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ABSTRACT

Most algorithms developed for scheduling applications on
global Grids focus on a single Quality of Service (QoS) pa-
rameter such as execution time, cost or total data trans-
mission time. However, if we consider more than one QoS
parameter (eg. execution cost and time may be in conflict)
then the problem becomes more challenging. To handle such
scenarios, it is convenient to use heuristics rather than a de-
terministic algorithm. In this paper we have proposed a
workflow execution planning approach using Multiobjective
Differential Evolution (MODE). Our goal was to generate
a set of trade-off schedules according to two user specified
QoS requirements (time and cost). The alternative trade-
off solutions offer more flexibility to users when estimating
their QoS requirements of workflow executions. We have
compared our results with two baseline multiobjective evo-
lutionary algorithms. Simulation results show that our mod-
ified MODE is able to find a comparatively better spread of
compromise solutions.

Categories and Subject Descriptors

1.2.8 [Problem Solving,Control Methods and Search]:
Scheduling; C.2.4 [Distributed Systems]: Distributed ap-
plications

General Terms

Grid Scheduling, Multiobjective Optimization, Multiobjec-
tive Differential Evolution

1. INTRODUCTION

Grid Computing aims to allow unified access to data, com-
puting power, sensors and others resources through a single
virtual laboratory [4]. Technologies should provide services,
protocols and software needed for the flexible and controlled
sharing of resources. However, such infrastructure has to be
competitive in terms of costs to the final users. Usually this
corresponds to identifying the optimal use of the resources.
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There are basically two approaches to solve this optimiza-
tion problem. The first is based on a distributed resources
discovery and allocation system. The second is based on a
central repository of resources and resources requests. The
first is suitable for small jobs that can easily be accepted by
the computing Grid. The second is suitable for large peri-
odical jobs that are scheduled in advance. In this case, the
centralized scheduler is usually referred to as “metasched-
uler”, because of its position on top of the local schedulers.
It should optimize the allocation of a job allowing the exe-
cution on the “fittest” set of resources. In most cases, such
as in scientific and enterprize domains, a typical applica-
tion is constructed as workflows. Here, the metascheduler
will deploy the workflow on the Grid considering the current
availability of resources, time constraints and user specified
QoS.

A number of Grid workflow management systems [3] have
been developed to facilitate the composition and execution
of workflow applications over distributed resources. Many
heuristic [5],[13],[14] have also been proposed for workflow
scheduling in order to optimize a single objective, such as
minimizing execution time. However, a large number of ob-
jectives need to be considered when scheduling workflows
on utility Grids based on users QoS requirements. In this
paper, we introduce a model that can optimize conflicting
objectives. However, in many Differential Evolution based
Job-Shop/Flow-Shop scheduling, the algorithm was imple-
mented by mapping Job/Machine sequence to real num-
bers. Since this approach is not feasible in the case of
Grid scheduling, we have to deal with exact scheduling se-
quences and thus our approach does not need to map the
resource/task sequence to real values as described in [8] and
[9].

2. MOTIVATION AND RELATED WORK

Scheduling using nature’s heuristics is not a new idea.
There are numerous studies reporting work done on schedul-
ing DAG (Directed Acyclic Graph) based task graphs in
multiprocessor systems [13]. Genetic algorithms and HEFT
(Heterogeneous Earliest Finish Time) have been extended
by the ASKALON project [10] to schedule scientific appli-
cations in Grid environments. Recently in [17], a differ-
ent base-line algorithm for Multiobjective Optimization was
tested on different workflow model.

In a similar study [16], their model was compared with
Max-Min and Min-Min heuristics described in [5]. There are
also examples of scheduling using differential evolution(DE)
[8],[9] where the chromosome represents a feasible schedule



that needs to be converted to a string of real numbers for
DE operations. The real numbers can be inverse mapped to
a schedule. The forward and inverse mapping may lead to
creation of infeasible solutions. The work in this paper is
distinct from the related work because it simultaneously op-
timizes multiple objectives of workflow execution according
to users’ QoS without the unwanted creation of infeasible
solutions.

3. PROBLEM OVERVIEW

We formalized the workflow planning problem as a mul-
tiobjective optimization problem (MOP) in which a group
of conflicting objectives are simultaneously optimized. As
given in equation (1) and (2), there are two conflicting ob-
jectives: minimize execution time and minimize execution
cost. In such problems, there is no single optimal solution
but rather a set of potential solutions. We can define a mul-
tiobjective problem as

f(x) = fi(@), f2(2), .., fr() (1)

where xeX and X is a solution space. A solution is said to
dominate another solution if it is as good as the other and
better in at least one objective. That is z* dominates z, if
and only if

Vie[l,2,. .., k], fi(z") < fi(z)ATje[1,2,... k], fi(z¥) < fj((a;)

2
The resource scheduling problem for the Grid consists of
arranging the pairs of jobs and resources given certain con-
straints. The objective is to minimize the mult-dimensional
QoS metrics. We regard completion time of jobs and total
execution cost of jobs as multi-dimensional QoS metrics. To
address the problem, we have to start with the following
assumptions,

minimize

e There are dependent relationships of jobs, and rela-
tionships can be denoted by directed acyclic graph
(DAG) as in Figure 1.

e Jobs come in batch mode.

e Resources can not be occupied by other job when a job
is running on them.

We model a workflow application as a DAG, let I' be the
finite set of tasks T; (1 < i < n). Let A be the set of
directed arcs of the form (73, 7T;) where T; is called a par-
ent task of T;, and T; the child task of T;. Associated
with each directed arc is a data flow in which the output
of the parent is required as input data by the child. We
assume that a child task cannot be executed until all of
its parent tasks have been completed. Then, the workflow
application can be described as a tuple Q(I', A). Given a
set of jobs T = {T;},i = 1,2,...,n and a set of services
S = {S:},7 =1,2,...,m, under the constraint that there
are dependent relationships among jobs. The execution op-
timization problem is to generate a solution I = (T3, f;(T3))
where f;(73) is a mapping function that assigns T; onto ser-
vice S;. We also denote that time(T;, f;(T3)) is the comple-
tion time of I and cost(T3, f;(T3)) is the input data trans-
mission cost and service cost for processing I. The goal is
described as follows:
minimaize

F= (R, FR) (3)

Figure 1: A Simple DAG

max
= time(Ts, f;(T; 4
= @) @)

Fo=

Tiel, f5(T;)eA

cost(Ts, f;(T3)) (5)

with subject to F1 < B and F» < D where B is the cost
constraint(budget) and D is he time constraint(deadline)
required by users for workflow execution.

4. MULTIOBJECTIVE DIFFERENTIAL
EVOLUTION

The idea of multiobjective differential evolution (MODE)
was first introduced in [1]. In differential evolution (DE)
[11], new candidate solutions are created by combining the
parent individual and several other individuals of the same
population. A candidate replaces the parent only if it has a
better fitness value. This is a rather greedy selection scheme
that often outperforms traditional Evolutionary Algorithms.
Many variants of creation of a candidate are possible. We
use the DE scheme DE/rand/1/bin described in Algorithm
1 (more details on this and other DE schemes can be found
n [11]). When applying DE to MOPs, we face many difficul-
ties. Besides preserving a uniformly spread front of nondom-
inated solutions, which is a challenging task for any MOEA,
we have to deal with another question, that is, when to
replace the parent with the candidate solution. In single-
objective optimization, the decision is easy: the candidate
replaces the parent only when the candidate is better than
the parent. In MOPs, on the other hand, the decision is
not so straightforward. We could use the concept of dom-
inance (the candidate replaces the parent only if it domi-
nates it), but this would make the greedy selection scheme
of DE even greedier. Therefore, MODE applies the follow-
ing principle (see Algorithm 2). The candidate replaces the
parent if it dominates it. If the parent dominates the can-
didate, the candidate is discarded. Otherwise (when the
candidate and parent are nondominated with regard to each
other), the candidate is added to the population. This step
is repeated until popSize number of candidates are created.
After that, we get a population of the size between popSize
and 2-popSize. If the population grows, we have to truncate
it to prepare it for the next step of the algorithm.

4.1 The Model

In order to extend MOEAS to solve the workflow schedul-
ing problem, we need to define an appropriate problem rep-
resentation, fitness assignment, and genetic operators. The
methods we have employed are described in the following



Algorithm 1 CreateCandidate(Parent P;<mat,ss>)
Pick three random individual Pj1,P;2 and P;3 where (i1 #
12 #i3)
Calculate Candidate C as, C = P;1 + F - (Pi2 — Pi3)
Modify the Candidate by binary crossover with the Parent
return Candidate C

Algorithm 2 MODE

Define population P with popSize number of individual.
P = {P17P27-"1PP0PSize}
Evaluate the initial population P of random individuals.
while stopping criterion not met do
for all 7 such that 0 < i < popSize do
C = CreateCandidate(P;)
Evaluate Candidate
if Candidate C' dominates Parent P; then
Candidate replaces the Parent
else if Parent P; dominates Candidate C' then
Parent replaces the Candidate
else
Add Candidate C to the population
popSize < popSize + 1
end if
end for
If the population exceeds popSize, truncate it.
Randomly enumerate individuals in P
end while

sub-sections. We have extended our ideas from [18] and
[13].

4.1.1 Encoding

In this approach, each chromosome consists of two parts:
the matching string and the scheduling string. Let mat be
the matching string, which is a vector of length |T'|, such
that mat(i) = j, where 0 < ¢ < |T] and 0 < j < |S]; i.e.,
subtask T; is assigned to service S;. In terms of string rep-
resentation it is 73:5; The scheduling string is a topological
sort of the DAG, i.e., a total ordering of the nodes (sub-
tasks) in the DAG that obeys the precedence constraints.
Define ss to be the scheduling string, which is a vector of
length |T|, such that ss(k) = i, where 0 < i,k < |T|, and
each T; appears only once in the vector, i.e., subtask T; is
the k*" subtask in the scheduling string. Because it is a
topological sort, if ss(k) is a consumer of a global data item
produced by ss(j), then j < k. The scheduling string gives
an ordering of the subtasks that is used by the evaluation
step. Then in this approach, a chromosome is represented
by a two-tuple <mat,ss>. Thus, a chromosome represents
the subtask-to-service assignments (matching) and the exe-
cution ordering of the subtasks assigned to the same service.
The scheduling of the global data item transfers and the rel-
ative ordering of subtasks assigned to different services are
determined by the evaluation step. Figure 2 illustrates two
different chromosomes for the DAG in Figure 1, for |T'| =6
and |S| =3

4.1.2  Initial Population

In the initial population, a predefined number of solutions
(chromosomes) are generated. When generating a chromo-
some, a new matching string mat is obtained by randomly
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Figure 2: Two sample chromosomes from the DAG
in Figure 1.

assigning each subtask to a machine. To form a scheduling
string ss, the DAG is first topologically sorted to form a
basis scheduling string. For each chromosome in the initial
population, this basic string is mutated a random number
of times (between one and the number of subtasks) using
the mutation operator (described in Section 5.5) to gener-
ate the ss vector (which is a valid topological sort of the
given DAG). Furthermore, it is common to incorporate so-
lutions from some nonevolutionary heuristics into the initial
population, which may reduce the time needed for finding
a satisfactory solution. Since every time we are considering
topological sort of the DAG, there is a nonzero probability
that a chromosome can be generated to represent any possi-
ble solution to the matching and scheduling problem using
the crossover and the mutation operators. (The crossover
and the mutation operators will be discussed later sections).

4.1.3 Fitness Measure

A fitness function is used to measure the quality of the
solutions according to the given optimization objectives. We
separate fitness functions by objective functions and penalty
functions. Objective functions are designed to encourage
the algorithms to choose solutions with minimum objective
values. The objective functions for solution I are defined as
follows:

Cost objective function feost(I) = cost(l)/B (6)

Time objective function fiime(I) = time(I)/D  (7)

A penalty function P([) is developed to handle constraints.
It is defined as follows:

P(I) = Pbudget(l) + Pdeadline([) (8)
where Pyyudget is the budget penalty function defined by:

{ (j)”c(,st(f) if cost(I) > B ©)

and Pjeqdiine 18 the deadline penalty function defined by:
{ frime(I) if time(I) > D
0

P = .
budget otherwise

Paeadiine = (10)

otherwise

Since satisfying deadline and budget requirements is the pri-
mary goal of the scheduling scheme, the overall penalty is
added to the objective functions to form the fitness func-
tions:

Cost fitness function: Feost(I) = feost(I) + P(I) (11)

Time fitness function: Fiime(I) = frime(I) + P(I)  (12)



4.1.4 Genetic Operators

The crossover operator for the scheduling strings randomly
chooses some pairs of the scheduling strings. For each pair, it
randomly generates a cutoff point, which divides the schedul-
ing strings of the pair into top and bottom parts. Then, the
subtasks in each bottom part are reordered. In this way,
in each crossover, we can create a valid schedule. Figure
3 demonstrates such a scheduling string crossover process.
The crossover operator for the matching strings (See right
side image of Figure 4) randomly chooses some pairs of the
matching strings. For each pair, it randomly generates a
cut-off point to divide both matching strings of the pair
into two parts. Then the machine assignments of the bot-
tom parts are exchanged. However, in our approach the
crossover operator will be applied to both matching string
and scheduling string <mat,ss> but mutation will only be
applied to scheduling string <ss>.The mutation operator
works by randomly choosing a scheduling strings and it ran-
domly selects a victim subtask. The valid range of the victim
subtask is the set of the positions in the scheduling string
at which this victim subtask can be placed without violat-
ing any data dependency constraints. Figure 5 shows an
example of this mutation process. However, in the case of
matching string mat, there will be no mutation, rather it will
be subjected to the candidate creation of MODE (which will
be discussed in the next sections). So our model only takes
scheduling string for normal genetic operation but only the
matching string will go through MODE operations.
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Figure 3: Scheduling string crossover
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Figure 4: Scheduling String Mutation and Matching
String Crossover

4.2 Creation of Candidate Solution

As described in section 4, the creation of candidate solu-
tion is done within step 2 of Algorithm 1 where candidate
(s created as follows,

C=Pn+F-(P2— P3) (13)

The matching string is an array of numbers or characters
(each of the characters defines a service to be used by a spe-
cific task), it seems quite confusing to measure the quan-
tity Pi2 — Pis from two matching string of P2 and P;s.
Let us suppose, the matching strings of P> and P;3 are
Pia<mat> = {1,2,3,4,5,6} and Pis<mat> = {2,5,3,1,4,6}
respectively. When we are going to compare two ordinal
vectors, we will consider the first one as a ‘reference’ and
second one as the ‘target’. In [2],the ‘reference’-vector is de-
noted as ‘pattern-vector’ and the ‘target’-vector is denoted
as ‘disorder-vector’. Similarly, we considered Pja<mat> =
{1,2,3,4,5,6} as pattern-vector and Pis<mat> = {2,5,3,1,4
,6} as disorder-vector. Our goal is to measure the similar-
ity between strings. In our experiment we have used the
Ulam distance [2] to measure the quantity (P;2 — P;3). Since
it measures the disorder of ordinal variables by counting
the minimum number of “Delete-Shift-Insert” operations.
So in above case, the Ulam distance will be 2, since in
Pis<mat>, 1 should be moved to place between 2 and 5,
and again 5 should be moved to place between 4 and 6 (To-
tal 2 “Delete-Shift-Insert” operations). For simplicity we
have chosen F' = 1. However in the case of general DE,
each of the variables are real numbers and the fitness are
measured in terms of mathematical operations on those real
numbers. But in our case, each of these variables (charac-
ters/numbers) refer to different service, so we cannot map
these numbers/characters to real numbers and apply math-
ematical operations as in [8] and [9]. Consequently, in place
of adding the difference with each value of P;1, we mutate
Pii<mat>. i.e., we mutated D number of genes in P;; where
D is the Ulam distance measure described as above. The
process is done in Algorithm 4, step 3. As result of this ap-
proach, we have just replaced the operation in equation 13
with Algorithm 3. We can now devise our algorithm from
Algorithm 2 and 3. The modified MODE is illustrated in
Algorithm 4.

Algorithm 3 ModifiedCreate(Parent P;<mat,ss>)

Pick three random individual P;1,P;2 and P;3 where (il #

i2 # i3)

D = UlamDistance(Pi2<mat>,Pis<mat>)

Candidate,C'<mat> < mutate(P;1 <mat>, D)

Candidate,C<ss> < Mutatatenratchingstring(Pi1<s5>)

C< s8> <= CrossoverschedulingString (C<ss>, P;<ss>)

C<mat> <= Crossoverpatchingstring(C<mat>, P;
<mat>)

return C<mat,ss>

S. EXPERIMENTS

In our experiment, we have implemented the balanced
workflow described in [12, 15]. The workflows were designed
to implement some specific parallel numerical computation
problems such as Parallel Gauss-Jordan Algorithm to solve
systems of equations [12], Parallel LU decompositions [12]
and Discrete Laplace Transformation [15]. The example



Figure 5: Pareto front obtained by two algorithms on different workflows
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Algorithm 4 Modified MODE

Define population P with popSize number of individual.
P = {Pi<mat,ss>, Pa<mat,ss>, ..., Ppopsize<mat,ss>
Evaluate the initial population P of random individuals.
while stopping criterion not met do
for all 7 such that 0 < i < popSize do
C<mat,ss> = ModifiedCreate(P; <mat,ss>)
Evaluate Candidate
if Candidate C<mat,ss> dominates
P;<mat,ss> then
Candidate replaces the Parent
else if Parent P,<mat,ss> dominates Candidate
C<mat,ss> then
Parent replaces the Candidate
else
Add Candidate C<mat,ss> to the population
popSize < popSize 4+ 1
end if
end for
If the population exceeds popSize, truncate it.
Randomly enumerate individuals in P
end while

Parent

workflow models are given in Table 1. The resources were
10 computing entities connected with each other with ran-
domly assigned price levels. The parameter setting for the
PAES (Pareto Archived Evolutionary Strategy) was taken
from the original works [7] and our model also has the same
settings as PAES. We have run each of the algorithms for
100 generations. The distance measure that we have used
for our modified MODE was Ulam distance since it depends

Table 1: Selected Workflow Models

Workflow | #Nodes | Reference | Note
W1 15 12 Gauss-Jordan Algorithm
W2 14 12 LU decomposition
W3 16 15 Laplace Transform

on the minimum number of “Delete-Shift-Insert” operations
(as described in Section 6) and these operations best re-
flect the difference of resource arrangements in two sched-
ule. In order to compare the performance of alternative
workflow multi-objective scheduling algorithms, we need to
examine the extent of minimization of the obtained non-
dominated solutions produced by each algorithm for each
objective and the spread of their solutions. Figure 5 shows
the non-dominated solutions obtained at the end of simula-
tion trial (average over 30 runs) for the workflow structure
discussed in section 7. For all problems, the pareto optimal
front obtained by our model is better than solutions found
by PAES. In order to present a comprehensive comparison
of the overall quality of these alternative approaches, we
have run each algorithm for three different workflow struc-
tures [12],[15]. The experiment for each scenario was re-
peated 30 times (with different random seeds). We have
constructed a reference set, R, by merging all of the archival
non-dominated solutions found by each of the algorithms
for a given workflow structure across 30 runs. We then use
the hypervolume difference indicator Iy [6] to measure the
differences between non-dominated fronts generated by the
algorithms and the reference set R. I;; measures the portion
of the objective space that is dominated by R. The lower the
value of I, the better the algorithm performs. Box plots in




Figure 6 (I indicators for 3 different workflow examples)
clearly prove that our approach is better than PAES.

6. CONCLUSION AND FUTURE WORK

In this paper,we have proposed a workflow execution plan-
ning approach, which optimize multiple objectives. The
planner can generate a set of widespread alternative solu-
tions if the optimization objectives are conflicted. Providing
these alternative solutions can offer more flexibility to users
to estimate their preferences and choose a desired workflow
schedule based on their QoS requirements. Our MODE ap-
proach differs from others in the sense that we are deal-
ing with real scheduling sequences rather than character to
number transformation as adopted in[8] and [9]. We have
compared our result with PAES and the I; indicator shows
that our approach performs better than PAES. Moreover our
model is also free from extra computational overhead due to
crowding distance sorting. In the case of candidate creation,
we have only considered the Ulam distance and there is a lot
of opportunities to investigate the algorithms performance
with different string similarity metrics.

Multiobjective optimization in Grid scheduling is not a
matured field. It still requires a number of detailed bench-
mark problems to test every type of multiobjective scenario
on Grid scheduling or real life data to test an algorithm’s
performance. There are also a limited number of stud-
ies that have considered the flow-shop/job-shop scheduling
problem using DE, however multiobjective scheduling poses
additional challenges. Most of the widely used existing work-
flow scheduling algorithm only attempt to minimize either
execution time or execution cost. However, additional ob-
jectives must be considered when scheduling workflows on
utility Grids.
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