Service Oriented Sensor Web

Xingchen Chu and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory
Dept. of Computer Science and Software Engineering
The University of Melbourne, Australia
{xchu, raj}@csse.unimelb.edu.au

Abstract

The Sensor Web is an emerging trend which makesusatypes of web-resident
sensors, instruments, image devices, and repa&staf sensor data, discoverable,
accessible, and controllable via the World Wide Wbt of effort has been invested
in order to overcome the obstacles associated wotimecting and sharing these
heterogeneous sensor resources. This chapter ezgshdse Sensor Web Enablement
(SWE) standard defined by the OpenGIS Consortiu@Q®D which is composed of a
set of specifications, including SensorML, Obseprat& Measurement, Sensor
Collection Service, Sensor Planning Service and Welification Service. It also
presents a reusable, scalable, extensible, antbpeeble service oriented sensor
Web architecture that (i) conforms to the SWE s&éadd(ii) integrates Sensor Web
with Grid Computing and (iii) provides middlewarepport for Sensor Webs. In
addition, this chapter describes the experimendsaamnevaluation of the core services
within the architecture.

Keywords: Sensor Web, SensorML, Observation & Measurentgemsor Collection
Service, Sensor Planning Service, Web NotificaSenvice.

1. Introduction

Due to the rapid development of sensor technologgent sensor nodes are much
more sophisticated in terms of CPU, memory, andeless transceiver. Sensor
networks are long running computing systems thasisb of a collection of sensing
nodes working together to collect information abdat instance, light, temperature,
images and other relevant data according to speafplications. Wireless sensor
networks have been attracting a lot of attentimmfrboth academic and industrial
communities around the world. The ability of thensa networks to collect
information accurately and reliably enables buiddiboth real-time detection and
early warning systems. In addition, it allows ragidordinate responses to threats
such as bushfires, tsunamis, earthquakes, and @ibir situations.

However, the heterogeneous features of sensorsearsbr networks turn the efficient

collection and analysis of the information geneddby various sensor nodes into a
rather challenging task. The main reasons for #rat the lack of both uniform
operations and a standard representation for selaarthat can be used by diverse
sensor applications. There exists no means to \d@ogieesource reallocation and
resource sharing among applications as the deployarel usage of the resources has
been tightly coupled with the specific locationnsar application, and devices used.

The Service Oriented Architecture (SOA) providesapproach to describe, discover,
and invoke services from heterogeneous platfornmggusML and SOAP standards.

The term ‘service’ not only represents a softwai&em but also refers to hardware
and any devices that can be used by human beingsrvice may be an online ticket
booking system, a legacy database applicatiorsex larinter, a single sensor or even
an entire network infrastructure. Bringing the idelaSOA to sensors and sensor
networks is a very important step forward to présgnthe sensors as reusable
resources which can be discoverable, accessiblendwede applicable, controllable

via the World Wide Web. Furthermore, it is also gibke to link distributed resources

located across different organizations, countegegions thus creating the illusion
of a sensor-grid, which enables the essential gtinen and characteristics of a
computational grid.

Computer Grid

1Y Tsunami Detection ~ Pollution Detection
Weather Forecast I ;

Sensor/Nets «

.I“[‘r”.

Collaborators
\

%

_ﬂﬂ

Researcher Historical Data - _———

Software, Model, Workflow

Fig. x.1: Vision of the Sensor Web.
Fig. x.1 demonstrates an abstract vision of thes@ewWeb, which is the combination
of SOA, grid computing and sensor networks. Variseissors and sensor nodes form
a web view and are treated as available servicell the users who access the Web.
Sensor Web brings the heterogeneous sensors intbegmated and uniform platform
supporting dynamic discovery and access. A sanggeasio would be the client (may
be the researchers or other software, model andflear system), who wants to
utilize the information collected by the deployeshsors on the target application,

such as weather forecast, tsunami or pollutionatiete The client may query the
entire sensor web and get the response either feattime sensors that have been
registered in the web or existing data from a remddtabase. The clients are not
aware of where the real sensors are and what apesdhey may have, although they
are required to set parameters for their plan amndke the service (similar to when
people perform a search on Google, filling in tearsh field and clicking the search
button). The primary goal of the Sensor Web is tferoreliable and accessible
services to the end-users. In other words, it plesithe middleware infrastructure
and the programming environment for creating, agiogs and utilizing sensor
services through the Web.

The remainder of this chapter is organized as \idloRelated work on sensor
middleware support, sensor-grid, and sensor welessribed in Section 2. Section 3
details the emerging standard of the Sensor Weilsd@aNeb Enablement. Section 4
describes OSWA, a service oriented sensor web taotbie, and the design and
implementation of its core services. Evaluationapplying the middleware to a
simple temperature monitoring sensor applicatiordiscussed in Section 5. This
chapter concludes with the summary and the futuew

2. Related Work

A lot of effort has been invested in building miedire support for making the
development of sensor applications simpler andefastnpala (Liu and Martonosi,
2003) designed for the ZebraNet project, considbes application itself while
adopting mobile code techniques to upgrade funstmmremote sensors. The key to
the energy efficiency provided by Impala is makisgnsor node applications as
modular as possible, thus imposing small updates téquire little transmission
energy. MiLAN (Heinzelman et al., 2004) is an atebiure that extends the network
protocol stack and allows network specific plug-tosconvert MiLAN commands
into protocol-specific commands. Bonnet et al., @Onplemented Cougar, a
guery-based database interface that uses a SQlaligriage to gather information
from wireless sensor networks. However, most ofe¢hefforts concentrate on creating
protocols and are designed to ensure the efficieatof wireless sensor networks. In
contrast to these middleware, Mires (Soutoo et 2004) is a message-oriented
middleware that is placed on top of the operatiygiesn, encapsulates its interfaces
and provides higher-level services to the Node i&pgibn. The main component of
Mires is a publish/subscribe service that interraessi communication between
middleware services, which might be used as thendation of Sensor Web
middleware.

Besides middleware support for the sensor apptinafiintegrating sensor networks
with grid computing into a sensor grid is also quinportant. Tham and Buyya
(Tham and Buyya, 2005) outlined a vision of sergaa-computing and described
some early work in sensor grid computing by giviegamples of a possible

implementation of distributed information fusion dardistributed autonomous
decision-making algorithms. Discussion about treeaech challenges needed to be
overcome before the vision becomes a reality hale® &een presented. A
data-collection-network approach to address manythef technical problems of
integrating resource-constrained wireless sensuis traditional grid applications
have been suggested by Gaynor et al., 2004. Thi®agph is in the form of a network
infrastructure, called Hourglass that can providgid API to a heterogeneous group
of sensors. Those, in turn, provide fine-grainedeas to sensor data with OSGA
standards. Another sensor grid integration methaggointroduced by Ghanem et al.,
2004 utilized the grid services to encompass higbughput sensors, and in effect
make each sensor a grid service. The service caulbeshed in a registry by using
standard methods and then made available to ofiees.u

Nickerson et al., 2005 described a Sensor Web Lagg(SWL) for mesh architecture,
which provides a more robust environment to depiogintain and operate sensor
networks. As they stated, greater flexibility, moeéable operation and machinery to
better support self-diagnosis and inference withisee data has been achieved with
the mesh architecture support in SWAL. the GeolCT Lab of York University, an
open geospatial information infrastructure for Send/eb, named GeoSWIFT, has
been presented, which is built on the OpenGIS statsd According to Tao et al.,
2004, XML messaging technology has been developerling as a gateway that
integrates and fuses observations from heterogenspatial enabled sensors. The
IrisNet architecture at Intel Research, introdudsd Gibbons et al.,, 2003, is a
software infrastructure that supports the centiaké common to collect, filter and
combine sensor feeds and perform distributed gsiefieere are two-tiers of IrisNet
architecture including sensing agents that progidgneric data acquisition interface
to access sensors, and organizing agents thatharenades implementing the
distributed database. Finally, the most importdfarethat has been made to Sensor
Web is the Sensor Web Enablement (SWE) introdugedRéichardt, 2005. SWE
consists of a set of standard services to buildique and revolutionary framework
for discovering and interacting with web-connecsethsors and for assembling and
utilizing sensor networks on the Web. The followsegrtion of this chapter discusses
SWE standards in more in detail.

3. Standard: OCG Sensor Web Enablement

Many sensor network applications have been suadbssfeveloped and deployed

around the world. Some concrete examples include:
Great Duck Island Application: as Mainwaring et @002 stated, 32 motes
are placed in the areas of interest, and theyranggd into sensor patches to
transmit sensor data to a gateway, which is resplenfor forwarding the
data from the sensor patch to a remote base staflon base station then
provides data logging and replicates the data e¥/@mninutes to a Postgress
database in Berkeley over a satellite link.

Cane-toad Monitoring Application: two prototypes @fireless sensor
networks have been set up, which can recognize lizatians of at
maximum 9 frog species in Northern Australia. Besidhonitoring the frogs,
the researchers also plan to monitor breeding pdipuals of endangered birds,
according to Hu et al., 2003.

Soil Moisture Monitoring Application: Cardell-Oliveet al., 2004 presents a
prototype sensor network for soil moisture monitgrihat has been deployed
in Pinjar, located in north of Perth, WA. The detgathered by their reactive
sensor network in Pinjar, and sent back to a datalra real time using a
SOAP Web Services.

However, none of these applications address thityafor interoperability which
means that users cannot easily integrate the iaftoom into their own applications
(the Soil moisture monitoring application utilizde Web Services only for remote
database operations). Moreover, the lack of sewwfdr the sensors that they have
used makes it impossible to build a uniform Websteg to discover and access those
sensors. In addition, the internal information iightly coupled with the specific
application rather than making use of standard dafaesentations, which may
restrict the ability of mining and analyzing theefid information.

Imagine hundreds of in-site or remote weather ssnsmroviding real-time
measurements of current wind and temperature gondifor multiple metropolitan
regions. A weather forecast application may request present the information
directly to end-users or other data acquisition gonents. A collection of Web-based
services may be involved in order to maintain asteg of available sensors and their
features. Also consider that the same Web techgmostgndard for describing the
sensors, outputs, platforms, locations and corgeshmeters is in use beyond the
boundaries of regions or countries. This enablesitteroperability necessary for
cross-organization activities, and it provides g bpportunity in the market for
customers to get a better, faster and cheapercserhis drives the Open Geospatial
Consortium (OGC) to develop the geospatial starddnat will make the "open
sensor web" vision a reality.

As the Sensor Web Enablement (SWE) becomes theaate &tandard regarding
Sensor Web development, understanding SWE is d¢rémiaboth researchers and
developers. In general, SWE is the standard deedldyy OGC that encompasses
specifications for interfaces, protocols and enegsli that enable discovering,
accessing, obtaining sensor data as well as spnsoessing services. The following
are the five primary specifications for SWE:

1. Sensor Model Language (SensorML) — Information rha@ahel XML encodings
that describe either single sensor or sensor piatfo regard to discover, query
and control sensors.

2. Observation and Measurement (O&M) — Information slahd XML encodings
for observations and measurement.

! http:/iwvww.geoplace.com/uploads/FeatureArticle/G.asp

3. Sensor Collection Service (SCS) — Service to fetebervations, which conforms
to the Observations and Measurement informationeildmbm a single sensor or
a collection of sensors. It is also used to desedtie sensors and sensor platforms
by utilizing SensorML.

4. Sensor Planning Service (SPS) — Service to helpsulseild feasible sensor
collection plan and to schedule requests for ssresod sensor platforms.

5. Web Notification Service (WNS) — Service to manatient session and notify the
client about the outcome of her requested servepeguvarious communication
protocols.

‘ SensorML

i Description | Real World Sensor and Sensor Applications
- OfSensors |
/// S .
sCs .~ S Q0
N
Images =
C———/—/—/—/—— Platform
Sensor : Temperaturei
Data Encoded in
WNS O&M or SensorML SPS

— =

User Registration
Send Notification

Fig. x. 2: A typical collaboration within Sensor Web Enablement Framework.
As Reichardt, 2005 stated, the purpose of SWE imadke all types of web-resident
sensors, instruments and imaging devices, as vgellepositories of sensor data,
discoverable, accessible and, where applicabldratable via the World Wide Web.
In other words, the goal is to enable the creatfoweb-based sensor networks. Fig. x.
2 demonstrates a typical collaboration betweenses\and data encodings of SWE.

Request Data
Encoded in
SWE Format

Registry
() @@mﬁ ‘
U

Client

3.1 SensorML

Web-enabled sensors provide the technology to aehipid access to various kinds
of information from the environment. Presenting sseninformation in standard
formats enables integration, analysis and creatiomarious data “views” that are
more meaningful to the end user and to the comguystem which processes this
information. Moreover, a uniform encoding beneftie integration of heterogeneous
sensors and sensor platforms as it provides agratexl and standard view to the
client. The Sensor Model Language (SensorML) iew XKML encoding scheme that
may make it possible for clients to remotely dismwaccess, and use real-time data
obtained directly from various Web-resident sensd®ensorML describes the

geometric, dynamic, and observational featuregn$ars of all kinds.

SensorML is a key component for enabling autonomang intelligent sensor webs,

and provides the information needed for discoveirysensors, including sensor’s

capabilities, geo-location and taskability rathkart a detailed description of the
sensor hardware. Moreover, both in-site and rensetesors, on either static or
dynamic platforms are supported by SensorML. Fig.depicts the basic structure of
SensorML. The information provided in SensorML irdés the sensor name, type,
and identification (identifiedAs); time, validityr classification constraints of the

description (documentConstrainedBy); a referencéhéoplatform (attachedTo); the

coordinate reference system definition (hasCRSkg tbcation of the sensor

(locatedUsing); the response semantics for gedlagasamples (measures); the
sensor operator and tasking services (operateaBsfadata and history of the sensor
(describedBy); and metadata and history of the oh&u itself (documentedBY).

| GeneralPropertyModel |

[somar]
] identifiedAs |
—— documentConslrainedBy
] measures [AesponseModel |
————+___operaledBy |
———{______aachedTo [PopulationModel |
1 lpcatedUsing :
e
i documentedBy "}

| observationsLocatedUsing |

Fig. x. 3: High-level structure of SensorML (Reichadt, 2005).
Besides the importance of SensorML in SWE framew@&nsorML itself is an
independent standard rather than part of the S\atladwork, which means that it can
be used outside the scope of SWE. Other benefigglopting SensorML include (i)
enabling long-term archive of sensor data to beomgssed and refined in the future
and (ii) allowing the software system to processlygze and perform a visual fusion
of multiple sensofs

3.2 Observation and Measurement

Besides collaborating SensorML which contains imfation about sensors and sensor
platforms, SWE utilizes Observation and Measurem{@&M)>. O&M is another
standard information model and XML encoding thaimportant for Sensor Web to
find universal applicability with web-based sensmtworks. The O&M model is
required specifically for the Sensor Collection e and related components of
OGC Sensor Web Enablement, which aims at defirengg used for measurements,

2 http://member.opengis.org/tc/archive/arch03/03802(pdf, Sensor Model Language IPR, OGC 03-005.
3 http://portal.opengeospatial.org/files/index.phyifact_id=1324, Observation & Measurement, OGQ022+3.

and relationships between them.

Meraoara Time Primitive <<lnion>>
Vaiue Obec
K timeStam -"F
meta d‘é\ta P ropearty
relatedFeature 0.+ ,.'(Geometry

rale[0..1] : char / AN

/ res'-"tjf:f, TimeObject

< N j -7 |Walue
Feature b NI l/

— | Observation

e

0..*
quality _—=
QualityDescriptor 1.,

0.1
—abservable

- [
7
|

=Y
Phe nome non

| 3
target (0.1 haing
<<lnion>> <<llnion>>
Q.1 Farger Proce dure
Icu:aticun/ i
i Locator

Fegion Instrument
Specimean Obserer
Station Simulation

Fig. x. 4: Basic Observation structuré.

As Fig. x. 4 indicates, the basic information pdad by Observation includes the
time of the event (timeStamp); the value of a pdoce such as instrument or
simulation (using); the identification of phenomarteeing sampled (observable); the
association of other features that are relatedhé¢oQbservation (relatedFeature); the
common related features that have fixed role sscBtation or Specimen (target); the
quality indicators associated with the Observatiguality); the result of the
Observation (resultOf); location information (loicat) and the metadata description
(metadataProperty). Moreover, the observation databe either single or compound
values that may contain a collection or an arraghsfervations.

3.3 SWE Services

SWE not only utilizes the information model and ediag like SensorML and
Observation and Measurements (O&M), but also defiseveral standard services
that can be used to collaborate with sensor nesviorkrder to obtain data. Currently,
the SWE contains three service specifications oy Sensor Collection Service
(SCS), Sensor Planning Service (SPS) and Web batiidin Service (WNS). As the
SWE is still evolving, new services will be devedop to satisfy emerging
requirements of Sensor Web development. A new cemélled Sensor Alert Service
has recently been introduced, which specifies htent @r “alarm” conditions are
defined, detected and made available to interasteds. Also, a new TransducerfiL
has also been defined, which is an XML based spatidn that describes how to

4 http:/lwww.iriscorp.org/tml.html, Transducer Magkllanguage

capture and “time tag” sensor data. However, aseti@o specifications are still quite
new, this chapter will only discuss the three vkelbwn specifications in details.

One of the most important services is the Sensdle@mn Service (SCS) which is
used to fetch observations from a sensor or a eltensbn of sensors. It plays a role of
intermediary agent between a client and an observaépository or near real-time
sensor channel. The getObservation method of SC&pt queries from the client
within certain range of time as input parametersl amsponses with XML data
conformed to Observation & Measurement informatmadel. The describeSensor
and describePlatform methods are used to fetcts¢nsor’s information based on
SensorML. Each client that intends to invoke thexs®e Collection Service must
strictly follow the SCS specification.

The Sensor Planning Service (SPS) is intended ¢wige a standard interface to
handle asset management (AM) that identifies, uaed manages available
information sources (sensors, sensor platforms)oider to meet information
collection (client’s collection request) goals. Sf&8ys a crucial role as a coordinator
which is responsible for evaluating the feasibiliiythe collection request from the
client and, if valid, submitting the request by yileg the SCS about the Observation
data. The DescribeCollectionRequest operation o $iesents the information
needed for the client’s collection request. TheR8asibility method of SPS accepts
requests from the clients and makes a ‘yes’ or thexision according to specified
rules regarding to the feasibility of the collectioClients can invoke the
SubmitRequest method to actually schedule theuwesis and submit to the SCS once
the GetFeasibility method responses with ‘yes’. 3D defines UpdateRequest,
CancelRequest and GetStatus methods to manage @ritbnthe collection request
made by users.

In general, the synchronous messaging mechanispowserful enough to handle
collections of in-situ sensors. However, observetithat require evaluating collection
feasibility or intermediate user notifications aret suitable for synchronous
operations. The Web Notification Service (WNS) is asynchronous messaging
service, which is designed to fulfill the needs safpporting these complicated
scenarios. Sending and receiving notifications thee major responsibilities of the
WNS, which can utilize various communication pratgcincluding HTTP POST,
email, SMS, instant message, phone call, lettefagr Besides, WNS also takes
charge of user the management functionality thased to register user and trace the
user session over the entire process. Operatiomsuding doNotification,
doCommunication and doReply are defined to condhath one-way and two-way
communication between users and services wheregistedser handles user
management, which allows registering users to vedeirther notifications.

4. Service-Oriented Sensor Web

Open Sensor Web Architecture (OSWA) is an OGC SeWsl Enablement standard
compliant software infrastructure for providing \see oriented based access to and
management of sensors created by NICTA/Melbournavedsity. OSWA is a
complete standards compliant platform for integmatiof sensor networks and
emerging distributed computing platform such as S&Ad Grid Computing. The
integration has brought several benefits to themamty. First, the heavy load of
information processing can be moved from sensavorés to the backend distributed
systems such as Grids. The separation is eithéngsavlot of energy and power of
sensor networks just concentrating on sensing endiisg information or accelerating
the process for processing and fusing the huge amamfuinformation by utilizing
distributed systems. Moreover, individual sensdmoeks can be linked together as
services, which can be registered, discovered aoelsaed by different clients using a
uniform protocol. Moreover, as Tham and Buyya, 2@@&ted, Grid-based sensor
applications are capable of providing advanced isesv for smart-sensing by
developing scenario-specific operators at runtime.

Applications i /s--sg !
Layer N

Application " 5"
9% 1%, - I am oy
Development) _,)81 $10 2 & # $)

Layer

Application
Services
Layer

Sensor Fabric
Simulation
Environment

Fig. x. 5: High-level view of Open Sensor Web Arckecture.

The various components defined in OSWA are showdeig. x. 5. Four layers have
been defined, namely Fabric, Services, Developmeami Application layers.
Fundamental services are provided by low-level camepts whereas higher-level
components provide tools for creating applicatiand management of the lifecycle
of data captured through sensor networks. The O®a%ed platform provides a
number of sensor services such as:

Sensor notification, collection and observation;

Data collection, aggregation and archive;

Sensor coordination and data processing;

Faulty sensor data correction and management, and;
Sensor configuration and directory service

Besides the core services derived from SWE, sucBCts, SPS and WNS, there are
several other important services in the serviceerlaysensor Directory Service
provides the capability of storing and searchingises and resources. The Sensor
Coordination Service enables the interaction betwgeoups of sensors, which
monitor different kinds of events. The Sensor D&dd Service provides and
maintains the replications of large amount of serdata collected from diverse
sensor applications. The SensorGrid Processingc®ecwllects the sensor data and
processes them utilizing grid facilities. The deyshent layer focuses on providing
useful tools in order to ease and accelerate thelg@ment of sensor applications.
The OSWA mainly focuses on providing an interactieelopment environment, an
open and standards-compliant Sensor Web servicddlemiare and a coordination
language to support the development of varioussseypplications.

Application Layer

High Level ngh Level
Application Appllcatlon

Sensor Development Tools Third Party Tools

ﬁ XML @ages

Service Layer
Sensor Planning Service Web Notification Service
Sensor Collection Service Sensor Repository Service

Informatlon

Sensor Datessages
Sensor Sensor
Application Application

Sensor Operating System

Sensor Layer

Sensor

Simulator

Emulator

JL 10 1

Phy5|cal Layer

Fig. x. 6: A prototype instance of OSWA.
SWE only provides the principle standard of how S®msor Web looks, and does not
have any reference implementation or working sysésailable to the community;
therefore, there are many design issues to consiaguding all of the common
issues faced by other distributed systems sucha@sity, multithreading, transactions,
maintainability, performance, scalability and rehity, and the technical decisions

that need to be made about which alternative tdogires are best suitable to the
system. Fig. X. 6 depicts a prototype instancehef ©SWA, the implementation
concentrates on the Service Layer and Sensor lasyeell as the XML encoding and
the communication between the sensors and senssonks. The following section
will describe the key technologies that are relévardifferent layers of the OSWA.
In addition, the design and implementation of tbeecservices are presented in this
section.

4.1 Technology Issues

In order to better understand the whole Open Sewalr Architecture including its
design and implementation, several critical tecbgi@s are discussed briefly, which
form the fundamental infrastructure across sevayars of OSWA.

4.1.1 Service Layer and SOA

The SOA is the essential infrastructure that sugptire Service Layer and plays a
very important role in presenting the core middlesvaomponents as services for
client access. The main reason for Sensor Webneellyeavily on SOA is because it
simplifies integration of distributed heterogenesystems which are loosely coupled.
Moreover, SOA allows the services to be publisitisi;overed and invoked by each
other on the network dynamically. All the servicesmmunicate with each other
through predefined protocols via a messaging masimrwhich supports both

synchronous and asynchronous communication mo8aise each sensor network
differs from each other, trying to put differentnsers on the web, and providing
discovery and accessibility requires the adoptioc8QOA.

Service
Registry
Discover(UD@I) Publido(WSDL)
Service _ R Service
Consumer) - Provider
Invoke(SOAP)

Fig. x. 7: Typical architecture of Web Service.
Web Services is one of the most popular implememtatof SOA and is a language
and platform neutral technology that can be implete@& using any programming
language in any platform. For example, a servicétew in C# can be accessed by a
client written in Java. Web Services, technolodycalepends on a group of standard
specifications including HTTP, XML, Simple Objectpplication Protocol (SOAP),
Universal Description Discovery and Integration [DIR Web Services Description
Language (WSDL). XML is the key to Web Serviceshteaogy, which is the
standard format of the messages exchanged betveeeines, and moreover almost
every specifications used in Web Services are teyas XML data such as SOAP

and WSDL. SOAP provides a unique framework thatiged for packaging and
transmitting XML messages over variety of networktpcols, such as HTTP, FTP,
SMTP, RMI/IIOP or proprietary messaging protdcaVSDL describes the operations
supported by web services and the structure oftiapd output messages required by
these operations. It also describes important mn&bion about the web services
definition, support protocol, processing model audiress. The typical architecture
for Web Services is showed in Fig. x. 7. Servicastmners may search the global
registry (i.e. UDDI registry) about the WSDL addvesf a service that has been
published by the service provider, and the consaroan invoke the relevant calls to
the service once they obtain the WSDL for the serfiom the registry. As OSWA is
primarily based on XML data model, Web Servicesvfste a much better solution in
terms of interoperability and flexibility.

4.1.2 Information Model and XML Data Binding

The information model of OSWA is based on Obseomtnd Measurement and
SensorML, both of them are built upon XML standaadsl are defined by an XML
Schema. Transforming the data representation optbgramming language to XML
that conforms to an XML Schema refers to XML datading, and is a very important
and error-prone issue that may affect the perfoomamd reliability of the system. In
general, there are two common approaches to sbisgtoblem. The first and most
obvious way is to build the encoder/decoder diyelayl hand using the low-level SAX
parser or DOM parse-tree API, however doing soikely to be tedious and
error-prone and require generating a lot of redohdades that are hard to maintain.

A better approach to deal with the transformatisrtad use an XML data binding
mechanism that automatically generates the requioeleé according to a DTD or an
XML Schema. The data binding approach providesngple and direct way to use
XML in applications without being aware of the dktd structure of an XML
document, and instead working directly with theadabntent of those documents.
Moreover, the data binging approach makes accedattofaster since it requires less
memory than a document model approach like DOM @®ONI for working with
documents in memoty There are quite a few Java Data binding toolslaa such
as JAXB, Castor, JBind, Quick, Zeus and Apache XMaBs. Among those open
source tools, XMLBeans seem to be the best chatemly because it provides full
support for XML Schema, but also does it provide@&xaluable features like XPath
and XQuery supports, which directly enables perfognqueries on the XML
documents.

4.1.3 Sensor Operating System

OSWA has the ability of dealing with heterogeneseassor networks that may adopt
quite different communication protocols includiraglio, blue tooth, and ZigBee/IEEE

5 http://www.w3.0rg/TR/2004/NOTE-ws-arch-20040211/vpsH, Web Services Architecture, W3C, Feb 2004
® Sosnoski D (2003) XML and Java Technologies: Dhitading, Part 1: Code generation
approaches — JAXB and motetp:/iwww-128.ibm.com/developerworks/xml/librarydatabdopt/

802.11.4 protocols. As a result, it is quite dddeathat the operating system level
support for sensor networks can largely elimindte work of developing device
drivers and analyzing various protocol stacks diyetn order to concentrate on
higher-level issues related to the middleware dgrekent.

TinyOS (Hill et al., 2000) is the de-facto standardl very mature Operating System
for wireless sensor networks, which consists ofch set of software components
developed by nesC (Gay et. al., 2003) languagegimgnfrom application level
routing logic to low-level network stack. TinyOSopides a set of Java tools in order
to communicate with sensor networks via a prograatied SerialForwarder.
SerialForwarder runs as a server on the host machimd forwards the packets
received from sensor networks to the local netwddgpicted by Fig. x. 8. Once the
SerialForwarder program is running, the softwareated on the host machine can
parse the raw packet and process the desired iafmm TinyDB (Maden, 2003) is
another useful component built on top of TinyOS,ickhconstructs an illusion of
distributed database running on each node of theosenetworks. SQL-like queries
including simple and even grouped aggregating qaecan be executed over the
network to acquire data of sensors on each node.

¥ 23 4 5 & 7T 38 8 W 1213 141 16 17 18 18 20

Application

@ N @ e W o

10
1
12
13
14
15

Fig. x. 8: TinyOS SerialForwarder Architecture.
Besides TinyOS, there are other Operating Systexstirgg as well. MANTIS
(Abrach et. al., 2003) is a lightweight multithreadsensor operating system, which
supports C API enabling the cross-platform suppamts reuse of C library. Moreover,
it supports advanced sensor features includingismdtel prototyping environment,
dynamic reprogramming and remote shell. Contikir{kris et. al., 2004), which is
designed for memory constrained systems, is an@bent-driven sensor operating
system like TinyOS with a highly dynamic naturettban be used to multiplex the
hardware of a sensor network across multiple agtptins or even multiple users.

4.1.4 Sensor Data Persistence

Persistence is one of the most important aspectthéopurpose of manipulating the
huge amount of data relevant to both sensor obgenvand sensor information. As
the standard format for exchanging data betweemicgsr is XML data which
conforms to O&M and SensorML schema, transformatineed to be done between
different views of data including XML, Java objemntd relational database. In order
to ease the operation of the transformation, thR @¥apping solution has been
adopted to support the data persistence.

Java Data Objects (JDO) is one of the most popDI& mapping solutions, which
defines a high-level API that allows applications $tore Java objects in a
transactional data store by following defined stadd. It supports transactions,
gueries, and the management of an object cache. gid@des for transparent
persistence for Java objects with an API that dgependent of the underlying data
store. JDO allows you to very easily store reguJlava classes. JDOQL is used to
query the database, which uses a Java-like syht@xcan quickly be adopted by
those familiar with Java. Together, these featimgsove developer productivity and
no transformation codes need to be developed mignaal JDO has done that
complicated part underneath. To make use of JD® JIO Metadata is needed to
describe persistence-capable classes. The infamaticluded is used at both
enhancement time and runtime. The metadata assedoiawith each
persistence-capable class must be contained vathiML file. In order to allow the
JDO runtime to access it, the JDO metadata filestrbe located at paths that can be
accessed by the Java classloader.

4.2 Design and Implementation

WSDL

10 Notify User

Web Notification

Service WSDL

(2 Sensor Repository
=2

N Service
WSDL iy

Sensor Planning | © Get Observation é Sensor Collection

. —— .
Service =, Service
B |

8 Return O&M

1dsSM

Fig. x. 9: Atypical invocation for Sensor Web cliat.
Currently, the primary design and implementation @BWA focuses on its core
services including SCS, WNS, and SPS (those extéonds SWE) as well as the
Sensor Repository Service that provides the perdgishachanism for the sensor and
the observation data. Fig. x. 9 illustrates an g{anof the client collection request
and the invocations between relating services. d®1sas the end user forwards an

observation plan to the Planning Service, it cheitks feasibility of the plan and
submits it if feasible. The user will be registenadthe Web Notification Service
during this process and the user id will returrf8RS. SPS is responsible for creating
the observation request according to user’s plahratrieving the O&M data from
the Sensor Collection Service. Once the O&M datee&ly, the SPS will send an
operation complete message to the WNS along wéhugier id and task id. The WNS
will then notify the end user to collect the data @mail or other protocols it supports.

4.2.1 Sensor Collection Service

Within those core services of OSWA, Sensor Colectbervice (SCS) is one of the
most important components residing in the senaged The sensor collection service
is the fundamental and unique component that need@®mmunicate directly with
sensor networks, which is responsible for collectieal time sensing data and then
translating the raw information into the XML encoglifor other services to utilize
and process. In other words, SCS is the gatewagrftaring into the sensor networks
from outside clients and its design and implemémnatvill affect the entire OSWA.
The design of SCS provides an interface to botbasting data and query based
sensor applications that are built on top of Tiny®d TinyDB respectively.

/g
Sensor 3 Queny for dal /QC):;‘
Registry 4 Qliservatjon data /<)
Service { ()g /
< /'/
|/ %
WSDL (/)Q/
X3)
N < € DB ConneC@E >
0| Sensor Collection
g .
- Service / N

Database
Sengor Observation Archives

Fig. x. 10: Sensor Collection Service Architecture.
Fig. x. 10 illustrates the architecture of the SerGollection Service. It conforms to
the interface definition that is described by th€SSspecification and has been
designed as web services that work with a proxyeoting to either real sensors or a
remote database. Clients need to query the SeregistR/ Service about available
SCS WSDL addresses according to their requiremands send a data query via
SOAP to the SCS in order to obtain the observatiata conforming to the O&M
specification. The proxy acts as an agent workirith warious connectors that

connect to the resources holding the informatiowl, @ncode the raw observation into
O&M compatible data. Different types of connectbesse been designed to fit into
different types of resources including sensor nétwaounning on top of TinyOS or
TinyDB and remote observation data archives. Thexyrneeds to process the
incoming messages from the client in order to deitee what kind of connectors,
either real-time based or archive based, to use.dBsign of the SCS is flexible and
makes it easy to extend for further developmedifierent sensor operating systems
are adopted by the sensor networks such as MANIT Soatiki. The only work is to
implement a specific connector in order to conntxtthose resources and no
modifications need to be made in the current sysiEme design of the proxy also
encourages the implementation of a cache mechawismprove the scalability and
performance of the SCS. Load balancing mechanisansbe added to the system
easily as well, by simply deploying the web sentelifferent servers.

4.2.2 Sensor Planning Service

Sensor
Registry

qese | Service Collection
e
g0 @
4 e /
Client 15?‘5\'“50 Get O rvation
WSDL

3 Make a plan

4 Feasible or not é Sensor Planning Schedule request Store Data -
) Service ==——"> pataCollector

5 Submit feasible plan
|

6 Submit Success or fail

Feasibil[ty check DoN ication

Jotify client outcome and

where to collect the data
Web
Rule Engine :
Service

Fig. x. 11: Sensor Planning Service Architecture.

The design of the Sensor Planning Service (SP3)ldlomnsider the both short-term

and long-term user’s plan, which means that the 8RSt provide response to the
user immediately, rather than blocking to wait tlee collection results. Shown in the

Fig. x. 11, SPS utilizes a rule engine which readpecific set of predefined rules in
order to clarify the feasibility of the plan madgthe user. The implementation of the
rule engine can be quite complicated, expectingsiistem to accept rules within a
configuration file as plain text, xml-based or atlgpes of rule-based languages. .
Currently, the rule engine is implemented as afratisclass that can be extended by
the application developers to specify a set of blamy conditions that define the

feasibility of the applications. For example, irsimple temperature application, a
boundary condition for the temperature may be gedrom 0 to 100.

The most important component that makes the SR8bdmifor short or long term
plan execution is the Scheduler which is impleméte a separate thread running in
the background. The execution sequence of the Sre(d) composes the collection
request according to user’s plan and then invokegetObservation of the SCS, (ii)
asks the DataCollector to store the observatioma datorder for users to collect
afterward, and (iii) sends notification to the WN®Ilicating the outcome of the
collection request. Notice that the time of theat®mn happened in the scheduler
varies baesd on the requirements of the user’s flae clients will get a response
indicating that their plans will be processed rigfter they submit their plan to the
SPS. The scheduler deals with the remaining timeswming activities. The clients
may get the notification from the WNS as soon as\WINS receives the message
from the scheduler, and collect the results froendataCollector.

4.2.4 Web Notification Service

Sensor
Registry
Service

Register User

<>

=
n
)
[

Web Notification | Yser Registraton Account _
. [—— <>
Service Manager MySQL DB

Notify Reg|stered User

Send
Notification

Specify protocol

Notification — >C e
Protocol

Fig. x. 12: Web Notification Service Architecture.

The current design of Web Notification Service owed in Fig. x. 12, which
contains two basic components: AccountManager aatifidation. The SPS may
request to register users via WNS, which asks tbeoAntManager to manage the
user account in the DBMS in order to retrieve uséormation in the subsequent
operations. The Notification is used to create ecgjg communication protocol and
send the messages via the protocol to the useh#izabeen registered in the DBMS.
Currently, an EmailCommunicationProtocol has beeplémented to send messages
via email. Further implementations can be easilggéd into the existing architecture
by implementing the CommunicationProtocol interfagtéh a send method.

5. Experimentation and Evaluation

As the OWSA aims at providing a platform to servenerous users globally through
the internet, it is quite important to test theveas, and ensure that they are scalable
and performing reasonably. The experiment platfdom the services is built on
TOSSIM (described by Levis et al.,, 2003 as a discevent simulator that can
simulate thousands of motes running complete semgolications and allow a wide
range of experimentation) and Crossbow’s MOTE-KIT4XICA2 Basic Kif that
consists of 3 Mica2 Radio board, 2 MTS300 Sensaré&s a MIB510 programming
and serial interface board. The experiment conat¥ron the SCS, due to the fact
that it is the gateway for other services to ses)sehich would be the most heavily
loaded service and possible bottleneck of the esiistem. As can be seen in Fig. x.
13, SCS has been deployed on Apache Tomcat 5Wadifferent machines that run
TinyDB application under TOSSIM and Temperature Mwing Application under
Crossbow’s motes respectively. Meanwhile, a SerRepgistry Service is also
configured on a separate machine that providesfuhetionality to access sensor
registry and data repository.

Sensor Registry
Sepsice

Database

Node #1
Client

TinyDB Simulation

Fig. x. 13: Deployment of Experiment.

A simple temperature monitoring application hasoalseen developed. The
application is programmed using nesC and uses siogic, which just broadcasts
the sensing temperature, light and node addresbetosensor network at regular
intervals. The simple application does not consaer multi-hop routing and energy
saving mechanism. Before installing the applicationthe Crossbow’s mote, the
functionality can be verified via the TOSSIM simla Fig. x. 14 demonstrates the
simulation of the temperature application runninger the TOSSIM visual GUI.

7 http://www.xbow.com/Products/productsdetails.asfk?67. Crossbow Technology Inc

Fig. x. 14: Simulation of Temperature Monitoring Application under TOSSIM

Fig. x. 15: Swing client showing query result for inyDB application under TOSSIM
Once the application has been successfully instabeto each mote via the
programming board, a wireless sensor network has bailt with two nodes, and one
base station connecting to the host machine visehial cable. Besides installing the
application itself, the SerialForwarder progranoaigeds to run on the host machine

in order to forward the data from the sensor netwior the server. Fig. x. 15
demonstrates the list of results for a simple qusnp>200" to the sensors running
TinyDB application under TOSSIM.

Regarding scalability, a simulation program that stimulate different numbers of
clients running at the same time has been usedusixely for the SCS. The
performance measured by time variable (per secémd)both auto-sending and
guery-based applications running on top of Tiny®Showed in the following figures.
As can be seen from Fig. x. 16, the result of thew-sending mode application is
moderate when the number of clients who requestotiservation simultaneity is
small. Even when the number of clients reaches &@®;response time for a small
number of records is also acceptable. In contthstresult showed in Fig. x. 17 is
fairly unacceptable as even just one client redqugst single observation takes 34
seconds. The response time increases near linghdy the number of clients and the
number of records go up. The reason why the quasgdh approach has very poor
performance is due to the execution mechanism wyOB. A lot of time has been
spent on initializing each mote, and the applicatan only execute one query at one
time, which means another query needs to wait uhél current query has been
stopped or has terminated. A solution to this problmay require the TinyDB
application run a generic query for all clientsdahe more specific query can be
executed in-memory according to the observatiora datlected from the generic
query.

i o
(1]
B O
=l m={ | _i_l
o 1
] ! "
0 I "

Fig. x. 16: Performance for collecting auto-sendingata.

m
O
= I
O P I ##"
] #1" $H""
O s $!

Fig. x. 17: Performance for collecting TinyDB querydata.

There are several possible ways to enhance therpehce. A caching mechanism
may be one of the possible approaches, the rec#iatted observation data can be
cached in the proxy for a given period of time el clients who request the same
set of observation data can be read the observdsitmfrom the cache. However, as
the data should be kept as close to real time ssilge, it is quite hard to determine
the period of time for the cache to be valid. Aidien can be made according to the
dynamic features of the information the applicatisntargeting. For example, the
temperature for a specific area may not changerdigadly by minutes or by hours.
Consequently, the period of time setting for theheafor each sensor application can
vary based on the information the sensor is targe#Another enhancement of query
performance may be achieved by utilizing the quaechanism such as XQuery of
the XML data directly other than asking the reatss® itself executing the query
similar to TinyDB.

6 Summary and Future Works

In this chapter, we have introduced a new buzzw8ahsor Web in the research and
academic community of sensor and sensor netwotiexeTare a lot of efforts that aim
to provide middleware support to the sensor dewvaetg. Among those, the most
important one is OGC’s SWE standard that standesdihe vision of Sensor Web.
SensorML, O&M, SCS, SPS and WNS together, to craatetegration platform to

register, discover and access anonymous and heterogs sensors distributed all
over the world through internet. A service orienteensor Web framework named
Open Sensor Web Architecture (OSWA) has been discualong with the design

implementation of the core services targeting #mser applications running on top
of TinyOS. OSWA extends SWE and provides additioselvices to process the
information collected from those resources acconggaby computational grids. In

addition, the experiment of the scalability andf@enance of the prototype system is

also presented.

Although the services are all working properly witbceptable performance, we are
still at an early stage of having the entire OSWi#plemented. Even those services
that we have implemented are not yet fully funciioiThe Sensor Collection Service
is the key component of the entire OSWA, which @8ethe performance and

reliability of the entire system. A lot of issua® deft to future investigation, focusing

on aspects of reliability, performance optimizataord scalability. There are a couple
of efforts that are needed to be made to enhare&SE86 and other services in the
next stage.

The query mechanism for the Sensor Collection Serwill be enhanced to
support in-memory XML document querying. XPath a@Query technologies
are planned to be adopted, as they are the standgrtb query XML documents.
The outcome of this enhancement is expected toowepthe performance by
moving the heavy workload of queries from the semsdwork itself and onto the
host machine instead.

A caching mechanism may be implemented and platedtihe Proxy to further
enhance the performance and scalability.

Other methods that are described in the specificatof the SWE services but are
currently not available still need to be implemeinte

Other natification protocols need to be built foe WNS in the future.

Sensor Registry via SensorML needs to be develapeatder to support the
worldwide sensor registration and discovery.

Both XML-based configuration and rule-based comnfégion language may be
developed in order to ease the deployment of thecss.

Acknowledgements

We would like to thank Bohdan Durnota for his teichhguidance while formulating
and designing initial prototype of SensorWeb. WenthJiye Lin for his contribution
towards the development of SensorWeb repository. tN#ek all members of the
NOSA project especially those involved in advancsansorWeb into the future.

Bibliography

1.

Liu T, Martonosi M (2003) Impala: a Middleware Sgmst for Managing Autonomic, Parallel
Sensor Systems. In Proceedings of tffe LM SIGPLAN symposium on Principles and
practice of parallel programming, June 11-13, Sagd, CA, USA.

Heinzelman W, Murphy A, Carvalho H, Perillo M (2Q0Middleware to Support Sensor
Network Applications. IEEE Network Magazine 18: &-1

Bonnet P, Gehrke J, Seshadri P (2000) Querying Rhgsical World. IEEE personal
Communications 7:10-15.

Soutoo E, Guimaraes G., Vasconcelos G., Vieira MsaRN, Ferraz C, Freire L (2004) A
Message-Oriented Middleware for Sensor Networksc&edings of ¥ International Workshop
on Middleware for Pervasive and Ad-Hoc Computingtaber 18-22, Toronto, Ontario, Canada.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Tham CK, Buyya R (2005) SensorGrid: Integrating<®erNetworks and Grid Computing. CSI
Communications 29:24-29.

Gaynor M, Moulton SL, Welsh M, LaCombe E, RowanWynne J (2004) Integrating Wireless
Sensor Networks with the Grid. IEEE Internet Conmuy8:32-39.

Ghanem M, Guo Y, Hassard J, Osmond M, and Rich&4d@004) Sensor Grids for Air
Pollution Monitoring. Proceedings of UK e-Scienck Aands Meeting, 31 Aug- 3¢ September,
Nottingham UK.

Nickerson BG, Sun Z, Arp JP (2005) A Sensor Webgduage for Mesh Architectures. 3rd
Annual Communication Networks and Services Rese@miference, May 16-18, 2005, Halifax,
Canada.

Tao V, Liang SHL, Croitoru A, Haider Z, War@ (2004) GeoSWIFT: Open Geospatial Sensing
Services for Sensor Web. I8tefanidis A, Nittel S (eds), CRC Press, pp.267-274

Gibbons PB, Karp B, Ke Y, Nath S, Seshan S (2008N&t: An Architecture for a Worldwide
Sensor Web. IEEE Pervasive Computing 2: 22-33.

Reichardt M (2005) Sensor Web Enablement: An OGCit&Viraper. Open Geospatial
Consortium (OCG), Inc.

Mainwaring A, Polastre J, Szewczyk R, Culler D, Argbn J (2002) Wireless sensor networks
for habitat monitoring. In Proceedings of the fils€EM International Workshop on Wireless
Sensor Networks and Applications, Sept. 28, AtlaGia, USA.

Hu W, Tran VN, Bulusu N, Chou CT, Jha S, Taylor20Q5) The Design and Evaluation of a
Hybrid Sensor Network For Cane-toad Monitorihg Proceedings of Information Processing in
Sensor Networks, April 25-27, Los Angeles, CA, USA.

Cardell-Oliver R, Smettern K, Kranz M, Mayer K (2)OField Testing a Wireless Sensor
Network for Reactive Environmental Monitoring. Intational Conference on Intelligent
Sensors, Sensor Networks and Information ProcesBiacember 14-17, Melbourne, Australia.
Hill J, Szewczyk R, Woo A, Hollar S, Culler D, aRister K (2000) System architecture
directions for networked sensors. In Architecti8apport for Programming Languages and
Operating Systems, November 12-15, Cambridge, M3AU

Madden SR (2003) The Design and Evaluation of arpBeocessing Architecture for Sensor
Networks. PhD thesis, UC Berkeley, USA.

Abrach H, Bhatti S, Carlson J, Dai H, Rose J, SketB8hucker B, Deng J, Han R (2003)
MANTIS: system support for MultimodAl NeTworks afi{Situ sensors. Proceedings of the 2nd
ACM international conference on Wireless sensowngts and applications, September 19, San
Diego, CA, USA.

Dunkels A, Gronvall B, Voigt T (2004) Contiki - aghtweight and Flexible Operating System
for Tiny Networked Sensors. Proceedings of the 2@thual IEEE International Conference on
Local Computer Networks, November 16-18, Tampariido USA.

Gay D, Levis P, von Behren R, Welsh M, Brewer EJI&€uD (2003) The nesC language: A
holistic approach to networked embedded systemscedings of Programming Language
Design and Implementation (PLDI), June 8-11, Saegbj CA, USA.

Levis P, Lee N, Welsh M, Culler D (2003) TOSSIM:Acate and. Scalable simulation of entire
TinyOS applications. In Proc. of the 1st Intl. Cooh Embedded Networked Sensor Systems,
November 4-7, Los Angeles, CA, USA.

