
A Meta-scheduler with Auction Based Resource Allocation for Global Grids

Saurabh Kumar Garg, Srikumar Venugopal and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

{sgarg, srikumar, raj}@csse.unimelb.edu.au

Abstract

As users increasingly require better quality of service

from Grids, resource management and scheduling mecha-

nisms have to evolve in order to satisfy competing demands

on limited resources. Traditional schedulers for Grids are

system centric and favour system performance over increas-

ing user’s utility. On the other hand market oriented sched-

ulers are price-based systems that favour users but are

based solely on user valuations. This paper proposes a

novel meta-scheduler that unifies the advantages of both the

systems for benefiting both users and resources. In order to

do that, we design a valuation metric for user’s applications

and computational resources based on multi-criteria re-

quirements of users and resource load. The meta-scheduler

maps user applications to suitable distributed resources us-

ing a Continuous Double Auction (CDA). Through simula-

tion, we compare our scheduling mechanism against other

common mechanisms used by current meta-schedulers. The

results show that our meta-scheduler mechanism can satisfy

more users than the others while still meeting traditional

system-centric performance criteria such as average load

and deadline of applications

1. Introduction

Computational resources in large Grids are generally

managed by meta-schedulers that interface with the lo-

cal job schedulers at each resource such as Portable

Batch Scheduler (PBS), Load Sharing Facility (LSF) and

LoadLeveler, to determine the most appropriate resource for

executing a job submitted by a Grid user. Examples of such

meta-schedulers include Maui/Moab scheduling suite [1],

Condor-G [2], gLite Workload Management System [3] and

GridWay [4]. These meta-schedulers mostly focus on im-

proving system-centric performance metrics such as utiliza-

tion, average load and applications’s turnaround time [5].

While the Grids have become more mature with re-

spect to the integration of different components, users have

also developed more sophisticated requirements, and are

ready to pay upto a certain limit to satisfy them. Current

meta-schedulers are unable to satisfy such requirements as

they do not consider users’ urgency and resource valuation.

Thus, we need new scheduling mechanisms which are not

only efficient but also that take into account user interests,

resource valuation and demand; and schedule user applica-

tion jobs in a fair manner [13].

In recent years, a number of researchers have proposed

economy-based models for more efficient management of

Grid resources [6][7][8]. Such models apply well-known

and proven economic mechanisms such as markets and

auctions to solve the challenges of resource allocations in

shared distributed computing environments. Auctions have

been particularly preferred by many such projects − for

example, Tycoon [7] and Bellagio [8]– as they provide

a decentralized structure, are easy to implement, provide

immense flexibility to participants to specify their valua-

tions and are considered as the most efficient among current

market management systems [9][20]. But these economic-

based systems have many limitations. First, while these ap-

proaches distribute services fairly, they limit the ability of

customers to express fine-grained preferences for services.

In addition to that, users may not be able to express their

true valuations accurately as they may lack the sophistica-

tion to make decisions based on changing resource load and

prices. Finally, users with low budgets and urgent require-

ments may not be able to gain resource allocation as the

system may be monopolized by those with large budgets.

This paper presents an auction-based meta-scheduler

that aims to overcome the afore-mentioned limitations by

taking into account not only the user valuations and re-

source prices but also other important factors such as re-

source load and waiting time for the jobs. The meta-

scheduler matches jobs to resources using Continuous Dou-

ble Auction (CDA). The job and resource valuation are then

dynamically change depending on the urgency of the job

and the load on the resources. We evaluate this mechanism



through extensive simulations using real workload traces

and show how the meta-scheduler manages different user

requirements in a scenario where the demand for the re-

sources exceeds the supply. Therefore, the main contribu-

tion of this paper is the design of a dynamic auction-based

meta-scheduling mechanism that internally computes valu-

ation of user applications and resources and performs better

than classical scheduling mechanisms in similar conditions.

In the next section, we discuss related scheduling and

economy-based resource management projects. Section III

presents the system model and details of our scheduling

mechanism are presented in Section IV. Sections V presents

the experimental setup used for performance evaluation and

section VI discusses the results. Finally, we conclude the

paper and present future steps in this direction.

2. Related Work

Moab [1] is an advanced meta-scheduler that allows dis-

tributed workloads to be run across independent clusters.

GridWay [4] is a light-weight meta-scheduler that follows

the ”greedy approach” to schedule various user applications

in round robin manner. However, GridWay does not cur-

rently support scheduling mechanisms that schedule a user

application considering QoS requirements of other concur-

rent user applications. gLite Workload Management Sys-

tem (WMS) [3] is part of the EGEE (Enabling Grids for

E-Science) toolkit that is used to manage large computing

installations extending across hundreds of sites. It uses ea-

ger and lazy policies for scheduling jobs to individual re-

sources. Eager scheduling means that a job is bound to

a resource as soon as possible and once the decision has

been taken, the job is passed to the selected resource for ex-

ecution. Lazy scheduling waits for a resource to become

available before it is matched to the submitted job. The

Community Scheduler Framework (CSF) [21] coordinates

communications among multiple heterogeneous schedulers

that operate at the cluster level. It supports LSF, open PBS

and Grid Engine (SGE). In all the above schedulers, while

jobs are matched to resources according to system require-

ments such as memory and number of nodes required, the

urgency and priority assigned by the users generally given

less prominence. Thus, these schedulers are not suitable for

environments with multiple users having different QoS re-

quirements and competing for the same resources as they do

not differentiate between users with different requirements.

Consequently, researchers have been examining the appro-

priateness of ’market-inspired’ resource management tech-

niques to ensure that users are treated fairly.

Many market-based approaches [6] have been proposed

for resource allocation on resources and other distributed

systems like Grids. REXEC [13] and Tycoon [9] are propor-

tional share systems in which a task is allocated a share of

the resource depending on the proportion of its bid (price)

to the total sum of the bids of all tasks executing on that

server. LibraSLA [5] prioritizes users on the basis of job

deadlines and the user-specified penalties for not meeting

them. Bellagio [10] is a system that seeks to allocate re-

sources for distributed computing infrastructures in an eco-

nomically efficient fashion to maximize aggregate end-user

utility. It uses second-price auctions to encourage users to

reveal their true valuations of the resources.

Within these systems, users provide job valuations

whereas in our mechanism, the meta-scheduler computes

its own valuations for user applications based on user input

and system conditions. The Valuations are invisible to users

or resources. Also, REXEC, Tycoon and LibraSLA primar-

ily aim to improve the profitability and utilisation of the re-

source providers while our meta-scheduler aims to benefit

both the users and the resources.

The auction-based mechanisms have been the subject of

many previous studies. Grosu, et al. [14] compare resource

allocation protocols using First-Price, Second-Price Vick-

ery and Double Auctions (DA). They show that DA favors

both users and resources while First-price Auction is biased

towards resources and Vickery auction favors users. Go-

moluch, et al. [15] compared CDA with Proportional Share

Protocol for resource allocation and concluded that CDA

performs better in most of cases. Kant, et al. [16] compared

three different Double Auction protocols and concluded that

the CDA protocol performs better than the others in terms

of resource utilization, resource profit and spent budget.

Pourebrahimi, et al. [17] used CDA for resource allocation

on grids that employed a pricing mechanism based on his-

torical data. Therefore, we have opted for CDA as the basic

mechanism for our meta-scheduler. Our meta-scheduling

environment is closest to that of GridWay [4] but we have

used CDA-based mechanism to allocate resources to users.

Our work is quite different from other market-based sys-

tems as the auction mechanism is invisible to both the users

and the resources. Moreover, our meta-scheduler assigns

values to applications and resources based on dynamic con-

ditions such as resource load, demand and supply of re-

sources, and deadline of user applications.

3. The Meta-Scheduling System

The meta-scheduler presented follows the model com-

monly found in large computing installations across edu-

cational and research institutions [18]. In this model, re-

sources are managed at different sites by administrators

(Service Providers) who have to cater to the user’s needs

at their site. Batch scheduling systems that manage these

resources are generally organised as a collection of user-

accessible job queues where a queue may allow submission

of only those jobs that meet certain criteria (e.g. within



Figure 1. The DAM’s mechanism

a maximum job size) [19]. Providers assign queues for

exclusive use of the meta-scheduler, and supply informa-

tion about load and waiting times of each such queue to

the meta-scheduler at regular intervals. Providers also sup-

ply an initial valuation (cost) to meta-scheduler for running

a job in a queue based on their estimation of the relative

strength of their resources. Users submit their applications

to the meta-scheduler for execution within some deadline at

the resources in the computing installation/Grid.The dead-

line is estimated by a user on the basis of expected execution

time of the application and his/her urgency. The user’s ap-

plication is valued on the basis of the result urgency and the

information provided by the meta-scheduler, about the costs

of using the resources at regular time-intervals. In the cur-

rent system, we assume user applications to follow the Bag-

of-Tasks (BoT) model, that is, the tasks within the applica-

tion are translated to independent jobs on the Grid resources

[22]. The meta-scheduler uses the information supplied by

the providers and the users to match jobs to the appropriate

queues on the resources. The meta-scheduler calculates its

own valuation for the resources and user applications.The

meta-scheduler acts as an auctioneer that matches jobs to

resources using a CDA mechanism. The objective of the

meta-scheduler is to conduct the resource allocation fairly

so that the maximum number of applications is completed

and the QoS requirements of users are met. It also aims to

distribute the load fairly across the different resources. Fig-

ure 1 shows the elements of the meta-scheduler, which can

be divided into three parts: (1) collection: meta-scheduler

collects queue informations, (2) valuation: assign values to

the user applications and resource queues, and finally, (3)

matching using CDA. In the Figure 1, Un represents user

application, ak and bn represent ask and bid, and mQk rep-

resents resource queue. At regular intervals (or scheduling

intervals), the meta-scheduler matches the jobs to the re-

source queues if the deadline constraint of the application is

satisfied. If a job cannot be matched, then it is considered

in the next scheduling interval.

3.1. Continuous Double Auction (CDA)

In a CDA, both sellers and buyers submit bids to an auc-

tioneer who continually ranks them from highest to low-

est in order to generate demand and supply profiles. From

the profiles, the maximum quantity exchanged can be de-

termined by matching selling offers or asks, starting with

lowest price and moving up, with the demand bids, starting

with highest price and moving down. This format allows

buyers to make offers and sellers to accept those offers at

any particular moment.

An auctioneer clears asks and bids continuously as they

arrive. When it receives a new bid bi, it searches for an ask

aj lesser than bid bi. If it finds one, it sends the match to

the bidder with a trading price that is generally the average

of the bid and the ask values. Otherwise,the bid is rejected.

When it receives a new ask ai, it searches for a bid bj greater

than ai. If it finds such a bid, it sends the match to the

supplier, otherwise the ask will be inserted in the ask list.

We have used a slightly different version of this dou-

ble auction mechanism in our scheduler mechanism. The

CDA is held at regular scheduling intervals and all the bids

are matched at the end of these intervals.Within our meta-

scheduler job valuation is considered as a bid while resource

valuation is considered as an ask.

3.2. Pricing Mechanism

The Grid services may be priced based on the cost of

infrastructure, and economic factors like supply and de-

mand. However, user needs and urgency, and simulta-

neously, efficient utilization of Grid services must be re-

flected through pricing (valuation) of user applications and

resources. Therefore, the meta-scheduler must generate a

pricing metric for both users and resources that takes into

account all these constraints. This pricing is dynamic, that

is, in each scheduling cycle; it gets updated based on various

parameters, and the dynamic demand and supply of system.

Valuation (Pricing) of Resources: In order to balance

load across independent grid services, the meta-scheduler

tries to submit more jobs to the least loaded resources. Also,

the most urgent job must be matched to the fastest queue.

Therefore, the valuation of resources should be such that



the resource with minimum load should get minimum value

(as in CDA, the maximum bid is matched to minimum ask).

Therefore, PR(t), the price of a resource at time, is deter-

mined by the following:

PR(t) ∝ wR(t−1), where wR(t−1) is average queue
waiting time,

PR(t) ∝ Demand
Supply

,

PR(t) ∝ cR, where cR is initial price given by
the resource,

PR(t) ∝ l(t−1), where is l(t−1) load of resource,

After combining above equations, we get the price metric

for the clusters as:

PR(t) = K × wR(t−1) × cR × l(t−1) (1)

where K is a proportionality constant.

Algorithm 1: Pseudo code for DAM

ScheduleList← null;1

while current time ¡ next schedule time do2

RecvResourcePublish(Pj)//from providers3

RecvJobQos(Qj) //users4

endw5

CalculateDemand (Qj)6

CalculateSupply(Pj)7

UpdateBidPrices(Qj)8

UpdateAskPrices(Pj)9

List asks←Sort Asks(Pj)10

List bids←Sort Bids(Qj)11

Let j=0 //pointer to resource list a?asks(j)12

n=availableQueueSlots(a)13

foreach bid i in list bids do14

b←bids(i) foreach task j of bids b do15

if n¿0 then16

if a.value()¡b.value then17

if check Deadline(i,a) then18

Schedule j=AssignResource(i,a)19

addinSchedulelist(Schd List)20

n–21

else22

Goto line 3723

endif24

else25

if IsEmpty(asks) then26

break27

else28

j++29

a←asks(j)30

endif31

endif32

else33

endif34

endfch35

endfch36

foreach element in Schd List do37

notifyuser()38

endfch39

Valuation (Pricing) of User Application: As discussed

previously, each user submits to the meta-scheduler his/her

budget (bu), deadline (du), application length (lu), and the

number of nodes required (nu). Let Pu(t) be the valuation

of the user application. As user applications with the maxi-

mum budget must be given higher priority,

Pu(t) ∝ bu

Also, the more urgent a job, higher its priority, therefore,

Pu(t) ∝
1

du − Tt

where Tt is the current time. A user application that has

waited longer gains higher priority.

Pu(t) ∝ Tt − St, where Stis the time the application was

submitted.

Finally, as the valuation is based on the demand and sup-

ply of resources (clusters) in the system,

Pu(t) ∝ Demand
Supply

, where Demand is total number of task

to allocate and Supply is the total number of CPUs in all

resources.

Therefore, we get the following metric for pricing of user

applications,

Pu(t) = ku × bu ×
1

du − Tt

×
Demand

Supply
× (Tt −St) (2)

3.3. DAM: Double Auction-based Meta-
scheduling

DAM algorithm uses the valuation metric given in Equa-

tions (1) and (2) to assign valuation to user applications and

grid resource queues at the end of every scheduling interval.

These valuations are used to match each component job of

the user application to suitable resource queues. Algorithm

1 shows the scheduling mechanism in the meta-scheduler.

The meta-scheduler schedules the user applications on in-

dependent resources at discrete time intervals (Line 2). In

each interval, the meta-scheduler waits for user’s request

for resources (Line 4) and the information about the waiting

times in each of the resource queues supplied by the corre-

sponding provider (Line 3). At the end of scheduler inter-

val, the meta-scheduler calculates the demand for resources

and their supply (Line 6-7). The meta-scheduler uses sup-

ply and demand information to assign values to user appli-

cations (bids) and to each resource’s queue(asks) using the

pricing mechanisms presented in the previous section (Line

8-9). Then, all asks are sorted in ascending order (Line 10)

and all bids are sorted in descending order (Line 11). For

each bid (or a job in a user application), the meta-scheduler

finds an ask (or a resource queue) of a lesser price than the

valuation (Lines 18-19). It then checks that the deadline for

the application is not violated by the assignment (Line 20).



If so, the job is then assigned to a slot in that queue (Line 21)

and this assignment is added to the schedule list (Line 22).

If the deadline check fails, then, due to the manner in which

the pricing was performed, no other ask can be matched to

the job’s bid (Line 25). Therefore, the job is removed from

the bids list for that scheduling interval.

Complexity of meta-scheduling mechanism and match-

ing: Let n be the number of user applications with total

N tasks. Let m be the number of resources each containing

q number of queues.The main operations performed during

meta-scheduling are:

1. The calculation of demand and supply which are of

order O(qm+n).

2. The valuation of user application is of order O(n)

3. The valuation of cluster’s queue is O(mq)

4. The sorting of asks and bids is of

O(nlogn+mqlog(mq))

5. Matching in worst case is of order O(N) when all tasks

are matched to corresponding queue slots.

Therefore, the resultant complexity of the meta-scheduling

mechanism is summation of time order of above operations

i.e.

[O(qm + n) + O(n) + O(mq) + O(n log n + mq log(mq)
+O(N)] = O(n log n + mq log(mq) + N)

4. Experimental Configuration

We use GridSim [23] to simulate our double auction-

based mechanism for matching user applications with Grid

resources. Our experiments employ real workload traces

gathered from existing supercomputers and collected in the

Parallel Workload Archive [24]. For this experiment, we

have selected a subset of 500 applications (associated with

each user) from the trace of the Linux cluster (Thunder) at

LLNL for the duration between February and June 2007

[24]. Since the workload trace does not contain any in-

formation about the user’s deadline and budget, these were

generated using a uniform random distribution. For a user

application with a runtime r, the deadline was generated ran-

domly with uniform distribution between r and 3r. The av-

erage initial budget given by the user varies between 90000

and 160000 currency units. The user budgets are assigned

so that at least half of users can afford to execute their appli-

cation on the resources with highest valuation. The user’s

application’s runtime, number of processing elements (PEs)

required and submission times are taken from the workload

traces. The user application is modelled as a Bag-of-Task

application, consisting a set of independent jobs, the size of

which is the same as the number of processors required by

the application. Therefore, a total of 30,000 jobs were sim-

ulated through these experiments. The computing installa-

tion modelled in our simulation is that of a subset of the Eu-

ropean Data Grid 1 test bed that contains 8 Grid resources

spread across six countries connected via high capacity net-

work links. The configurations assigned to the resources in

the testbed for the simulation are listed in Table 1. The con-

figuration of each resource is decided so that the modelled

test bed would reflect the heterogeneity of platforms and

capabilities that is normally the characteristic of such in-

stallations. All the resources were simulated as clusters of

PEs that employed easy backfilling policies in order to im-

prove responsiveness. The PEs associated with each cluster

in Table 1 are allocated exclusively to the meta-scheduler. It

can be presumed that each cluster has a separate set of PEs

assigned exclusively to local users. We have sub-divided

the allocated PEs of each cluster into 3 queues in ratio of

1:2:3 of the total number of PEs in the cluster. Within these

experiments, the clusters are dedicated to Grid users, and

therefore, do not have any load from local users. The pro-

cessing capabilities of the processors were rated in terms of

Million Instructions per sec (MIPS) so that the application

requirements can be modeled in Million Instructions (MI).

The average initial valuations that are assigned to each re-

source is between 4.5 and 9.5 currency units per processor

per second. We have compared our scheduling mechanism

Table 1. Simulated EDG Testbed Resources
Resource name

(location)

Number. of

nodes

Single

PE rating

(MIPS)

RAL(UK) 2050 1140

Imperial Col-

lege(UK)

2600 1330

NorduGrid (Norway) 650 1176

NIKHEF (Nether-

lands)

540 1166

Lyon (France) 600 1320

Milano (Italy) 350 1000

Catania (Italy) 200 1330

Padova (Italy) 250 1200

to four other mechanisms for these experiments:

• Shortest Job First (SJF): In this mechanism, the jobs

are prioritized on the basis of estimated runtime. This

is very common algorithm used by resource manage-

ment systems.

• First Come First Serve (FCFS): A job is assigned to

the first available queue. This is one of the scheduling

algorithms used in meta-schedulers like GridWay[4].



• Highest Budget to Fastest Queue (HBFQ): In this

mechanism, the job with the maximum budget is as-

signed to the queue with minimum waiting time. This

mechanism favours applications with large budgets.

• FairShare or Proportional Share: In this mecha-

nism, in each schedule interval, each application is as-

signed queue slots proportional to the ratio of its bud-

get to the combined budget of all the applications. This

market-based algorithm is used in REXEC [13].

We tested our meta-scheduling mechanism by performing

a series of experiments that compare our mechanism with

the others. The following performance metrics are used to

compare fairness and user satisfaction of our mechanism

with others:

• Deadline urgency: Deadline urgency (u), which indi-

cates user urgency to get his application completed, is

defined as:

u =
deadline − starttime

executiontime
− 1 (3)

where starttime is start time of the user application

and executiontime is the execution time of user’s ap-

plication. The deadline is considered very urgent when

u < 0.25, urgent when 0.25 < u < 0.5, intermediate

when 0.5 < u < 0.75, relaxed when 1 > u > 0.75
and very relaxed when u¿1. This metric shows how

the scheduler deals with users with different demand

on time.

• Budget per job: The budget (valuation) provided by

the user for his/her application is divided by the num-

ber of jobs contained within the application to normal-

ize the budget across all the applications. This metric

examines how the schedulers allocate resources fairly

among different users with different budget groups.

• Number of Deadlines missed with increase in num-

ber of user applications: This metric is used to ex-

amine how the scheduling algorithms are able to cope

up with multiple users when demand for resources ex-

ceeds their supply.

To evaluate the benefit of our meta-scheduling mecha-

nism for the resources we have also considered the follow-

ing metrics:

• Average Load of a Resource: This is the number of

processors occupied across all the queues available to

the meta-scheduler in a resource, divided by the total

number of processors allocated to these queues.

• Average Valuation of a Resource: This is the average

of the valuations assigned to the queues in a resource

by the meta-scheduler.

5. Analysis of Results

5.1. Benefit for the users

(a) Effect of user urgency

(b) Effect of user budget

Figure 2. User Benefit.

This section shows how our meta-scheduler is more

fair to users by not only completing the most number of

applications with different QoS needs but also benefiting

every user in different urgency and budget groups.

Effect of Deadline urgency . Figure 2 shows the percent

of all user applications successfully completed based on the

urgency of user application deadlines. An application is not

considered successfully completed until all its component

jobs are executed. Figure 2 clearly shows that DAM has

outperformed other meta-scheduling mechanisms by com-

pleting more applications in every urgency group. This is

because the valuation of the user application increases with

the urgency in DAM but remains static in other mecha-

nisms. The longer an application’s jobs wait to be allocated,

the higher their value. In this way, the resource allocation is

fair to all the applications. FCFS has performed the worst in



Figure 3. Number of Deadline Miss

every case. The reason for this behavior is that FCFS mech-

anism may result in jobs with relaxed deadline being sched-

uled earlier than those with strict deadlines. In the case of

DAM, it is able to delay users with relaxed deadlines so that

it can accommodate applications with strict deadline.

Effect of User Budget . From Figure 3, we can see that

DAM completes at least as many as user’s applications as

FairShare. The FairShare fairly allocates resources among

various users on the basis of user budgets. In the case of

DAM, difference between the minimum and the maximum

percentage of successfully completed is about 14% while

for HBFQ, this difference is the highest a mong all other

mechanism that is 20%. It can be inferred that HBFQ is

least fair for all users while DAM scheduling almost equal

number of users from all budget groups. This is due to the

fact that our valuation of user application is not evaluated

just on the basis of budget given by user as in HBFQ. Thus

unlike DAM, HBFQ and FairShare provide more resources

to applications with higher budgets without considering the

deadlines of other users.

Number of Deadline miss . From Figure 4, we can

clearly see as the demand for resources (number of user ap-

plications) increases, the number of applications that missed

their deadline also correspondingly increases due to the

scarcity of resources. In this scenario, DAM is able to

satisfy more number of users than other mechanisms as

DAM is assigning valuation to user applications according

to deadline. In FCFS, deadline misses is increasing rapidly

due to starvation of many urgent applications.

5.2. Benefit for Resources

In this section, simulation results show how DAM affects

the load on different resources.

Variation of Weighted Load and Valuation of Resource

with Time . Using our DAM, Figure 5 shows that the

(a) Load Variation

(b) Valuation Variation

Figure 4. Resource Benefit.

load on all the resources increases over time as the number

of user applications increases, while Figure 6 shows that the

valuation of these resources also increases. This is due to

our valuation metric increasing the valuation of a resource

when its load increases. This in turn curbs the demand for

the resource since our DAM assigns jobs to resources with

the lowest valuation first. Hence, jobs are being transferred

to other resources. Consequently, the valuation of the least-

loaded Padova resource is also the minimum.

However, Figure 6 shows that there is a tremendous in-

crease in the valuation of the Catania and NIKHEF re-

sources. As listed in Table 1, even though Catania has the

least number of PEs, it is still being assigned jobs since it

has the highest PE rating and thus requires shorter average

waiting time for each of its queue as compared to other re-

sources. In case of NIKHEF resources, the reason for high

valuation is not only very high load but also job submit-

ted are larger in size which increased the queue waiting

time further. Thus resultant increased in the waiting time

lead to more high valuation of NIKHEF resources. On the

other hand, the RAL and Imperial College resources with

the highest number of PEs are among the least-loaded re-

sources and hence also valued least.



6. Conclusion

In this paper, a double auction based meta-scheduler is

presented. The meta-scheduler uses valuation metrics to

map user applications to resources consisting of indepen-

dent resources in a fair and efficient manner to benefit both

user and resource side. The valuation metrics are designed

to assign values to user applications on the basis of user

QoS requirements and to resources on the basis of their

load. This valuation is dynamic in nature and changes as

the load of resources increase or decrease. The valuation

of user application also varies depending on the length of

time the application waited in the meta-scheduler to have

all its component jobs executed on matching resources.

We also compared our scheduling mechanism (DAM) with

two traditional scheduling mechanisms (SJF and FCFS) and

two market-based scheduling mechanisms (HBFQ and Fair-

Share). Our results clearly show that our mechanism is not

only able to satisfy more users, but also benefited all users in

different urgency and budget ranges. Moreover, it is shown

that our valuation metric can be very effective in balancing

the load across various resources. Thus in overall our mech-

anism benefited both the resources and users. In our current

design, every task of an application has same value and are

considered equivalent. But, some tasks are more critical or

resource intensive than others. In the future, we would like

to develop differential pricing mechanisms for such scenar-

ios and apply them to our meta-scheduler. From a resource

perspective, we have assigned equal prices to all the queues

within a resource. It would be interesting to differentiate

queues based on their relative capabilities.

Acknowledgements

We would like to thank our colleagues - Sungjin Choi,

Marco Netto and Chee Shin Yeo - for their comments and

suggestions on this paper. This research is funded by the In-

ternational Science Linkage grant provided by the Depart-

ment of Innovation, Industry, Science and Research (DI-

ISR) and Australia Research Council (ARC).

References

[1] Supercluster Research and Development Group. Maui Sched-

uler Version 3.2 Administrator’s Guide, 2004.

[2] J. Frey, T. Tannenbaum, M. Livny, I. Foster, S. Tuecke,

“Condor-G: A Computation Management Agent for Multi-

Institutional Grids”, 10th IEEE Int. Sym. on High Perfor-

mance Distributed Computing, San Francisco, Aug. 2001.

[3] Glite Workload Manager, http://glite.web.cern.ch

[4] E. Huedo, R. Montero, & I. Llorente, ”A framework for adap-

tive execution on grids”,Software - Practice and Experience,

vol. 34, no. 7, pp. 631-651, June 2004

[5] Chee Shin Yeo and Rajkumar Buyya, “Service Level Agree-

ment based Allocation of Cluster Resources: Handling

Penalty to Enhance Utility,” Proc. of the 7th Int. Conf. on

Cluster Computing, Boston, Sept. 2005.

[6] R. Buyya, D. Abramson, & S. Venugopal, “The Grid Econ-

omy”, Proc. of the IEEE, Vol. 93,pp. 698-714, Mar. 2005.

[7] K. Lai , L. Rasmusson, E. Adar, L. Zhang,& A. Huber-

man,”Tycoon: An implementation of a distributed, market-

based resource allocation system”,Multiagent Grid System,

Vol. 1, No. 3, pp. 169-182, Aug. 2005

[8] A. AuYoung, B. Chun, A. Snoeren, & A. Vahdat, “Resource

allocation in federated distributed computing infrastructures”,

Proc. of the 1st Workshop on Operating System and Architec-

tural Support for the On-Demand IT Infrastructure,Oct. 2004.

[9] R.B. Myerson & M.A. Satterthwaite, ”Efficient Mechanisms

for Bilateral Trade,” J. Economic Theory, vol. 29, no. 2, pp.

265-281.April 1983

[10] Platform Computing. LSF Ver. 4.1 Admin.’s Guide, 2001.

[11] IBM. LoadLeveler for AIX 5L Ver. 3.2 Using and Adminis-

tering, Oct. 2003.

[12] Sun Microsystems. Sun ONE Grid Engine, Administration

and User’s Guide, Oct. 2002.

[13] B. N. Chun & D. E. Culler, ”User-centric performance anal-

ysis of market-based cluster batch schedulers,2nd IEEE Int.

Sym. on Cluster Computing and the Grid, May 2002.

[14] D. Grosu and A. Das, “Auction-based resource allocation

protocols in grid”, Proc. of the 16th Int. Conf. on Parallel and

Distributed Computing and Systems, Nov. 2004.

[15] J. Gomoluch & M. Schroeder. Market-based resource alloca-

tion for grid computing: A model and simulation, 2003.

[16] U. Kant & D. Grosu, “Double auction protocols for resource

allocation in grids”, Proc. of the Int. Conf. on Information

Technology: Coding and Computing, 2005.

[17] B. Pourebrahimi, K. Bertels, G. Kandru,& S. Vassiliadis,

“Market-based resource allocation in grids”, Proc. of 2nd

IEEE Int. Conf. on e-Science and Grid Computing, 2006.

[18] Gridway Installation, Available:http://irisgrid.rediris.es.

[19] G. Pacifici, M. Spreitzer, A. Tantawi, & A. Youssef, “Per-

formance Management for Web Services”, Research Report

RC22676, IBM T. J. Watson Research, 2003

[20] D. Friedman & J. Rust, eds., “The Double Auction Mar-

ket: Institutions, Theories, and Evidence,” Addison-Wesley-

Longman, Mass, 1993.

[21] C. Smith, “Open source metascheduling for virtual organiza-

tions with the community scheduler framework (CSF)”, Tech-

nical whitepaper, Platform Computing, 2003.

[22] A. Iosup, M. Jan, O. Sonmez, & D.H.J. Epema, “The Charac-

teristics and Performance of Groups of Jobs in Grids”, Euro-

Par 2007, August 2007

[23] R. Buyya and M. Murshed, “GridSim: a toolkit for the mod-

eling and simulation of distributed resource management and

scheduling for Grid computing”. Concurrency and Computa-

tion: Practice and Experience, Dec. 2002.

[24] Parallel Workloads Archive,

http://www.cs.huji.ac.il/labs/parallel/workload,May 2005.


