environments. For most

programming models in Grid environments, their runtime

system consists of a scheduler and many executors across

distributed resources. For each model, its scheduler and

executor are implemented as optional services in an Aneka

container.

Currently, Aneka supports the following programming

models: thread model, task model, and MPI model. Thread

and task models are used for independent tasks. In Jeeva, we

choose task model to support the SVM-based algorithm.

Fig. 2 illustrates a configuration of Aneka deployment

scenario for executing the task model. This is a representative

setting of Aneka. One node is configured with a Task

Scheduler component, while the other nodes are configured

with Task Executor components. Basic service components,

such as communication and security components are installed

with every Aneka node for handling secure communications

between them. A Membership service is typically hosted on

the same Aneka node with the Scheduler component, which

can query the Membership component for available Aneka

nodes with Task Executor components.

By using this programming model, we can easily parallelize

the SVM-based algorithm. A task is a single unit of work

processed in a node, and is independent of other tasks

executed on the same or on the other nodes at the same time.

It is atomic, in the sense that it either executes successfully or

fails.

During execution, a task (including its dependency for

execution) is represented by an object, which can be serialized

and submitted by the client to the scheduler. The task

scheduler is always waiting for request messages such as task

submission, query, and abort. Once a task submission is

received by the scheduler, it is first queued and the scheduler

thread picks up the queued tasks and maps them to available

resources based on the configurable scheduling policy.

Furthermore, the task scheduler keeps track of the queued and

running tasks.

The task executor waits for task assignments from the

scheduler. When the executor receives a task, it first unpacks

the task object and its dependencies, creates a separate

security context for the task, and then starts running the task.

Once the execution of a task is finished, the executor sends the

results back to the scheduler.

To support the SVM-based algorithm in a parallel manner,

we first subdivide the prediction process into multiple

interdependent tasks. Fig. 3 shows the DAG (Directed Acyclic

Graph) representation of the SVM-based algorithm. BLAST

and Create Vector in the initial phase are represented by task

A and B respectively. Tasks C to H represent 6 classifiers in

the classification phase, while task I represents the final

prediction phase. For each prediction job, the task client sends

tasks from A to I to the task scheduler according to their

dependency order. Within one job, tasks from C to H are

totally independent and can be executed at the same time on

different Aneka nodes. Furthermore, as the web portal is

publicly shared, it may receive many prediction requests at the

same time. For different requests, each task in one job is

independent of the tasks in another job and they can be

executed simultaneously.

A

B

C D E F G H

I

Task

Dataflow

Fig. 3 Task Graph for SVM-based Algorithm.

Communication

Security

Task
Executor

Communication

Security

Task
Executor

Communication Membership

Security Task Scheduler

Basic Services

Task Services

Aneka Container

Client

Fig. 2 Architecture of Aneka with Task Components.

B. Design of Web Portal

With the support of Aneka and its task model, we

implemented task graph shown in Fig. 3 and developed a Web

access interface. As illustrated in Fig. 4, our web portal

system consists of two layers; namely web server layer and

Aneka Grid layer. The web server layer is responsible for a)

accepting protein secondary structure prediction requests from

users; b) submitting prediction requests to Aneka Enterprise

Grid for prediction and collecting prediction results; c)

acknowledging prediction results to users, keeping prediction

results in the database, and supporting online visualization in

response to the queries of users. Aneka Grid layer supports its

computing resources for prediction by means of a scalable and

fault tolerant scheduling mechanism.

In the web server layer, we have one server machine which

hosts an IIS (Internet Information Services) to provide portal

services and an instance of task client for submitting task

requests to Aneka Grid. Both input sets and the results need to

be maintained in persistent storage so that users can retrieve

results at later time. We have achieved this by recording all

transactions in the database.

The web portal accepts prediction requests from both

anonymous and registered users. We provide an authentication

service for registered users and keep the privacy of their

results. For both anonymous and registered users, we keep

their requests and results persistently in the database and

provide a query service so that they can access their results

online at any time. Additionally, the portal service also

provides a management interface for the administrators,

through which they can monitor the Aneka system and

manage the information of users and prediction results in the

database.

The task client in the web server layer works as a bridge

between prediction requests and the Aneka computing

services. The web interface first puts every prediction request

into the database, and the task client frequently checks the

database for new requests. Every time a new request is found,

the task client generates a new job for the request and submits

its tasks to Aneka according to the precedence order. For the

task whose dependency consists of a large data set with

infrequent changes, such as BLAST with the nr database

which require about 2GB disk space, we deploy it on each

Aneka node prior to its execution. During task submission,

rather than sending the task with its large set of dependency to

the task scheduler every time, we just send a request to

execute BLAST. Similarly, what the executor receives from

the scheduler is also an execution request, through which the

executor invokes BLAST to execute locally. For other tasks,

which may have frequent changes with small size of input

data and dependency, such as each classifier, we serialize its

content with its dependency modules and input data into one

package and send it to the task scheduler.

The Aneka scheduler accepts task submissions and then

maps them to the available Aneka nodes featuring the Task

Executor component through a load balancing policy.

Currently, the scheduler adopts a retry policy to handle

failures. If one task fails due to physical machine failures, it

will be rescheduled to other Aneka nodes. This process

repeats until the task execution is completed successfully.

Please refer to [27] for load balancing and failure handling

policies in details.

C. Implementation of Web Portal

The web portal of Jeeva is implemented over ASP.NET

platform and the task client is implemented with C# language

over .NET framework.

Fig. 5 presents the interface for registered users to submit

prediction requests. The prediction results are sent to the users

through email. Furthermore, users can also browse their

prediction history online. Fig. 6 illustrates one example

prediction result through online browsing.

Detailed records of users and prediction results are stored in

a SQL server. To enable easy discovery of bugs during the

development, we keep a log for recording the error

information of each task for every prediction job. The log is a

text file in the file system of web server layer.

Fig. 5 Submit Prediction Request.

Fig. 4 Architecture of Jeeva.

The administrators can monitor the status of the Aneka

system with an Aneka web console, including the

configuration of each Aneka node and the runtime

performance statistics. As illustrated in Fig. 7, the detailed

information of each machine is displayed when the mouse

pointer moves over the icon.

Fig. 8 illustrates the performance statistics panel in the

Aneka web console. The top panel displays the aggregated

resource usage in the system, while the bottom panel displays

the statistics on the tasks queues, including the waiting queue,

running queue and finish queue.

The Aneka web console is implemented with Ajax. Every

time when there are updates of the system status, an event is

transferred through Ajax to the web console which displays

the updated system status.

V. PERFORMANCE EVALUATION

This section evaluates the performance of the backend

runtime system of Jeeva. The experiments show the speedup

of the SVM-based prediction algorithm deployed in Jeeva for

single prediction job and the scalability of Jeeva system under

multiple jobs submission. During the experiments, the Aneka

system with task model for the protein secondary structure

prediction was set in an enterprise Grid consisting of 37 nodes

drawn from three student laboratories in the University of

Melbourne. During testing, one machine worked in the web

server layer hosting an IIS server and a task client. Other

machines comprised Aneka system with one as a scheduler

and the others as executors. Each machine has a single

Pentium 4 processor, 500MB of memory, 160GB IDE disk, 1

Gbps Ethernet and runs Windows XP.

We conducted the experiments with the SVM-based

prediction algorithm on the EVA dataset. The result gives an

average Q3 accuracy of 74.5% and ranks in top five protein

structure prediction methods [13].

First, let us show the importance of parallelizing the

classification phase for the SVM-based algorithm. Fig. 9

illustrates the performance of three phases of the SVM-based

prediction for 7 protein sequences with different lengths. We

can see that the time consumed by the classification phase

dominates the time of whole prediction; the classification

phase consumes 52.9% to 82.5% of the time of the whole

SVM-based prediction. This phenomenon is more serious for

protein sequences with a small length. Hence it is necessary to

improve the efficiency of the classification phase.

We executed the parallelized SVM-based prediction

algorithm for 4 protein sequences through the task model in

Aneka with different numbers of executors. Fig. 10 illustrates

the performance speedup. In the experiment, the lengths of 4

sample protein sequences are respectively 50, 100, 174 and

417. From the figure it is evident that the classification phase,

Fig. 9 Prediction Cost on Protein Sequences.

Fig. 8 Performance statistic of Aneka System.

Fig. 7 System Monitor of Aneka Web Console.

Fig. 6 Prediction Result.

which dominates the sequential execution time, decreases in

the parallel version as the number of executors increases. With

six Aneka executors, the execution time of the whole

prediction algorithm is reduced by 65%~42%.

In the scalability experiment, we used 64 sample protein

sequences. All of the 64 sequences were sent to the task client.

After the task client received each sequence of prediction

request, it created one job for it. Eventually there were 64 jobs

created and sent to the Aneka scheduler. As illustrated in Fig.

11, the backend computing system of Jeeva is scalable with

respect to the number of executors. Through 36 executors, the

prediction on 64 samples was finished within 20 minutes.

This section presents the architecture of Jeeva, including

the design of a web portal over the Aneka platform and its

support for an SVM based prediction algorithm. We will

briefly discuss background Aneka technology and its task

programming model whose services are utilized in the

realization of Jeeva portal.

VI. SUMMARY AND CONCLUSIONS

This paper presents Jeeva, a web portal for the protein

secondary structure prediction, which is enabled by the Aneka

platform. With the support of Aneka, an SVM-based

prediction algorithm has been deployed in a parallel manner.

The portal of Jeeva provides a convenient and flexible

interface for both registered and anonymous users.

Furthermore, administrators can also manage the history of

prediction results through the web portal and monitor the

running status of the Aneka system. The experiments were

conducted to evaluate the speedup of the prediction algorithm

and the scalability of Jeeva. We are working towards making

the Jeeva portal for regular community use.

ACKNOWLEDGMENT

This work is partially supported by research grants from the

Australian Research Council (ARC) and Australian

Department of Innovation, Industry, Science and Research

(DIISR). We thank Christian Vecchiola, Mustafizur Ranhman,

and Charity Laplap for their comments on improving the

quality of the paper. We thank Alan Yim for his contribution

to the development of Aneka monitoring web console.

REFERENCES

[1] B. Rost, Review: Protein Secondary Structure Prediction

Continues to Rise, Journal of Structural Biology,134,

204-218, 2001.

[2] B. Rost, PHD: predicting one-dimensional protein

structure by profile based neural networks, Methods in

Enzymology, 266, 525-539, 1996.

[3] B. Rost, Protein Structure Prediction in 1D, 2D and 3D,

The Encyclopaedia of Computational Chemistry, 3, 2242-

2255, 1998.

[4] C. A.Orengo, A. D.Michie, S.Jones, D. T.Jones, M.

B.Swindells, and J. M.Thornton, CATH- A Hierarchic

Classification of Protein Domain Structures, Structure, 5-

8, 1093-1108, 1997.

[5] C. A.Voigt, D. B. Gorden, and S.L. Mayo, Trading

Accuracy for Speed: A Quantitative Comparison of

Search Algorithms in Protein Sequence Design, Journal

of Molecular Biology, 299: 789-803.

[6] D. P. Anderson1 and G. Fedak, The Computational and

Storage Potential of Volunteer Computing, Proceeding of

the 6th IEEE International Symposium on Cluster

Computing and the Grid, 2006.

[7] D. T. Jones, Protein secondary structure prediction based

on position-specific scoring matrices, Journal of

Molecular Biology, 292, 195-202, 1999.

[8] H. J.Hu, Y.Pan, R.Harrison, and P. C.Tai, Improved

Protein Secondary Structure Prediction Using Support

Vector Machine with a New Encoding Scheme and an

Advanced Tertiary Classifier, IEEE Transaction on

Nanobioscience, 3(4), 265-271, 2004.

[9] H. Kim, and H. Park, Protein Secondary Structure

prediction based on an improved support vector machines

approach, Protein Engineering, 16(8), 553-560, 2003.

Fig. 11: Application execution time.

Fig. 10 Computing Cost of Parallel SVM-based Prediction Algorithm.

[10] I. Foster and C. Kesselman, The Grid: Blueprint for a

Future Computing Infrastructure. Morgan, Kaufmann

Publishers, USA, 999.

[11] J. A. Cuff, and G. J. Barton, Evaluation and improvement

of multiple sequence methods for protein secondary

structure prediction, Proteins, 34, 508-519, 1999.

[12] J. Cheng, A.Randall, M.Sweredoski, and P.Baldi,

SCRATCH: a Protein Structure and Structural Feature

Prediction Server, Nucleic Acids Research, 33, 72-76,

2005.

[13] J. Gubbi, and D. Lai, M. W.Parker, and M. Palaniswami,

Protein Secondary Structure Prediction using Support

Vector Machines and a New Feature Representation,

International Journal of Computational Inteligence and

Applications, 6(4), 551-567, 2007.

[14] J.Guo, and H.Chen, Z.Sun, and Y.Lin, A Novel Method

for Protein Secondary Structure Prediction Using Dual

Layer SVM and Profiles, Proteins: Structure, Function

and Bioinformatics, 54, 738-743, 2004.

[15] J. J.Ward, L. J. McGuffin, B. F. Buxton, and D. T. Jonese,

Secondary Structure Prediction with Support Vector

Machines, Bioinformatics, 19(13), 1650-1655, 2004.

[16] K. Karplus, C. Barrett, and R. Hughey, Hidden Markov

Models for Detecting Remote Protein Homologies,

Bioinformatics, 14, 846-856, 1998.

[17] M. N. Nguyen, and J. C. Rajapakse, Multi-Class Support

Vector Machines for Protein Secondary Structure

Prediction, Genome Informatics, 14, 218-227, 2003.

[18] M. N. Nguyen, and J. C. Rajapakse, Two stage support

vector machines for protein secondary structure

prediction, International Journal of Data Mining and

Bioinformatics, 1-3, 248-269, 2007.

[19] M. Ouali, and R. D. King, Cascaded multiple classifiers

for secondary structure prediction, Protein Science, 9,

1162-1176, 2000.

[20] M.Taufer, C. Kerstens, C. Brooks III, Predictor@Home:

A "Protein Structure Prediction Supercomputer" Based

on Global Computing, IEEE Transactions on Parallel and

Distributed Systems, 17-8, 786- 796, 2006.

[21] S. F.Altschul, T. L.Madden, A. A.Schaffer, J.Zhang,

Z.Zhang, W.Miller, and D. J.Lipman, Gapped BLAST and

PSI-BLAST: a new generation of protein database search

programs, Nucleic Acids Res., 25-17, 3389-3402, 1997.

[22] S. Hua, and Z. Sun, A Novel Method ofProtetin

Secondary Structure Prediction with High Segment

overlap Measure: Support Vector Machine Approach,

Journal of Molecular Biology, 308, 397-407, 2001.

[23] S.Mika, and B.Rost, UniqueProt: creating representative

protein-sequence sets, Nucleic Acids Research, 31-13,

3789-3791, 2003.

[24] S. S. Plotkin and J. N. Onuchic, Understanding Protein

Folding with Energy Landscape Theory, Quarterly

Reviews of Biophysics, (2002), 35: 205-286 Cambridge

University Press.

[25] T.Joachims, Making large-Scale SVM Learning Practical,

Advances in Kernel Methods - Support Vector Learning,

MIT-Press, B. Schölkopf, C. Burges, and A. Smola, 1999.

[26] V Vapnik, Statistical learning theory, Springer-Verlag,

New York, 1995.

[27] X. Chu, K. Nadiminti, J. Chao, S. Venugopal, and R.

Buyya, Aneka: Next-Generation Enterprise Grid

Platform for e-Science and e-Business Applications,

Proceedings of the 3rd IEEE International Conference

and Grid Computing, Bangalore, India, Dec. 10-13, 2007.

