
Service Oriented Sensor Web

Xingchen Chu and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, Australia
{xchu, raj}@csse.unimelb.edu.au

Abstract

The Sensor Web is an emerging trend which makes various types of web-resident
sensors, instruments, image devices, and repositories of sensor data, discoverable,
accessible, and controllable via the World Wide Web. A lot of effort has been invested
in order to overcome the obstacles associated with connecting and sharing these
heterogeneous sensor resources. This chapter emphasizes the Sensor Web Enablement
(SWE) standard defined by the OpenGIS Consortium (OGC), which is composed of a
set of specifications, including SensorML, Observation & Measurement, Sensor
Collection Service, Sensor Planning Service and Web Notification Service. It also
presents a reusable, scalable, extensible, and interoperable service oriented sensor
Web architecture that (i) conforms to the SWE standard; (ii) integrates Sensor Web
with Grid Computing and (iii) provides middleware support for Sensor Webs. In
addition, this chapter describes the experiments and an evaluation of the core services
within the architecture.

Keywords: Sensor Web, SensorML, Observation & Measurement, Sensor Collection
Service, Sensor Planning Service, Web Notification Service.

1. Introduction

Due to the rapid development of sensor technology, current sensor nodes are much
more sophisticated in terms of CPU, memory, and wireless transceiver. Sensor
networks are long running computing systems that consist of a collection of sensing
nodes working together to collect information about, for instance, light, temperature,
images and other relevant data according to specific applications. Wireless sensor
networks have been attracting a lot of attention from both academic and industrial
communities around the world. The ability of the sensor networks to collect
information accurately and reliably enables building both real-time detection and
early warning systems. In addition, it allows rapid coordinate responses to threats
such as bushfires, tsunamis, earthquakes, and other crisis situations.
However, the heterogeneous features of sensors and sensor networks turn the efficient

collection and analysis of the information generated by various sensor nodes into a
rather challenging task. The main reasons for that are the lack of both uniform
operations and a standard representation for sensor data that can be used by diverse
sensor applications. There exists no means to achieving resource reallocation and
resource sharing among applications as the deployment and usage of the resources has
been tightly coupled with the specific location, sensor application, and devices used.

The Service Oriented Architecture (SOA) provides an approach to describe, discover,
and invoke services from heterogeneous platforms using XML and SOAP standards.
The term ‘service’ not only represents a software system but also refers to hardware
and any devices that can be used by human beings. A service may be an online ticket
booking system, a legacy database application, a laser printer, a single sensor or even
an entire network infrastructure. Bringing the idea of SOA to sensors and sensor
networks is a very important step forward to presenting the sensors as reusable
resources which can be discoverable, accessible and where applicable, controllable
via the World Wide Web. Furthermore, it is also possible to link distributed resources
located across different organizations, countries, or regions thus creating the illusion
of a sensor-grid, which enables the essential strengths, and characteristics of a
computational grid.

Pollution Detection

Computer Grid

Instrument

Weather Forecast

Tsunami Detection

Researcher

Collaborators

Software, Model, Workflow

Sensor Nets

Historical Data

Fig. x.1: Vision of the Sensor Web.

Fig. x.1 demonstrates an abstract vision of the Sensor Web, which is the combination
of SOA, grid computing and sensor networks. Various sensors and sensor nodes form
a web view and are treated as available services to all the users who access the Web.
Sensor Web brings the heterogeneous sensors into an integrated and uniform platform
supporting dynamic discovery and access. A sample scenario would be the client (may
be the researchers or other software, model and workflow system), who wants to
utilize the information collected by the deployed sensors on the target application,

such as weather forecast, tsunami or pollution detection. The client may query the
entire sensor web and get the response either from real-time sensors that have been
registered in the web or existing data from a remote database. The clients are not
aware of where the real sensors are and what operations they may have, although they
are required to set parameters for their plan and invoke the service (similar to when
people perform a search on Google, filling in the search field and clicking the search
button). The primary goal of the Sensor Web is to offer reliable and accessible
services to the end-users. In other words, it provides the middleware infrastructure
and the programming environment for creating, accessing, and utilizing sensor
services through the Web.

The remainder of this chapter is organized as follows. Related work on sensor
middleware support, sensor-grid, and sensor web is described in Section 2. Section 3
details the emerging standard of the Sensor Web: Sensor Web Enablement. Section 4
describes OSWA, a service oriented sensor web architecture, and the design and
implementation of its core services. Evaluation of applying the middleware to a
simple temperature monitoring sensor application is discussed in Section 5. This
chapter concludes with the summary and the future work.

2. Related Work

A lot of effort has been invested in building middleware support for making the
development of sensor applications simpler and faster. Impala (Liu and Martonosi,
2003) designed for the ZebraNet project, considers the application itself while
adopting mobile code techniques to upgrade functions on remote sensors. The key to
the energy efficiency provided by Impala is making sensor node applications as
modular as possible, thus imposing small updates that require little transmission
energy. MiLAN (Heinzelman et al., 2004) is an architecture that extends the network
protocol stack and allows network specific plug-ins to convert MiLAN commands
into protocol-specific commands. Bonnet et al., 2000 implemented Cougar, a
query-based database interface that uses a SQL-like language to gather information
from wireless sensor networks. However, most of these efforts concentrate on creating
protocols and are designed to ensure the efficient use of wireless sensor networks. In
contrast to these middleware, Mires (Soutoo et al., 2004) is a message-oriented
middleware that is placed on top of the operating system, encapsulates its interfaces
and provides higher-level services to the Node Application. The main component of
Mires is a publish/subscribe service that intermediates communication between
middleware services, which might be used as the foundation of Sensor Web
middleware.

Besides middleware support for the sensor applications, integrating sensor networks
with grid computing into a sensor grid is also quite important. Tham and Buyya
(Tham and Buyya, 2005) outlined a vision of sensor-grid computing and described
some early work in sensor grid computing by giving examples of a possible

implementation of distributed information fusion and distributed autonomous
decision-making algorithms. Discussion about the research challenges needed to be
overcome before the vision becomes a reality have also been presented. A
data-collection-network approach to address many of the technical problems of
integrating resource-constrained wireless sensors into traditional grid applications
have been suggested by Gaynor et al., 2004. This approach is in the form of a network
infrastructure, called Hourglass that can provide a grid API to a heterogeneous group
of sensors. Those, in turn, provide fine-grained access to sensor data with OSGA
standards. Another sensor grid integration methodology introduced by Ghanem et al.,
2004 utilized the grid services to encompass high throughput sensors, and in effect
make each sensor a grid service. The service can be published in a registry by using
standard methods and then made available to other users.

Nickerson et al., 2005 described a Sensor Web Language (SWL) for mesh architecture,
which provides a more robust environment to deploy, maintain and operate sensor
networks. As they stated, greater flexibility, more reliable operation and machinery to
better support self-diagnosis and inference with sensor data has been achieved with
the mesh architecture support in SWL. At the GeoICT Lab of York University, an
open geospatial information infrastructure for Sensor Web, named GeoSWIFT, has
been presented, which is built on the OpenGIS standards. According to Tao et al.,
2004, XML messaging technology has been developed, serving as a gateway that
integrates and fuses observations from heterogeneous spatial enabled sensors. The
IrisNet architecture at Intel Research, introduced by Gibbons et al., 2003, is a
software infrastructure that supports the central tasks common to collect, filter and
combine sensor feeds and perform distributed queries. There are two-tiers of IrisNet
architecture including sensing agents that provide a generic data acquisition interface
to access sensors, and organizing agents that are the nodes implementing the
distributed database. Finally, the most important effort that has been made to Sensor
Web is the Sensor Web Enablement (SWE) introduced by Reichardt, 2005. SWE
consists of a set of standard services to build a unique and revolutionary framework
for discovering and interacting with web-connected sensors and for assembling and
utilizing sensor networks on the Web. The following section of this chapter discusses
SWE standards in more in detail.

3. Standard: OCG Sensor Web Enablement

Many sensor network applications have been successfully developed and deployed
around the world. Some concrete examples include:

� Great Duck Island Application: as Mainwaring et al., 2002 stated, 32 motes
are placed in the areas of interest, and they are grouped into sensor patches to
transmit sensor data to a gateway, which is responsible for forwarding the
data from the sensor patch to a remote base station. The base station then
provides data logging and replicates the data every 15 minutes to a Postgress
database in Berkeley over a satellite link.

� Cane-toad Monitoring Application: two prototypes of wireless sensor
networks have been set up, which can recognize vocalizations of at
maximum 9 frog species in Northern Australia. Besides monitoring the frogs,
the researchers also plan to monitor breeding populations of endangered birds,
according to Hu et al., 2003.

� Soil Moisture Monitoring Application: Cardell-Oliver et al., 2004 presents a
prototype sensor network for soil moisture monitoring that has been deployed
in Pinjar, located in north of Perth, WA. The data is gathered by their reactive
sensor network in Pinjar, and sent back to a database in real time using a
SOAP Web Services.

However, none of these applications address the ability for interoperability which
means that users cannot easily integrate the information into their own applications
(the Soil moisture monitoring application utilizes the Web Services only for remote
database operations). Moreover, the lack of semantics for the sensors that they have
used makes it impossible to build a uniform Web registry to discover and access those
sensors. In addition, the internal information is tightly coupled with the specific
application rather than making use of standard data representations, which may
restrict the ability of mining and analyzing the useful information.

Imagine hundreds of in-site or remote weather sensors providing real-time
measurements of current wind and temperature conditions for multiple metropolitan
regions. A weather forecast application may request and present the information
directly to end-users or other data acquisition components. A collection of Web-based
services may be involved in order to maintain a registry of available sensors and their
features. Also consider that the same Web technology standard for describing the
sensors, outputs, platforms, locations and control parameters is in use beyond the
boundaries of regions or countries. This enables the interoperability necessary for
cross-organization activities, and it provides a big opportunity in the market for
customers to get a better, faster and cheaper service. This drives the Open Geospatial
Consortium (OGC) to develop the geospatial standards that will make the "open
sensor web" vision a reality.1

As the Sensor Web Enablement (SWE) becomes the de facto standard regarding
Sensor Web development, understanding SWE is crucial for both researchers and
developers. In general, SWE is the standard developed by OGC that encompasses
specifications for interfaces, protocols and encodings that enable discovering,
accessing, obtaining sensor data as well as sensor-processing services. The following
are the five primary specifications for SWE:
1. Sensor Model Language (SensorML) – Information model and XML encodings

that describe either single sensor or sensor platform in regard to discover, query
and control sensors.

2. Observation and Measurement (O&M) – Information model and XML encodings
for observations and measurement.

1 http://www.geoplace.com/uploads/FeatureArticle/0412ee.asp

3. Sensor Collection Service (SCS) – Service to fetch observations, which conforms
to the Observations and Measurement information model, from a single sensor or
a collection of sensors. It is also used to describe the sensors and sensor platforms
by utilizing SensorML.

4. Sensor Planning Service (SPS) – Service to help users build feasible sensor
collection plan and to schedule requests for sensors and sensor platforms.

5. Web Notification Service (WNS) – Service to manage client session and notify the
client about the outcome of her requested service using various communication
protocols.

Fig. x. 2: A typical collaboration within Sensor Web Enablement Framework.

As Reichardt, 2005 stated, the purpose of SWE is to make all types of web-resident
sensors, instruments and imaging devices, as well as repositories of sensor data,
discoverable, accessible and, where applicable, controllable via the World Wide Web.
In other words, the goal is to enable the creation of Web-based sensor networks. Fig. x.
2 demonstrates a typical collaboration between services and data encodings of SWE.

3.1 SensorML

Web-enabled sensors provide the technology to achieve rapid access to various kinds
of information from the environment. Presenting sensor information in standard
formats enables integration, analysis and creation of various data “views” that are
more meaningful to the end user and to the computing system which processes this
information. Moreover, a uniform encoding benefits the integration of heterogeneous
sensors and sensor platforms as it provides an integrated and standard view to the
client. The Sensor Model Language (SensorML) is a new XML encoding scheme that
may make it possible for clients to remotely discover, access, and use real-time data
obtained directly from various Web-resident sensors. SensorML describes the

geometric, dynamic, and observational features of sensors of all kinds.

SensorML is a key component for enabling autonomous and intelligent sensor webs,
and provides the information needed for discovery of sensors, including sensor’s
capabilities, geo-location and taskability rather than a detailed description of the
sensor hardware. Moreover, both in-site and remote sensors, on either static or
dynamic platforms are supported by SensorML. Fig. x.3 depicts the basic structure of
SensorML. The information provided in SensorML includes the sensor name, type,
and identification (identifiedAs); time, validity, or classification constraints of the
description (documentConstrainedBy); a reference to the platform (attachedTo); the
coordinate reference system definition (hasCRS); the location of the sensor
(locatedUsing); the response semantics for geolocating samples (measures); the
sensor operator and tasking services (operatedBy); metadata and history of the sensor
(describedBy); and metadata and history of the document itself (documentedBy).

Fig. x. 3: High-level structure of SensorML (Reichardt, 2005).

Besides the importance of SensorML in SWE framework, SensorML itself is an
independent standard rather than part of the SWE framework, which means that it can
be used outside the scope of SWE. Other benefits of adopting SensorML include (i)
enabling long-term archive of sensor data to be reprocessed and refined in the future
and (ii) allowing the software system to process, analyze and perform a visual fusion
of multiple sensors2.

3.2 Observation and Measurement

Besides collaborating SensorML which contains information about sensors and sensor
platforms, SWE utilizes Observation and Measurement (O&M)3. O&M is another
standard information model and XML encoding that is important for Sensor Web to
find universal applicability with web-based sensor networks. The O&M model is
required specifically for the Sensor Collection Service and related components of
OGC Sensor Web Enablement, which aims at defining terms used for measurements,

2 http://member.opengis.org/tc/archive/arch03/03-0005r2.pdf, Sensor Model Language IPR, OGC 03-005.
3 http://portal.opengeospatial.org/files/index.php?artifact_id=1324, Observation & Measurement, OGC 03-022r3.

and relationships between them.

Fig. x. 4: Basic Observation structure3.
As Fig. x. 4 indicates, the basic information provided by Observation includes the
time of the event (timeStamp); the value of a procedure such as instrument or
simulation (using); the identification of phenomenon being sampled (observable); the
association of other features that are related to the Observation (relatedFeature); the
common related features that have fixed role such as Station or Specimen (target); the
quality indicators associated with the Observation (quality); the result of the
Observation (resultOf); location information (location) and the metadata description
(metadataProperty). Moreover, the observation data can be either single or compound
values that may contain a collection or an array of observations.

3.3 SWE Services

SWE not only utilizes the information model and encoding like SensorML and
Observation and Measurements (O&M), but also defines several standard services
that can be used to collaborate with sensor networks in order to obtain data. Currently,
the SWE contains three service specifications including Sensor Collection Service
(SCS), Sensor Planning Service (SPS) and Web Notification Service (WNS). As the
SWE is still evolving, new services will be developed to satisfy emerging
requirements of Sensor Web development. A new service called Sensor Alert Service
has recently been introduced, which specifies how alert or “alarm” conditions are
defined, detected and made available to interested users. Also, a new TransducerML4
has also been defined, which is an XML based specification that describes how to

4 http://www.iriscorp.org/tml.html, Transducer Markup Language

capture and “time tag” sensor data. However, as these two specifications are still quite
new, this chapter will only discuss the three well-known specifications in details.

One of the most important services is the Sensor Collection Service (SCS) which is
used to fetch observations from a sensor or a constellation of sensors. It plays a role of
intermediary agent between a client and an observation repository or near real-time
sensor channel. The getObservation method of SCS accepts queries from the client
within certain range of time as input parameters and responses with XML data
conformed to Observation & Measurement information model. The describeSensor
and describePlatform methods are used to fetch the sensor’s information based on
SensorML. Each client that intends to invoke the Sensor Collection Service must
strictly follow the SCS specification.

The Sensor Planning Service (SPS) is intended to provide a standard interface to
handle asset management (AM) that identifies, uses and manages available
information sources (sensors, sensor platforms) in order to meet information
collection (client’s collection request) goals. SPS plays a crucial role as a coordinator
which is responsible for evaluating the feasibility of the collection request from the
client and, if valid, submitting the request by querying the SCS about the Observation
data. The DescribeCollectionRequest operation of SPS presents the information
needed for the client’s collection request. The GetFeasibility method of SPS accepts
requests from the clients and makes a ‘yes’ or ‘no’ decision according to specified
rules regarding to the feasibility of the collection. Clients can invoke the
SubmitRequest method to actually schedule their requests and submit to the SCS once
the GetFeasibility method responses with ‘yes’. SPS also defines UpdateRequest,
CancelRequest and GetStatus methods to manage and monitor the collection request
made by users.

In general, the synchronous messaging mechanism is powerful enough to handle
collections of in-situ sensors. However, observations that require evaluating collection
feasibility or intermediate user notifications are not suitable for synchronous
operations. The Web Notification Service (WNS) is an asynchronous messaging
service, which is designed to fulfill the needs of supporting these complicated
scenarios. Sending and receiving notifications are the major responsibilities of the
WNS, which can utilize various communication protocols including HTTP POST,
email, SMS, instant message, phone call, letter or fax. Besides, WNS also takes
charge of user the management functionality that is used to register user and trace the
user session over the entire process. Operations including doNotification,
doCommunication and doReply are defined to conduct both one-way and two-way
communication between users and services whereas registerUser handles user
management, which allows registering users to receive further notifications.

4. Service-Oriented Sensor Web

Open Sensor Web Architecture (OSWA) is an OGC Sensor Web Enablement standard
compliant software infrastructure for providing service oriented based access to and
management of sensors created by NICTA/Melbourne University. OSWA is a
complete standards compliant platform for integration of sensor networks and
emerging distributed computing platform such as SOA and Grid Computing. The
integration has brought several benefits to the community. First, the heavy load of
information processing can be moved from sensor networks to the backend distributed
systems such as Grids. The separation is either saving a lot of energy and power of
sensor networks just concentrating on sensing and sending information or accelerating
the process for processing and fusing the huge amount of information by utilizing
distributed systems. Moreover, individual sensor networks can be linked together as
services, which can be registered, discovered and accessed by different clients using a
uniform protocol. Moreover, as Tham and Buyya, 2005 stated, Grid-based sensor
applications are capable of providing advanced services for smart-sensing by
developing scenario-specific operators at runtime.

������� ������� ������	 ������
 ��������

�������������������

����������������
�
���������

�
������ !"����#�
��!�$��%��"�

������
&����"��'�
��� ����

������
&!"!�(����
��� ����

������(���
)����������
��� ����

�������
)�!�����
��� ����

�������
��"�*��!"����

��� ����

������
������"���+�

����� !"���
��� ����

�������
�������!"����

��� ����

�������)����!%%������!%�,��-�
./)��0�1��$!�������2

3!"���
��*��%!"����

��",��-

4!���������*�
����� !"����

��",��-

���$��
/$�"�!��!�
��",��- ��

5��4��+�����67�
�8

�9��"�����

������3��
��%$�!"����

���
�%$�!"���

�!*��
��!��9��"!"���

!��
��!��

��$�!%��
&�"��"����
��",��-

/�"$!"��� /�"$!"��� /�"$!"��	 /�"$!"����

������
���*��$�!"����

��� ����

�!$�"'��������
&!"!�������"����#�

�!�!��%��"���� ����

�:����)!�"'�
�����

��

)���$"����
����"�����
��",��-

������� ������� ������	 ������
 ��������

�������������������

����������������
�
���������

�
������ !"����#�
��!�$��%��"�

������
&����"��'�
��� ����

������
&!"!�(����
��� ����

������(���
)����������
��� ����

�������
)�!�����
��� ����

�������
��"�*��!"����

��� ����

������
������"���+�

����� !"���
��� ����

�������
�������!"����

��� ����

�������)����!%%������!%�,��-�
./)��0�1��$!�������2

3!"���
��*��%!"����

��",��-

4!���������*�
����� !"����

��",��-

���$��
/$�"�!��!�
��",��- ��

5��4��+�����67�
�8

�9��"�����

������3��
��%$�!"����

���
�%$�!"���

�!*��
��!��9��"!"���

!��
��!��

��$�!%��
&�"��"����
��",��-

/�"$!"��� /�"$!"��� /�"$!"��	 /�"$!"����

������
���*��$�!"����

��� ����

�!$�"'��������
&!"!�������"����#�

�!�!��%��"���� ����

�:����)!�"'�
�����

��

)���$"����
����"�����
��",��-

Applications
Layer

Application
Development
Layer

Application
Services
Layer

Sensor Fabric
Simulation
Environment

Fig. x. 5: High-level view of Open Sensor Web Architecture.

The various components defined in OSWA are showed in Fig. x. 5. Four layers have
been defined, namely Fabric, Services, Development and Application layers.
Fundamental services are provided by low-level components whereas higher-level
components provide tools for creating applications and management of the lifecycle
of data captured through sensor networks. The OSWA based platform provides a
number of sensor services such as:

� Sensor notification, collection and observation;
� Data collection, aggregation and archive;
� Sensor coordination and data processing;

� Faulty sensor data correction and management, and;
� Sensor configuration and directory service

Besides the core services derived from SWE, such as SCS, SPS and WNS, there are
several other important services in the service layer. Sensor Directory Service
provides the capability of storing and searching services and resources. The Sensor
Coordination Service enables the interaction between groups of sensors, which
monitor different kinds of events. The Sensor Data Grid Service provides and
maintains the replications of large amount of sensor data collected from diverse
sensor applications. The SensorGrid Processing Service collects the sensor data and
processes them utilizing grid facilities. The development layer focuses on providing
useful tools in order to ease and accelerate the development of sensor applications.
The OSWA mainly focuses on providing an interactive development environment, an
open and standards-compliant Sensor Web services middleware and a coordination
language to support the development of various sensor applications.

Sensor Layer

Service Layer

Application Layer

Sensor Operating System

Physical Layer

Sensor
Application

Sensor
Application

Sensor Collection Service

Sensor Planning Service

Sensor Development Tools Third Party Tools

High Level
Application

High Level
Application

XML Messages

Web Notification Service

Sensor Repository Service

Information
Model&Encoding

Sensor

Simulator

Emulator

sensors

Sensor Data & Messages

Fig. x. 6: A prototype instance of OSWA.

SWE only provides the principle standard of how the Sensor Web looks, and does not
have any reference implementation or working system available to the community;
therefore, there are many design issues to consider, including all of the common
issues faced by other distributed systems such as security, multithreading, transactions,
maintainability, performance, scalability and reusability, and the technical decisions

that need to be made about which alternative technologies are best suitable to the
system. Fig. x. 6 depicts a prototype instance of the OSWA, the implementation
concentrates on the Service Layer and Sensor Layer as well as the XML encoding and
the communication between the sensors and sensor networks. The following section
will describe the key technologies that are relevant to different layers of the OSWA.
In addition, the design and implementation of the core services are presented in this
section.

4.1 Technology Issues

In order to better understand the whole Open Sensor Web Architecture including its
design and implementation, several critical technologies are discussed briefly, which
form the fundamental infrastructure across several layers of OSWA.

4.1.1 Service Layer and SOA

The SOA is the essential infrastructure that supports the Service Layer and plays a
very important role in presenting the core middleware components as services for
client access. The main reason for Sensor Web relying heavily on SOA is because it
simplifies integration of distributed heterogeneous systems which are loosely coupled.
Moreover, SOA allows the services to be published, discovered and invoked by each
other on the network dynamically. All the services communicate with each other
through predefined protocols via a messaging mechanism which supports both
synchronous and asynchronous communication models. Since each sensor network
differs from each other, trying to put different sensors on the web, and providing
discovery and accessibility requires the adoption of SOA.

Service
Registry

Service
Consumer

Publish(WSDL)

Invoke(SOAP)

Discover(UDDI)

Service
Provider

Service
Registry

Service
Consumer

Publish(WSDL)

Invoke(SOAP)

Discover(UDDI)

Service
Provider

Fig. x. 7: Typical architecture of Web Service.

Web Services is one of the most popular implementations of SOA and is a language
and platform neutral technology that can be implemented using any programming
language in any platform. For example, a service written in C# can be accessed by a
client written in Java. Web Services, technologically, depends on a group of standard
specifications including HTTP, XML, Simple Object Application Protocol (SOAP),
Universal Description Discovery and Integration (UDDI), Web Services Description
Language (WSDL). XML is the key to Web Services technology, which is the
standard format of the messages exchanged between services, and moreover almost
every specifications used in Web Services are themselves XML data such as SOAP

and WSDL. SOAP provides a unique framework that is used for packaging and
transmitting XML messages over variety of network protocols, such as HTTP, FTP,
SMTP, RMI/IIOP or proprietary messaging protocol5. WSDL describes the operations
supported by web services and the structure of input and output messages required by
these operations. It also describes important information about the web services
definition, support protocol, processing model and address. The typical architecture
for Web Services is showed in Fig. x. 7. Service consumers may search the global
registry (i.e. UDDI registry) about the WSDL address of a service that has been
published by the service provider, and the consumers can invoke the relevant calls to
the service once they obtain the WSDL for the service from the registry. As OSWA is
primarily based on XML data model, Web Services provide a much better solution in
terms of interoperability and flexibility.

4.1.2 Information Model and XML Data Binding

The information model of OSWA is based on Observation and Measurement and
SensorML, both of them are built upon XML standards and are defined by an XML
Schema. Transforming the data representation of the programming language to XML
that conforms to an XML Schema refers to XML data binding, and is a very important
and error-prone issue that may affect the performance and reliability of the system. In
general, there are two common approaches to solve this problem. The first and most
obvious way is to build the encoder/decoder directly by hand using the low-level SAX
parser or DOM parse-tree API, however doing so is likely to be tedious and
error-prone and require generating a lot of redundant codes that are hard to maintain.

A better approach to deal with the transformation is to use an XML data binding
mechanism that automatically generates the required code according to a DTD or an
XML Schema. The data binding approach provides a simple and direct way to use
XML in applications without being aware of the detailed structure of an XML
document, and instead working directly with the data content of those documents.
Moreover, the data binging approach makes access to data faster since it requires less
memory than a document model approach like DOM or JDOM for working with
documents in memory6. There are quite a few Java Data binding tools available such
as JAXB, Castor, JBind, Quick, Zeus and Apache XMLBeans. Among those open
source tools, XMLBeans seem to be the best choice not only because it provides full
support for XML Schema, but also does it provide extra valuable features like XPath
and XQuery supports, which directly enables performing queries on the XML
documents.

4.1.3 Sensor Operating System

OSWA has the ability of dealing with heterogeneous sensor networks that may adopt
quite different communication protocols including radio, blue tooth, and ZigBee/IEEE

5 http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/wsa.pdf, Web Services Architecture, W3C, Feb 2004
6 Sosnoski D (2003) XML and Java Technologies: Data binding, Part 1: Code generation

approaches – JAXB and more. http://www-128.ibm.com/developerworks/xml/library/x-databdopt/

802.11.4 protocols. As a result, it is quite desirable that the operating system level
support for sensor networks can largely eliminate the work of developing device
drivers and analyzing various protocol stacks directly in order to concentrate on
higher-level issues related to the middleware development.

TinyOS (Hill et al., 2000) is the de-facto standard and very mature Operating System
for wireless sensor networks, which consists of a rich set of software components
developed by nesC (Gay et. al., 2003) language, ranging from application level
routing logic to low-level network stack. TinyOS provides a set of Java tools in order
to communicate with sensor networks via a program called SerialForwarder.
SerialForwarder runs as a server on the host machine and forwards the packets
received from sensor networks to the local network, depicted by Fig. x. 8. Once the
SerialForwarder program is running, the software located on the host machine can
parse the raw packet and process the desired information. TinyDB (Maden, 2003) is
another useful component built on top of TinyOS, which constructs an illusion of
distributed database running on each node of the sensor networks. SQL-like queries
including simple and even grouped aggregating queries can be executed over the
network to acquire data of sensors on each node.

SerialForwarder

TCP/IP

Application

SF Stub

Fig. x. 8: TinyOS SerialForwarder Architecture.

Besides TinyOS, there are other Operating Systems existing as well. MANTIS
(Abrach et. al., 2003) is a lightweight multithreaded sensor operating system, which
supports C API enabling the cross-platform supports and reuse of C library. Moreover,
it supports advanced sensor features including multi-model prototyping environment,
dynamic reprogramming and remote shell. Contiki (Dunkels et. al., 2004), which is
designed for memory constrained systems, is another event-driven sensor operating
system like TinyOS with a highly dynamic nature that can be used to multiplex the
hardware of a sensor network across multiple applications or even multiple users.

4.1.4 Sensor Data Persistence

Persistence is one of the most important aspects for the purpose of manipulating the
huge amount of data relevant to both sensor observation and sensor information. As
the standard format for exchanging data between services is XML data which
conforms to O&M and SensorML schema, transformations need to be done between
different views of data including XML, Java object and relational database. In order
to ease the operation of the transformation, the O/R mapping solution has been
adopted to support the data persistence.

Java Data Objects (JDO) is one of the most popular O/R mapping solutions, which
defines a high-level API that allows applications to store Java objects in a
transactional data store by following defined standards. It supports transactions,
queries, and the management of an object cache. JDO provides for transparent
persistence for Java objects with an API that is independent of the underlying data
store. JDO allows you to very easily store regular Java classes. JDOQL is used to
query the database, which uses a Java-like syntax that can quickly be adopted by
those familiar with Java. Together, these features improve developer productivity and
no transformation codes need to be developed manually as JDO has done that
complicated part underneath. To make use of JDO, the JDO Metadata is needed to
describe persistence-capable classes. The information included is used at both
enhancement time and runtime. The metadata assocoiated with each
persistence-capable class must be contained within an XML file. In order to allow the
JDO runtime to access it, the JDO metadata files must be located at paths that can be
accessed by the Java classloader.

4.2 Design and Implementation

Sensor Planning
Service

3 Planning Request

WSDL

Sensor
Registry
Service

W
S

D
L

1 Search available service

2 SPS WSDL Address
Web Notification

Service

WSDL

W
S

D
L

4 R
egiste

r U
ser

Sensor Collection
Service

WSDL

W
S

D
L

5
Use

r I
D

6 Get Observation

8 Return O&M

9 C
olle

ct
io

n D
at

a R
ea

dy

10 Notify User

Sensor Repository
Service

WSDL

W
S

D
L

7
Sto

re
 O

&M

Fig. x. 9: A typical invocation for Sensor Web client.

Currently, the primary design and implementation of OSWA focuses on its core
services including SCS, WNS, and SPS (those extends from SWE) as well as the
Sensor Repository Service that provides the persistent machanism for the sensor and
the observation data. Fig. x. 9 illustrates an example of the client collection request
and the invocations between relating services. As soon as the end user forwards an

observation plan to the Planning Service, it checks the feasibility of the plan and
submits it if feasible. The user will be registered in the Web Notification Service
during this process and the user id will return to SPS. SPS is responsible for creating
the observation request according to user’s plan and retrieving the O&M data from
the Sensor Collection Service. Once the O&M data is ready, the SPS will send an
operation complete message to the WNS along with the user id and task id. The WNS
will then notify the end user to collect the data via email or other protocols it supports.

4.2.1 Sensor Collection Service

Within those core services of OSWA, Sensor Collection Service (SCS) is one of the
most important components residing in the service layer. The sensor collection service
is the fundamental and unique component that needs to communicate directly with
sensor networks, which is responsible for collecting real time sensing data and then
translating the raw information into the XML encoding for other services to utilize
and process. In other words, SCS is the gateway for entering into the sensor networks
from outside clients and its design and implementation will affect the entire OSWA.
The design of SCS provides an interface to both streaming data and query based
sensor applications that are built on top of TinyOS and TinyDB respectively.

S
en

so
r

C
on

ne
ct

or

Tiny DB

Tiny O
S

Sensor Collection
Service

3 Query for data
4 Observation data

WSDL

Sensor
Registry
Service

W
S

D
L

1 Search available service

2 SCS WSDL Address

ProxyProxy

DB Connector

O/R Mapping(JDO)

Database
Sensor Observation Archives

Fig. x. 10: Sensor Collection Service Architecture.
Fig. x. 10 illustrates the architecture of the Sensor Collection Service. It conforms to
the interface definition that is described by the SCS specification and has been
designed as web services that work with a proxy connecting to either real sensors or a
remote database. Clients need to query the Sensor Registry Service about available
SCS WSDL addresses according to their requirements and send a data query via
SOAP to the SCS in order to obtain the observation data conforming to the O&M
specification. The proxy acts as an agent working with various connectors that

connect to the resources holding the information, and encode the raw observation into
O&M compatible data. Different types of connectors have been designed to fit into
different types of resources including sensor networks running on top of TinyOS or
TinyDB and remote observation data archives. The proxy needs to process the
incoming messages from the client in order to determine what kind of connectors,
either real-time based or archive based, to use. The design of the SCS is flexible and
makes it easy to extend for further development if different sensor operating systems
are adopted by the sensor networks such as MANTIS or Contiki. The only work is to
implement a specific connector in order to connect to those resources and no
modifications need to be made in the current system. The design of the proxy also
encourages the implementation of a cache mechanism to improve the scalability and
performance of the SCS. Load balancing mechanisms can be added to the system
easily as well, by simply deploying the web service to different servers.

4.2.2 Sensor Planning Service

Sensor Planning
Service

WSDL

Sensor
Registry
Service

W
S

D
L

1 Search available service

2 SPS WSDL Address

3 Make a plan

4 Feasible or not

5 Submit feasible plan

6 Submit Success or fail

Scheduler

Rule Engine

Feasibility check

Schedule request

Sensor
Collection

Service

Web
Notification

Service

Get Observation

Do Notification

DataCollector

Notify client outcome and

where to collect the data

Store Data

Fig. x. 11: Sensor Planning Service Architecture.

The design of the Sensor Planning Service (SPS) should consider the both short-term
and long-term user’s plan, which means that the SPS must provide response to the
user immediately, rather than blocking to wait for the collection results. Shown in the
Fig. x. 11, SPS utilizes a rule engine which reads a specific set of predefined rules in
order to clarify the feasibility of the plan made by the user. The implementation of the
rule engine can be quite complicated, expecting the system to accept rules within a
configuration file as plain text, xml-based or other types of rule-based languages. .
Currently, the rule engine is implemented as an abstract class that can be extended by
the application developers to specify a set of boundary conditions that define the
feasibility of the applications. For example, in a simple temperature application, a
boundary condition for the temperature may be a range from 0 to 100.

The most important component that makes the SPS suitable for short or long term
plan execution is the Scheduler which is implemented as a separate thread running in
the background. The execution sequence of the Scheduler (i) composes the collection
request according to user’s plan and then invokes the getObservation of the SCS, (ii)
asks the DataCollector to store the observation data in order for users to collect
afterward, and (iii) sends notification to the WNS indicating the outcome of the
collection request. Notice that the time of the execution happened in the scheduler
varies baesd on the requirements of the user’s plan. The clients will get a response
indicating that their plans will be processed right after they submit their plan to the
SPS. The scheduler deals with the remaining time consuming activities. The clients
may get the notification from the WNS as soon as the WNS receives the message
from the scheduler, and collect the results from the DataCollector.

4.2.4 Web Notification Service

Web Notification
Service

WSDL

Sensor
Registry
Service

W
S

D
L

Search available service

WNS WSDL Address

Register User
Account
Manager

User Registration

MySQL DB

Notification

Notify Registered User
Send

Notification

Communication
Protocol

Specify protocol

Fig. x. 12: Web Notification Service Architecture.

The current design of Web Notification Service is showed in Fig. x. 12, which
contains two basic components: AccountManager and Notification. The SPS may
request to register users via WNS, which asks the AccountManager to manage the
user account in the DBMS in order to retrieve user information in the subsequent
operations. The Notification is used to create a specific communication protocol and
send the messages via the protocol to the user that has been registered in the DBMS.
Currently, an EmailCommunicationProtocol has been implemented to send messages
via email. Further implementations can be easily plugged into the existing architecture
by implementing the CommunicationProtocol interface with a send method.

5. Experimentation and Evaluation

As the OWSA aims at providing a platform to serve numerous users globally through
the internet, it is quite important to test the services, and ensure that they are scalable
and performing reasonably. The experiment platform for the services is built on
TOSSIM (described by Levis et al., 2003 as a discrete event simulator that can
simulate thousands of motes running complete sensor applications and allow a wide
range of experimentation) and Crossbow’s MOTE-KIT4x0 MICA2 Basic Kit7 that
consists of 3 Mica2 Radio board, 2 MTS300 Sensor Boards, a MIB510 programming
and serial interface board. The experiment concentrates on the SCS, due to the fact
that it is the gateway for other services to sensors, which would be the most heavily
loaded service and possible bottleneck of the entire system. As can be seen in Fig. x.
13, SCS has been deployed on Apache Tomcat 5.0 on two different machines that run
TinyDB application under TOSSIM and Temperature Monitoring Application under
Crossbow’s motes respectively. Meanwhile, a Sensor Registry Service is also
configured on a separate machine that provides the functionality to access sensor
registry and data repository.

Fig. x. 13: Deployment of Experiment.

A simple temperature monitoring application has also been developed. The
application is programmed using nesC and uses simple logic, which just broadcasts
the sensing temperature, light and node address to the sensor network at regular
intervals. The simple application does not consider any multi-hop routing and energy
saving mechanism. Before installing the application to the Crossbow’s mote, the
functionality can be verified via the TOSSIM simulator. Fig. x. 14 demonstrates the
simulation of the temperature application running under the TOSSIM visual GUI.

7 http://www.xbow.com/Products/productsdetails.aspx?sid=67. Crossbow Technology Inc

Fig. x. 14: Simulation of Temperature Monitoring Application under TOSSIM

Fig. x. 15: Swing client showing query result for TinyDB application under TOSSIM

Once the application has been successfully installed onto each mote via the
programming board, a wireless sensor network has been built with two nodes, and one
base station connecting to the host machine via the serial cable. Besides installing the
application itself, the SerialForwarder program also needs to run on the host machine

in order to forward the data from the sensor network to the server. Fig. x. 15
demonstrates the list of results for a simple query “temp>200” to the sensors running
TinyDB application under TOSSIM.

Regarding scalability, a simulation program that can stimulate different numbers of
clients running at the same time has been used exclusively for the SCS. The
performance measured by time variable (per second) for both auto-sending and
query-based applications running on top of TinyOS is showed in the following figures.
As can be seen from Fig. x. 16, the result of the auto-sending mode application is
moderate when the number of clients who request the observation simultaneity is
small. Even when the number of clients reaches 500; the response time for a small
number of records is also acceptable. In contrast, the result showed in Fig. x. 17 is
fairly unacceptable as even just one client requesting a single observation takes 34
seconds. The response time increases near linearly when the number of clients and the
number of records go up. The reason why the query-based approach has very poor
performance is due to the execution mechanism of TinyDB. A lot of time has been
spent on initializing each mote, and the application can only execute one query at one
time, which means another query needs to wait until the current query has been
stopped or has terminated. A solution to this problem may require the TinyDB
application run a generic query for all clients, and the more specific query can be
executed in-memory according to the observation data collected from the generic
query.

����������	
������
����
�	���������	
������

�

���

���

���

���

��
���������	����

��
��
�� ����
���

�����
����
�����
����

����
��� ����� ����� �� !� ������
�����
���� ����� �!��� ������ �����"
�����
���� ��� � ������ ��!�� � ��"!

� � ��

Fig. x. 16: Performance for collecting auto-sending data.

����������	
������
����
�	����	���������������

�

���

���

���

��
���������	����

��
��
�� ����
���

�����
����
�����
����

����
��� �!�� " ���! �##"
�����
���� #�!" $"!�#�"�"
�����
���� $�!�" �$�!��

� "

Fig. x. 17: Performance for collecting TinyDB query data.

There are several possible ways to enhance the performance. A caching mechanism
may be one of the possible approaches, the recent collected observation data can be
cached in the proxy for a given period of time and the clients who request the same
set of observation data can be read the observation data from the cache. However, as
the data should be kept as close to real time as possible, it is quite hard to determine
the period of time for the cache to be valid. A decision can be made according to the
dynamic features of the information the application is targeting. For example, the
temperature for a specific area may not change dynamically by minutes or by hours.
Consequently, the period of time setting for the cache for each sensor application can
vary based on the information the sensor is targeting. Another enhancement of query
performance may be achieved by utilizing the query mechanism such as XQuery of
the XML data directly other than asking the real sensor itself executing the query
similar to TinyDB.

6 Summary and Future Works
In this chapter, we have introduced a new buzzword: Sensor Web in the research and
academic community of sensor and sensor networks. There are a lot of efforts that aim
to provide middleware support to the sensor development. Among those, the most
important one is OGC’s SWE standard that standardizes the vision of Sensor Web.
SensorML, O&M, SCS, SPS and WNS together, to create an integration platform to
register, discover and access anonymous and heterogeneous sensors distributed all
over the world through internet. A service oriented Sensor Web framework named
Open Sensor Web Architecture (OSWA) has been discussed along with the design
implementation of the core services targeting the sensor applications running on top
of TinyOS. OSWA extends SWE and provides additional services to process the
information collected from those resources accompanied by computational grids. In
addition, the experiment of the scalability and performance of the prototype system is

also presented.

Although the services are all working properly with acceptable performance, we are
still at an early stage of having the entire OSWA implemented. Even those services
that we have implemented are not yet fully functional. The Sensor Collection Service
is the key component of the entire OSWA, which affects the performance and
reliability of the entire system. A lot of issues are left to future investigation, focusing
on aspects of reliability, performance optimization and scalability. There are a couple
of efforts that are needed to be made to enhance the SCS and other services in the
next stage.
� The query mechanism for the Sensor Collection Service will be enhanced to

support in-memory XML document querying. XPath and XQuery technologies
are planned to be adopted, as they are the standard way to query XML documents.
The outcome of this enhancement is expected to improve the performance by
moving the heavy workload of queries from the sensor network itself and onto the
host machine instead.

� A caching mechanism may be implemented and placed into the Proxy to further
enhance the performance and scalability.

� Other methods that are described in the specifications of the SWE services but are
currently not available still need to be implemented.

� Other notification protocols need to be built for the WNS in the future.
� Sensor Registry via SensorML needs to be developed in order to support the

worldwide sensor registration and discovery.
� Both XML-based configuration and rule-based configuration language may be

developed in order to ease the deployment of the services.

Acknowledgements
We would like to thank Bohdan Durnota for his technical guidance while formulating
and designing initial prototype of SensorWeb. We thank Jiye Lin for his contribution
towards the development of SensorWeb repository. We thank all members of the
NOSA project especially those involved in advancing SensorWeb into the future.

Bibliography
1. Liu T, Martonosi M (2003) Impala: a Middleware System for Managing Autonomic, Parallel

Sensor Systems. In Proceedings of the 9th ACM SIGPLAN symposium on Principles and

practice of parallel programming, June 11-13, San Diego, CA, USA.

2. Heinzelman W, Murphy A, Carvalho H, Perillo M (2004) Middleware to Support Sensor

Network Applications. IEEE Network Magazine 18: 6-14.

3. Bonnet P, Gehrke J, Seshadri P (2000) Querying the Physical World. IEEE personal

Communications 7:10-15.

4. Soutoo E, Guimaraes G., Vasconcelos G., Vieira M, Rosa N, Ferraz C, Freire L (2004) A

Message-Oriented Middleware for Sensor Networks. Proceedings of 2nd International Workshop

on Middleware for Pervasive and Ad-Hoc Computing, October 18-22, Toronto, Ontario, Canada.

5. Tham CK, Buyya R (2005) SensorGrid: Integrating Sensor Networks and Grid Computing. CSI

Communications 29:24-29.

6. Gaynor M, Moulton SL, Welsh M, LaCombe E, Rowan A, Wynne J (2004) Integrating Wireless

Sensor Networks with the Grid. IEEE Internet Computing 8:32-39.

7. Ghanem M, Guo Y, Hassard J, Osmond M, and Richards M (2004) Sensor Grids for Air

Pollution Monitoring. Proceedings of UK e-Science All Hands Meeting, 31st Aug- 3rd September,

Nottingham UK.

8. Nickerson BG, Sun Z, Arp JP (2005) A Sensor Web Language for Mesh Architectures. 3rd

Annual Communication Networks and Services Research Conference, May 16-18, 2005, Halifax,

Canada.

9. Tao V, Liang SHL, Croitoru A, Haider Z, Wang C (2004) GeoSWIFT: Open Geospatial Sensing

Services for Sensor Web. In: Stefanidis A, Nittel S (eds), CRC Press, pp.267-274.

10. Gibbons PB, Karp B, Ke Y, Nath S, Seshan S (2003) IrisNet: An Architecture for a Worldwide

Sensor Web. IEEE Pervasive Computing 2: 22-33.

11. Reichardt M (2005) Sensor Web Enablement: An OGC White Paper. Open Geospatial

Consortium (OCG), Inc.

12. Mainwaring A, Polastre J, Szewczyk R, Culler D, Anderson J (2002) Wireless sensor networks

for habitat monitoring. In Proceedings of the first ACM International Workshop on Wireless

Sensor Networks and Applications, Sept. 28, Atlanta, GA, USA.

13. Hu W, Tran VN, Bulusu N, Chou CT, Jha S, Taylor A (2005) The Design and Evaluation of a

Hybrid Sensor Network For Cane-toad Monitoring. In Proceedings of Information Processing in

Sensor Networks, April 25-27, Los Angeles, CA, USA.

14. Cardell-Oliver R, Smettern K, Kranz M, Mayer K (2004) Field Testing a Wireless Sensor

Network for Reactive Environmental Monitoring. International Conference on Intelligent

Sensors, Sensor Networks and Information Processing, December 14-17, Melbourne, Australia.

15. Hill J, Szewczyk R, Woo A, Hollar S, Culler D, and Pister K (2000) System architecture

directions for networked sensors. In Architectural Support for Programming Languages and

Operating Systems, November 12-15, Cambridge, MA, USA.

16. Madden SR (2003) The Design and Evaluation of a Query Processing Architecture for Sensor

Networks. PhD thesis, UC Berkeley, USA.

17. Abrach H, Bhatti S, Carlson J, Dai H, Rose J, Sheth A, Shucker B, Deng J, Han R (2003)

MANTIS: system support for MultimodAl NeTworks of In-Situ sensors. Proceedings of the 2nd

ACM international conference on Wireless sensor networks and applications, September 19, San

Diego, CA, USA.

18. Dunkels A, Gronvall B, Voigt T (2004) Contiki - a Lightweight and Flexible Operating System

for Tiny Networked Sensors. Proceedings of the 29th Annual IEEE International Conference on

Local Computer Networks, November 16-18, Tampa, Florida, USA.

19. Gay D, Levis P, von Behren R, Welsh M, Brewer E, Culler D (2003) The nesC language: A

holistic approach to networked embedded systems. Proceedings of Programming Language

Design and Implementation (PLDI), June 8-11, San Diego, CA, USA.

20. Levis P, Lee N, Welsh M, Culler D (2003) TOSSIM: Accurate and. Scalable simulation of entire

TinyOS applications. In Proc. of the 1st Intl. Conf. on Embedded Networked Sensor Systems,

November 4-7, Los Angeles, CA, USA.

