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Abstract—This paper presents a Grid portal for protein 

secondary structure prediction developed by using services of 

Aneka, a .NET-based enterprise Grid technology. The portal is 

used by research scientists to discover new prediction structures 

in a parallel manner. An SVM (Support Vector Machine)-based 

prediction algorithm is used with 64 sample protein sequences as 

a case study to demonstrate the potential of enterprise Grids. 

I. INTRODUCTION 

The structure of protein plays a key role in the structure-

based design of drugs for the treatment of various diseases. 

However, it is still a challenge to find out protein structure 

based on its sequence, and the dependence on experimental 

methods may not yield protein structures fast enough to keep 

up with the requirement of current industry. Fortunately, the 

energy landscape theory [24] enables a framework for the 

development of algorithms to predict the structure of unknown 

proteins based on their sequence, which is known as protein 

structure prediction. 

From the perspective of computer science, protein structure 

prediction is a computing intensive task [5]. Since the 

prediction of protein structure is a complex task, it is usually 

sub-divided into two phases. The first one is secondary 

structure prediction and the second one is super secondary 

structure prediction, leading to tertiary structure, i.e., the 

specific atomic positions in three-dimensional space. As the 

first phase of protein structure prediction, accurate secondary 

structure prediction is a key element for correctly acquiring 

tertiary structure. 

A large number of algorithms [2][6][9][11] have been 

proposed for protein secondary structure prediction. To 

facilitate the collaboration between protein scientists across 

the world, it is a necessity for researchers to share their 

algorithms and results with colleagues dispersed at different 

geographical locations. Furthermore, to speed up the process 

of finding out new protein structures, we need a proper 

computational platform which simplifies the development of 

new prediction algorithms and improves the efficiency at the 

same time. For example, machine learning methods are 

currently used for secondary structure prediction. In particular, 

SVM (Support Vector Machines) based prediction has many 

advantages compared with other solutions [13]. However, its 

computing intensive nature demands an improvement on its 

efficiency by parallel processing.  

In order to address the above two issues, Grid computing 

offers important solutions. Grid computing [10] provides 

faster computation facilities for minimizing the time required 

for solving problems, supporting on-demand access to 

distributed computing resources from multiple organisations, 

and enabling the creation of community computing 

application portal services. 

This paper proposes and presents the design, development 

and deployment of an interactive web-based portal, called 

Jeeva, for quick discovery of protein secondary structure 

prediction. In particular, our platform aims to support the 

following capabilities:  

• A collaborative environment to encourage and assist the 

deployment of new prediction algorithms in a parallel way, 

particularly for those amateur researchers with less well-

developed skills and expertise on parallel programming. 

• An easy for use environment for public users to access 

prediction algorithms released in our web portal and to 

manage their prediction history results in an online manner. 

Jeeva web portal system consists of an interactive web 

interface and a Grid middleware. With the interactive web 

interface, users can submit prediction requests for protein 

secondary structures, collect results, and manage the history of 

prediction data. By means of the Grid middleware, researchers 

can not only deploy their prediction applications in a 

distributed environment easily, but also monitor and manage 

the execution in the distributed environment. The Grid 

enablement of Jeeva is achieved by using Aneka [27], which 

is a .NET-based Grid software system for the creation of 

enterprise Grid environments. 

We use an SVM-based protein secondary structure 



prediction algorithm [13] as a case study to show the usage of 

Jeeva, and experiments to evaluate the performance and 

scalability of our platform.  

The remainder of this paper is organized as follows. 

Section II provides a discussion on related work.  Section III 

describes the background on SVM-based prediction. Section 

IV presents the architecture, design, and implementation of 

Jeeva. Section V shows the experimental evaluation of the 

system through the chosen SVM based prediction algorithm. 

Section VI concludes the paper with pointers to future work. 

II. RELATED WORK 

Protein secondary structure prediction is based on the 

prediction of protein 1-D structure from the sequence of 

aminoacid residues in the target protein [3]. Several methods 

have been proposed to find out the secondary structure based 

on physico-chemical properties and homology. The most 

popular secondary structure prediction methods currently in 

use include [1], [7], [11], [16], [19]. A detailed review of 

secondary structure algorithms until the year 2000 can be 

found in [1]. 

Recently, some significant work has been done on 

secondary structure prediction using Support Vector Machines. 

Hua and Sun [22] used SVMs and profiles of the multiple 

alignments from HSSP database as features and reported a Q3 

score as 73.5% on the CB513 dataset [11]. In 2003, Ward [15] 

reported 77% with PSI-BLAST [21] profiles on a small set of 

proteins. In the same year Kim and Park [9] reported an 

accuracy of 76.6% on the CB513 dataset using PSI-BLAST 

Position Specific Scoring Matrix (PSSM). Nguyen and 

Rajapakse [17][18] explored several multi-class recognition 

schemes and reported a highest accuracy of 72.8% on RS126 

dataset using a two stage SVM. Guo [14] used a dual layered 

SVM with profiles and reported a highest accuracy of 75.2% 

on the CB513 dataset. More recently, Hu [8] reported the 

highest accuracy of 78.8% on a RS126 dataset using a novel 

encoding scheme. 

A few of the above methods are made available in web 

servers for online access and utilization. As far as the authors 

are aware, none of the secondary structure prediction systems 

based on SVM is available through the web service 

technology. A few other servers supporting homology 

modeling, neural networks and hidden markov models, 

include PHD [2], PROF-King [19], PSIPred [7], JPred [11], 

SAMT99-Sec [16], and SCRATCH [12].  The SCRATCH 

web server uses a SVM for disulphide bridge prediction and a 

recursive neural network for secondary structure prediction. 

Predictor@Home [20] is using contributory resources for 

predicting the tertiary structure of proteins over the BOINC [6] 

platform. However, their secondary prediction algorithm runs 

locally in a sequential manner. 

 

III. BACKGROUND ON SVM-BASED PREDICTION 

An SVM based secondary structure prediction algorithm is 

used in [13]. Briefly, this method investigates the effect of the 

physico-chemical and statistical properties on protein 

secondary structure prediction along with evolutionary 

information in the form of position specific scoring matrix 

(PSSM). SVMs [26] are usually employed for classification 

and the outputs of SVM are converted to posterior 

probabilities for multi-class classification. For the web 

enabled system, we use the Chou-Fasman parameters and 

physico-chemical parameters along with evolutionary 

information in the form of position specific scoring matrix 

(PSSM) as features. The SVM implementation used in Jeeva 

is SVMLight [25].  

It is well known that testing new input data by using SVM 

is relatively slow compared to other machine learning 

approaches. In case of protein structure prediction, the 

problem becomes more complex as the training size of the 

data is very large, i.e. in the order of tens of thousands. For 

multi-class classification in secondary structure prediction, 

many SVMs are required. In our case, for three class 

classification, six SVM models are required. This 

considerably increases the computational complexity. As each 

of these classifiers is independent of each other, it is obvious 

that parallelizing them has profound effects in the final time 

taken for predicting the secondary structure. In our current 

web enabled system, each classifier is taken as an independent 

task supported by the task programming model in Aneka. 

 
Fig. 1 illustrates the flow chart of the SVM based algorithm. 

There are 3 phases: initial, classification and final prediction 

phases. During the initial phase, the algorithm reads a protein 

sequence, submits it to PSI-BLAST [21] to obtain the PSSM 

features and finally generates feature vector for classification.  

A new dataset from CATH [4] (version 2.6.0) is created. 

This set has been used to train the system for all predictions
1
. 

At the first stage of dataset preparation, proteins with 

sequence length greater than 40 and resolution of at least 2 

Ang are selected. We use UniqueProt [23] with an HSSP-

value of 0 to eliminate identical sequences. Out of 10,000 

proteins, 504 proteins which have the sequence identity of less 

than 15% are retained. There are 97,593 residues with the 

                                                 
1 http://www.ee.unimelb.edu.au/ISSNIP/bioinf/ 
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Fig. 1 Flow chart of The SVM based Prediction Algorithm. 



average sequence length of 194.  

The classification phase is performed by six classifiers: HH, 

SS, TT, HS, ST and TH. Generally, the prediction of 

secondary structure is a three class (H, E, C) pattern 

recognition problem. The SVM method proposed in Gubbi et. 

al. [13] uses six classifiers which include three one vs one 

classifiers (H/E, E/C, C/H) and three one vs rest classifiers 

(H/~H, E/~E, C/~C). Multi-class classification is performed 

by combining the outputs of the six binary classifiers. Each of 

the six classifiers will read the data vector from the initial 

phase and generate corresponding classification result. Finally, 

the prediction result will be based on all of these six 

classification results in the final phase. 

IV. ARCHITECTURE AND DESIGN 

This section presents the architecture of Jeeva, including 

the design of a web portal over the Aneka platform and its 

support for an SVM based prediction algorithm. We will 

briefly discuss background Aneka technology and its task 

programming model whose services are utilized in the 

realization of Jeeva portal. 

A. Aneka and Task Model 

Aneka is a .NET-based enterprise Grid software platform, 

which allows the creation of enterprise Grid environments. 

Each Aneka node consists of a configurable container hosting 

several mandatory services and other optional services. The 

mandatory services provide the basic capabilities required in a 

distributed system, such as communications between Aneka 

nodes, security, and membership. Optional services can be 

installed to support the implementation of different 

programming models in Grid environments. For most 

programming models in Grid environments, their runtime 

system consists of a scheduler and many executors across 

distributed resources. For each model, its scheduler and 

executor are implemented as optional services in an Aneka 

container. 

 
Currently, Aneka supports the following programming 

models: thread model, task model, and MPI model. Thread 

and task models are used for independent tasks. In Jeeva, we 

choose task model to support the SVM-based algorithm. 

Fig. 2 illustrates a configuration of Aneka deployment 

scenario for executing the task model. This is a representative 

setting of Aneka. One node is configured with a Task 

Scheduler component, while the other nodes are configured 

with Task Executor components. Basic service components, 

such as communication and security components are installed 

with every Aneka node for handling secure communications 

between them. A Membership service is typically hosted on 

the same Aneka node with the Scheduler component, which 

can query the Membership component for available Aneka 

nodes with Task Executor components.  

By using this programming model, we can easily parallelize 

the SVM-based algorithm. A task is a single unit of work 

processed in a node, and is independent of other tasks 

executed on the same or on the other nodes at the same time. 

It is atomic, in the sense that it either executes successfully or 

fails.  

During execution, a task (including its dependency for 

execution) is represented by an object, which can be serialized 

and submitted by the client to the scheduler. The task 

scheduler is always waiting for request messages such as task 

submission, query, and abort. Once a task submission is 

received by the scheduler, it is first queued and the scheduler 

thread picks up the queued tasks and maps them to available 

resources based on the configurable scheduling policy. 

Furthermore, the task scheduler keeps track of the queued and 

running tasks. 

The task executor waits for task assignments from the 

scheduler. When the executor receives a task, it first unpacks 

the task object and its dependencies, creates a separate 

security context for the task, and then starts running the task. 

Once the execution of a task is finished, the executor sends the 

results back to the scheduler. 

 
To support the SVM-based algorithm in a parallel manner, 

we first subdivide the prediction process into multiple 

interdependent tasks. Fig. 3 shows the DAG (Directed Acyclic 

Graph) representation of the SVM-based algorithm. BLAST 

and Create Vector in the initial phase are represented by task 

A and B respectively. Tasks C to H represent 6 classifiers in 

the classification phase, while task I represents the final 

prediction phase. For each prediction job, the task client sends 

tasks from A to I to the task scheduler according to their 

dependency order. Within one job, tasks from C to H are 

totally independent and can be executed at the same time on 

different Aneka nodes. Furthermore, as the web portal is 

publicly shared, it may receive many prediction requests at the 

same time. For different requests, each task in one job is 

independent of the tasks in another job and they can be 

executed simultaneously. 
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Fig. 3 Task Graph for SVM-based Algorithm. 
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Fig. 2 Architecture of Aneka with Task Components. 



B. Design of Web Portal 

With the support of Aneka and its task model, we 

implemented task graph shown in Fig. 3 and developed a Web 

access interface. As illustrated in Fig. 4, our web portal 

system consists of two layers; namely web server layer and 

Aneka Grid layer. The web server layer is responsible for a) 

accepting protein secondary structure prediction requests from 

users; b) submitting prediction requests to Aneka Enterprise 

Grid for prediction and collecting prediction results; c) 

acknowledging prediction results to users, keeping prediction 

results in the database, and supporting online visualization in 

response to the queries of users. Aneka Grid layer supports its 

computing resources for prediction by means of a scalable and 

fault tolerant scheduling mechanism. 

In the web server layer, we have one server machine which 

hosts an IIS (Internet Information Services) to provide portal 

services and an instance of task client for submitting task 

requests to Aneka Grid. Both input sets and the results need to 

be maintained in persistent storage so that users can retrieve 

results at later time. We have achieved this by recording all 

transactions in the database. 

 
The web portal accepts prediction requests from both 

anonymous and registered users. We provide an authentication 

service for registered users and keep the privacy of their 

results. For both anonymous and registered users, we keep 

their requests and results persistently in the database and 

provide a query service so that they can access their results 

online at any time. Additionally, the portal service also 

provides a management interface for the administrators, 

through which they can monitor the Aneka system and 

manage the information of users and prediction results in the 

database. 

The task client in the web server layer works as a bridge 

between prediction requests and the Aneka computing 

services. The web interface first puts every prediction request 

into the database, and the task client frequently checks the 

database for new requests. Every time a new request is found, 

the task client generates a new job for the request and submits 

its tasks to Aneka according to the precedence order. For the 

task whose dependency consists of a large data set with 

infrequent changes, such as BLAST with the nr database 

which require about 2GB disk space, we deploy it on each 

Aneka node prior to its execution. During task submission, 

rather than sending the task with its large set of dependency to 

the task scheduler every time, we just send a request to 

execute BLAST. Similarly, what the executor receives from 

the scheduler is also an execution request, through which the 

executor invokes BLAST to execute locally. For other tasks, 

which may have frequent changes with small size of input 

data and dependency, such as each classifier, we serialize its 

content with its dependency modules and input data into one 

package and send it to the task scheduler. 

The Aneka scheduler accepts task submissions and then 

maps them to the available Aneka nodes featuring the Task 

Executor component through a load balancing policy. 

Currently, the scheduler adopts a retry policy to handle 

failures. If one task fails due to physical machine failures, it 

will be rescheduled to other Aneka nodes. This process 

repeats until the task execution is completed successfully. 

Please refer to [27] for load balancing and failure handling 

policies in details. 

C. Implementation of Web Portal 

The web portal of Jeeva is implemented over ASP.NET 

platform and the task client is implemented with C# language 

over .NET framework. 

Fig. 5 presents the interface for registered users to submit 

prediction requests. The prediction results are sent to the users 

through email. Furthermore, users can also browse their 

prediction history online. Fig. 6 illustrates one example 

prediction result through online browsing.  

 
Detailed records of users and prediction results are stored in 

a SQL server. To enable easy discovery of bugs during the 

development, we keep a log for recording the error 

information of each task for every prediction job. The log is a 

text file in the file system of web server layer.  

 

Fig. 5 Submit Prediction Request. 

 

Fig. 4 Architecture of Jeeva. 



The administrators can monitor the status of the Aneka 

system with an Aneka web console, including the 

configuration of each Aneka node and the runtime 

performance statistics. As illustrated in Fig. 7, the detailed 

information of each machine is displayed when the mouse 

pointer moves over the icon. 

 

 
 

Fig. 8 illustrates the performance statistics panel in the 

Aneka web console. The top panel displays the aggregated 

resource usage in the system, while the bottom panel displays 

the statistics on the tasks queues, including the waiting queue, 

running queue and finish queue. 

 

 

 

The Aneka web console is implemented with Ajax. Every 

time when there are updates of the system status, an event is 

transferred through Ajax to the web console which displays 

the updated system status. 

V. PERFORMANCE EVALUATION 

This section evaluates the performance of the backend 

runtime system of Jeeva. The experiments show the speedup 

of the SVM-based prediction algorithm deployed in Jeeva for 

single prediction job and the scalability of Jeeva system under 

multiple jobs submission. During the experiments, the Aneka 

system with task model for the protein secondary structure 

prediction was set in an enterprise Grid consisting of 37 nodes 

drawn from three student laboratories in the University of 

Melbourne. During testing, one machine worked in the web 

server layer hosting an IIS server and a task client. Other 

machines comprised Aneka system with one as a scheduler 

and the others as executors. Each machine has a single 

Pentium 4 processor, 500MB of memory, 160GB IDE disk, 1 

Gbps Ethernet and runs Windows XP. 

 

 
We conducted the experiments with the SVM-based 

prediction algorithm on the EVA dataset. The result gives an 

average Q3 accuracy of 74.5% and ranks in top five protein 

structure prediction methods [13]. 

First, let us show the importance of parallelizing the 

classification phase for the SVM-based algorithm. Fig. 9 

illustrates the performance of three phases of the SVM-based 

prediction for 7 protein sequences with different lengths. We 

can see that the time consumed by the classification phase 

dominates the time of whole prediction; the classification 

phase consumes 52.9% to 82.5% of the time of the whole 

SVM-based prediction. This phenomenon is more serious for 

protein sequences with a small length. Hence it is necessary to 

improve the efficiency of the classification phase. 

We executed the parallelized SVM-based prediction 

algorithm for 4 protein sequences through the task model in 

Aneka with different numbers of executors. Fig. 10 illustrates 

the performance speedup. In the experiment, the lengths of 4 

sample protein sequences are respectively 50, 100, 174 and 

417. From the figure it is evident that the classification phase, 

 

Fig. 9 Prediction Cost on Protein Sequences. 

 

 

Fig. 8 Performance statistic of Aneka System. 

 

Fig. 7 System Monitor of  Aneka Web Console.  

 

Fig. 6 Prediction Result. 



which dominates the sequential execution time, decreases in 

the parallel version as the number of executors increases. With 

six Aneka executors, the execution time of the whole 

prediction algorithm is reduced by 65%~42%. 

 

 
In the scalability experiment, we used 64 sample protein 

sequences. All of the 64 sequences were sent to the task client. 

After the task client received each sequence of prediction 

request, it created one job for it. Eventually there were 64 jobs 

created and sent to the Aneka scheduler. As illustrated in Fig. 

11, the backend computing system of Jeeva is scalable with 

respect to the number of executors. Through 36 executors, the 

prediction on 64 samples was finished within 20 minutes. 

 
 

This section presents the architecture of Jeeva, including 

the design of a web portal over the Aneka platform and its 

support for an SVM based prediction algorithm. We will 

briefly discuss background Aneka technology and its task 

programming model whose services are utilized in the 

realization of Jeeva portal. 

VI. SUMMARY AND CONCLUSIONS 

This paper presents Jeeva, a web portal for the protein 

secondary structure prediction, which is enabled by the Aneka 

platform. With the support of Aneka, an SVM-based 

prediction algorithm has been deployed in a parallel manner. 

The portal of Jeeva provides a convenient and flexible 

interface for both registered and anonymous users. 

Furthermore, administrators can also manage the history of 

prediction results through the web portal and monitor the 

running status of the Aneka system. The experiments were 

conducted to evaluate the speedup of the prediction algorithm 

and the scalability of Jeeva. We are working towards making 

the Jeeva portal for regular community use.  
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