
On-line Task Granularity Adaptation for Dynamic Grid
Applications ?

Nithiapidary Muthuvelu1, Ian Chai1, Eswaran Chikkannan1, and Rajkumar Buyya2

1 Multimedia University, Persiaran Multimedia, 63100 Cyberjaya, Selangor, Malaysia,
{nithiapidary, ianchai, eswaran }@mmu.edu.my

2 Dept. of Computer Science and Software Engineering, The University of Melbourne, 3053
Carlton, Victoria, Australia,
raj@csse.unimelb.edu.au

Abstract. Deploying lightweight tasks on grid resources would let the commu-
nication overhead dominate the overall application processing time. Our aim is
to increase the resulting computation-communication ratio by adjusting the task
granularity at the grid scheduler. We propose an on-line scheduling algorithm
which performs task grouping to support an unlimited number of user tasks, ar-
riving at the scheduler at runtime. The algorithm decides the task granularity
based on the dynamic nature of a grid environment: task processing requirements;
resource-network utilisation constraints; and users QoS requirements. Simula-
tion results reveal that our algorithm reduces the overall application processing
time and communication overhead significantly while satisfying the runtime con-
straints set by the users and the resources.

1 Introduction

A grid application contains a large number of tasks [1] and a scheduler at the user site
transmits each task file to a grid resource for further execution and retrieves the pro-
cessed output file(s) [2][3]. A lightweight or fine-grain task requires minimal execution
time (i.e. 15 seconds to one minute). Executing a computation-intensive application
with a large number of lightweight tasks on a grid would result in a low computation-
communication-ratio due to the overhead involved in handling each task [4]; the term
computation refers to the task execution time, whereas communication refers to the user
authentication, and task and output file transmission time. There are two issues involved
in this matter:

1. The communication overhead increases proportionally with the number of tasks.
2. A resource’s processing capability and the network capacity may not be optimally

utilised when dealing with fine-grain tasks. For example:
(a) Assume that a high-speed machine allows a user to use the CPU power for

x seconds. Executing lightweight tasks one at a time would not utilise the
full processing speed (i.e. x×Million Instructions per Second) of the machine
within x seconds due to the overhead involved in invoking and executing each
task.

? This research is partially supported by e-ScienceFund, Ministry of Science, Technology and
Innovation, Malaysia, and Endeavour Awards, Austraining International.

(b) Transmitting task/output files (of very minimal sizes) one by one between the
user and the resources would underutilise the relevant achievable bandwidth.

In short, deploying lightweight tasks on grid would lead to inefficient resource-
network utilisation, and unfavourable application throughput. This statement is proven
with experiments in Sec. 5 of this paper. In our previous work [5], we showed that task
grouping reduces the overall application processing time significantly. In our current
work, we present an on-line scheduling algorithm for deciding the task granularity. The
scheduler has no knowledge on the total number of tasks in the application as the tasks
come on a real-time basis, arriving at the scheduler at runtime (e.g. processing data
arriving from sensors).

Upon receiving the tasks, the scheduler selects and groups a number of tasks into
a batch, and deploys the grouped task on a grid resource. The task granularity is deter-
mined as to maximise the resource-network utilisation and minimise the overall appli-
cation processing time. Hence, the decision highly depends on the dynamic nature of a
grid environment:

1. The processing requirements of each task in a grid application.
2. The utilisation constraints imposed by the resource providers to control the resource

usage [6].
3. The varying bandwidths of the networks interconnecting the scheduler and the re-

sources [7].
4. The quality of service (QoS) requirements for executing an application [8].

Our proposed scheduling algorithm focuses on computation-intensive, bag-of-tasks
applications. It assumes that all the tasks in an application are independent and have
similar compilation platform. The algorithm considers the latest information from the
grid resources, decides the task granularity, and proceeds with task grouping and de-
ployment. Our ultimate goal is to reduce the overall application processing time while
maximising the usage of resource and network capacities.

The rest of the paper is organised as follows: Section 2 presents the related work.
The factors and issues involved in task grouping in grid are described in Sec. 3. Section
4 explains the strategies and the process flow of the proposed scheduler system which
is followed by the relevant performance analysis in Sec. 5. Finally, Sec. 6 concludes the
paper by suggesting future work.

2 Related Work

Here, we focus on the work related to batch processing in distributed computing which
involve task granularity adaptation. James et al [9] grouped and scheduled equal num-
bers of independent jobs using various scheduling algorithms to a cluster of nodes. This
induced an overhead as the nodes were required to be synchronised after each job group
execution iteration. Simulations were conducted to optimise the number of jobs in a
batch for a parallel environment by Sodan et al [10]. The batch size is computed based
on average runtime of the jobs, machine size, number of running jobs in the machine,
and minimum/maximum node utilisation. However, these simulations did not consider

the varying network usage or bottleneck, and it limits the flexibility of the job groups
by fixing the upper and lower bounds of the number of jobs in the group.

Maghraoui et al [11] adapted the task granularity to support process migration (upon
resource unavailability) by merging and splitting the atomic computational units of the
application jobs. The jobs are created using a specific API; special constructs are used
to indicate the atomic jobs in a job file which are used as the splitting or merging points
during job migration.

A number of simulations had been conducted to prove that task grouping reduces the
overall grid application processing time. The authors in [5][12] grouped the tasks based
on resource’s Million Instructions Per Second (MIPS) and task’s Million Instructions
(MI); e.g. for utilising a resource with 500 MIPS for 3 seconds, tasks were grouped
into a single task file until the maximum MI of the file was 1500. MIPS or MI are not
the preferred benchmark matrices as the execution times for two programs of similar
MI but with different program locality (e.g. program compilation platform) can differ
[13]. Moreover, a resource’s full processing capacity may not be available all the time
because of the I/O interrupt signals.

In our previous work [14], task grouping was simulated according to the parameters
from users (budget and deadline), applications (estimated task CPU time and task file
size), utilisation constraints of the resources (maximum allowed CPU and wall-clock
time, and task processing cost per time unit), and transmission time tolerance (max-
imum allowed task file transmission time). The simulations show that the grouping
algorithm performs better than the conventional task scheduling algorithm by 20.05%
in terms of overall application throughput when processing 500 tasks. However, it was
assumed that the task file size is similar to the task length which is an oversimplification
as the tasks may contain massive computation loops.

In this paper, we treat the file size of a task separately from its length or processing
needs. We also consider two additional constraints: space availability at the resource;
and output file transmission time. In addition, the algorithm is designed to support an
unlimited number of user tasks arriving at the scheduler at runtime.

3 Factors Influencing the Task Granularity

Figure 1 shows the implementation focus of our scheduling algorithm in a grid environ-
ment. The factors influencing the task granularity are passed to the scheduler from the
(1) user application, (2) grid resources, and the (3) scheduler. The user application is a
bag-of-tasks (BOT) with QoS requirements. Each task is associated with three require-
ment properties: size of the task file (TFSize); estimated size of the output file (OFSize);
and the estimated CPU time (ETCPUTime). The QoS includes the budget (UBudget)
and deadline (UDeadline) allocated for executing all the user tasks.

Each resource (R) from a set of participating grid resources (GR) provides its utili-
sation constraints to the scheduler:

1. Maximum CPU time (MaxCPUTime) allowed for executing a task.
2. Maximum wall-clock time (MaxWCTime) a task can spend at the resource. This

encompasses the CPU time and the processing overhead (waiting time and task
packing/unpacking overhead) at the resource.

Task Requirements

User Application

Tasks
Instruction, Libraries,

Tasks, Data

Task/Output File Size,
Estimated Task

CPU Time

Scheduler

Resource-
Network

Repository

Scheduling
Algorithm

Output
Collection

Grid Resources

Resource 1(1)

(2) Resource
Utilisation
Constraints

(3) Network
Utilisation
Constraint

(4)

(5)
(6) Grouped

Tasks

(7) Output Files(8)QoS
Budget, Deadline

Resource
Utilisation
Constraints

Task Processing Cost,
Maximum Allowed

Task CPU Time,
Task Wall-Clock Time,

Storage Space

Resource 2

Resource M

Fig. 1. Scheduler Components and their Information Flow

3. Maximum storage space (MaxSpace) that a task or a set of tasks (including the
relevant output files) can occupy at a time.

4. Task processing cost (PCost) per unit time charged by a resource.

Finally, the network utilisation constraint is the maximum time that a scheduler can
wait for the task/output files to be transmitted to/from the resources (MaxTransTime). It
is the tolerance threshold that a scheduler can accept in terms of file transmission time.

Having these information, we derived the seven objective functions for determining
the granularity of a task group, T G, for a resource, Ri, as follows:

Objective 1: T G CPU time ≤MaxCPUTimeRi

Objective 2: T G wall-clock time ≤MaxWCTimeRi

Objective 3: T G and output transmission time ≤MaxTransTimeRi

Objective 4: T G and output file size ≤MaxSpaceRi

Objective 5: T G turnaround time ≤ Remaining UDeadline
Objective 6: T G processing cost ≤ Remaining UBudget
Objective 7: Number of tasks in T G ≤ Remaining BOTTOTAL

where, BOTTOTAL = total number of tasks waiting at the scheduler.

However, there are three issues that affect the granularity according to these seven
objective functions.

ISSUE I: A resource can be a single node or a cluster. The task wall-clock time is
affected by the speed of the resource’s local job scheduler and the current processing
load. In order to obey the objectives 2 and 5, one should know the overheads of the
resources’ queuing systems in advance.

ISSUE II: The task CPU time differs according to the resources’ processing capa-
bilities. For example, a group of five tasks can be handled by Resource A smoothly,
whereas it may exceed the maximum allowed CPU time or wall-clock time of Resource
B, in spite of having a similar architecture as Resource A; the processing speed of
a resource cannot be estimated in advance based on the hardware specification only.

Moreover, the task CPU time highly depends on the programming model or compila-
tion platform. Hence, we should learn the resource speed and the processing need of
the tasks prior to the application deployment.

ISSUE III: Task grouping increases the resulting file size to be transmitted to a
resource, leading to an overloaded network. Moreover, the achievable bandwidth and
latency [7][15] of the interconnecting network are not static; e.g. the bandwidth at time
tx may support the transmission of a batch of seven tasks, however, at time ty, this
may result in a heavily-loaded network (where x < y). Hence, we should determine the
appropriate batch size that can be transferred at a particular time.

4 Scheduler Implementation

In our scheduling algorithm, the issues mentioned in Sec. 3 are tackled using three ap-
proaches in the following order: Task Categorisation; Task Category-Resource Bench-
marking; and Average Analysis. The following subsections explain the three approaches
respectively and present the process flow of the entire scheduler system.

4.1 Task Categorisation

The tasks in a BOT vary in terms of TFSize (e.g. a non-parametric sweep application),
ETCPUTime, and OFSize. When adding a task into a group, the resulting total TFSize,
ETCPUTime, and OFSize of the group get accumulated. Hence, the scheduler should
select the most appropriate tasks from the BOT (without significant delay) and ensure
that the resulting group satisfies all the seven objective functions.

We suggest a task categorisation approach to arrange the tasks in a tree struc-
ture based on certain class interval thresholds applied to the TFSize, ETCPUTime,
and OFSize. The tasks are divided into categories according to TFSize class interval
(T FSizeCI), followed by ETCPUTime class interval (ETCPUTimeCI), and then OF-
Size class interval (OFSizeCI).

Algorithm 1 depicts the level 1 categorisation in which the tasks are divided into cat-
egories (TCat) based on TFSize and T FSizeCI . The range of a category is set according
to T FSizeCI . For example, the range of:

TCat0: 0 to (T FSizeCI +T FSizeCI/2)
TCat1: (T FSizeCI +T FSizeCI/2) to (2×T FSizeCI +T FSizeCI/2)
TCat2: (2×T FSizeCI +T FSizeCI/2) to (3×T FSizeCI +T FSizeCI/2)

The category ID (TCatID) of a task is 0 if its TFSize is less than the T FSizeCI (line 2,3).
Otherwise, the mod and base values (line 5,6) of the TFSize are computed to determine
the suitable category range.

For example, when T FSizeCI = 10 size units, then a task with,
T FSize = 12 belongs to TCat0 as TCat0(0 < T FSize <15)
T FSize = 15 belongs to TCat1 as TCat1(15 ≤ T FSize <25)
T FSize = 30 belongs to TCat2 as TCat2(25 ≤ T FSize <35)

Algorithm 1: Level 1 Task Categorisation.
Data: Requires T FSize of each T and T FSizeCI
for i← 0 to BOTTOTAL do1

if Ti−T FSize < T FSizeCI then2
TCatID← 03

else4
ModValue← Ti−T FSize mod T FSizeCI5
BaseValue← Ti−T FSize−ModValue6
if ModValue < T FSizeCI/2 then7

TCatID← (BaseValue/T FSizeCI)−18

else9
TCatID← ((BaseValue+T FSizeCI)/T FSizeCI)−110

Ti belongs to TCat of ID TCatID11

0:0<TFSize<15

1:15<=TFSize<25

2:25<=TFSize<35

0:0<ETCPUTime<9

1:9<=ETCPUTime<15

0:0<ETCPUTime<9

1:9<=ETCPUTime<15

0:9<=ETCPUTime<15

2:15<=ETCPUTime<21

0:0<OFSize<15

1:15<=OFSize<25

0:0<OFSize<15

1:25<=OFSize<35

2:35<=OFSize<45

3:45<=OFSize<55

.................................

Task Category List

:TCat0

:TCat1

:TCat2

:TCat3

:TCat4

:TCat5
..........

The average

requirement

details are

computed

for eact TCat:

-AvgTFSize

-AvgETCPUTime

-AvgOFSizeLevel 1: TFSize
based categorisation

Level 2: ETCPUTime
based categorisation

Level 3: OFSize
based categorisation

B
O

T

Fig. 2. Task Categorisation

This is followed by level 2 categorisation; TCat(s) from level 1 is further divided
into sub-categories according to ETCPUTime and ETCPUTimeCI . The similar cate-
gorisation algorithm is applied with ETCPUTime of each task and ETCPUTimeCI .
Subsequently, level 3 categorisation divides the TCat(s) from level 2 into sub-categories
based on OFSize and OFSizeCI .

Figure 2 shows an instance of categorisation with T FSizeCI = 10, ETCPUTimeCI =
6, OFSizeCI = 10. The category(s) at each level is created when there is at least one task
belonging to the particular category. For each resulting TCat, the average requirements
are computed: average TFSize (AvgTFSize); average ETCPUTime (AvgETCPUTime);
and average OFSize (AvgOFSize).

When a new set of tasks arrives at the scheduler, each task is checked for its re-
quirements and assigned to the appropriate TCat; new categories with certain ranges
are created as needed. Having this organisation, the scheduler can easily locate the task
files (for a group) that obey the utilisation constraints and QoS requirements.

4.2 Task Category-Resource Benchmarking

In this benchmark phase, the scheduler selects a few tasks from the categories for fur-
ther deployment on the resources before scheduling the entire user application. This
helps the scheduler to study the capacity, performance, and overhead of the resources
and the interconnecting network over the user tasks. It selects p tasks from the first m
dominating categories (based on the total number of tasks in each category) and sends
to each resource. The total number of benchmark tasks, BTasksTOTAL, can be expressed
as:

BTasksTOTAL = m× p×GRTOTAL (1)

Upon retrieving the processed output files, the remaining UBudget and UDeadline are
updated accordingly, and the following seven actual deployment matrices of each task
are computed:

task file transmission time (scheduler-to-resource); CPU time; wall-clock time;
processing cost; output file transmission time (resource-to-scheduler); process-
ing overhead; and turnaround time.

Finally, the average of each deployment matrix is computed for each task category-
resource pair. For a category k, the average deployment matrices on a resource j are
expressed as average deployment matrices of TCatk−R j, which consist of:

average task file transmission time (AvgST RTimek, j); average CPU time (AvgCPUTimek, j);
average wall-clock time (AvgWCTimek, j); average processing cost (AvgPCostk, j);
average output file transmission time (AvgRT STimek, j); average processing
overhead (AvgOverheadk, j); and average turnaround time (AvgT RTimek, j).

The average deployment matrices of those categories which did not participate in the
benchmark phase are then updated based on the average ratio of the other categories.
Assume that m categories have participated in the benchmark phase, then the average
matrices of a category can be formulated in the following order:

AvgST RTimei, j = (∑m−1
k=0 (AvgT FSizei×AvgST RTimek, j/AvgT FSizek))/m

AvgCPUTimei, j =(∑m−1
k=0 (AvgETCPUTimei×AvgCPUTimek, j/AvgETCPUTimek))/m

AvgRT STimei, j = (∑m−1
k=0 (AvgOFSizei×AvgRT STimek, j/AvgOFSizek))/m

AvgPCosti, j = (∑m−1
k=0 (AvgCPUTimei, j×AvgPCostk, j/AvgCPUTimek, j))/m

AvgOverheadi, j = (∑m−1
k=0 AvgOverheadk, j)/m

AvgWCTimei, j = AvgCPUTimei, j +AvgOverheadi, j
AvgT RTimei, j = AvgWCTimei, j +AvgST RTimei, j +AvgRT STimei, j

where,
k = 0,1,2,...,TCatTOTAL−1; TCat ID participated in benchmark.
j = 0,1,2,...,GRTOTAL−1; grid resource ID.
i = 0,1,2,...,TCatTOTAL−1; TCat ID did not participate in benchmark.
m = Total categories participated in benchmark.

In short, the benchmark phase studies the response and performance of the resources
and the interconnecting network on each category.

Task

Categorisation

(2) Tasks, Task

Requirements

(3)

User Application

Scheduler

Flow

Grid Resources

Benchmark

Constraint

Fetching

Task

Granularity

Output

Fetching

Average

Analysis

Task Grouping-

Dispatching

(10) Resource-

Network Constraints

(4)

(5) (14) Tasks/

Grouped Tasks
(6) (15) Output

Files

(7)

(9)

(8)(12)

(11)(13)

Controller

(1) QoS

Fig. 3. Process Flow of the Scheduler System

4.3 Average Analysis

Knowing the behaviour of the resources and network, we can group the tasks according
to the seven objective functions of task granularity. However, as grid resides in a dy-
namic environment, the deployment matrices of the categories may not reflect the latest
grid status after a time period. Therefore, the scheduler should update the deployment
matrices of each TCatk−R j pair periodically based on the latest arrived processed task
groups.

First, it gets the ‘actual’ deployment matrices of the latest arrived processed groups.
Using the previous TCatk−R j average matrices, it computes the deployment matrices
that each task group ‘supposed’ to get. Then, the ratio ‘supposed’:‘actual’ of each de-
ployment matrix is computed to estimate and update the TCatk−R j average matrices.
For those categories which did not participate in the latest task groups, their TCatk−R j
average matrices get updated based on the ratio of the other categories as explained in
Sec. 4.2.

4.4 Scheduler Process Flow

Figure 3 presents the process flow of the entire scheduler system. (1) The Controller
manages the scheduler activity in terms of the flow and periodic average analysis. It
ensures that the QoS requirements are satisfied at runtime. (2) The Task Categorisation
categorises the user tasks. (3) It then invokes the Benchmark which selects BTasksTOTAL
from the categorised BOT for (4,5) further task deployment on the grid resources. (6)
The Output Fetching collects the processed benchmark tasks and (7,8) the Average
Analysis module studies the task category-resource or TCatk−R j average deployment
matrices. (10) The Constraint Fetching retrieves the resource-network utilisation con-
straints periodically to set the task granularity objective functions. (9,11,12) Having the
categorised tasks, TCatk−R j average deployment matrices, and the resource-network
utilisation constraints, the Task Granularity determines the number of tasks from vari-
ous categories that can be grouped for a particular resource.

When selecting a task from a category, the expected deployment matrices of the
resulting group are accumulated from the average task deployment matrices of the
particular category. The final granularity must satisfy all the seven objective functions
mentioned in Sec. 3 of this paper. The task categorisation process derives the need for
enhancing objective 7 to control the total number of tasks that can be selected from a
category k:

Objective 7: Total tasks in T G from a TCatk ≤ size o f (TCatk)

(13,14) Upon setting the granularity, the Task Grouping-Dispatching selects and
groups the tasks, and transfers the batch to the designated resource. (15) The processed
task groups are then collected by the Output Fetching; the remaining UBudget and
UDeadline are updated accordingly. The cycle (10-15) continues for a certain time pe-
riod and then the Controller signals the Average Analysis to update the average deploy-
ment matrices of each TCatk−R j to be used by the subsequent task group scheduling
and deployment iterations.

5 Performance Analysis

The scheduling algorithm is simulated using the GridSim [16]. There are 400-2500
tasks involved in this performance analysis with TFSize (6-40 size units), ETCPUTime
(70-130 time units), and OFSize (6-40 size units). The T FSizeCI , ECPUTimeCI , OFSizeCI
are of 10 size units each. The QoS constraints are UDeadline (200K-600K time units)
and UBudget (6K-8K cost units).

The grid is configured with eight cluster-based resources, each with three processing
elements. The processing capacity of a cluster is 200-800 MIPS and the associated
utilisation constraints: MaxCPUTime (30-40 time units), MaxWCTime (400-700 time
units), MaxSpace (1K-5K size units), MaxTransTime (8K-9K time units), and PCost
(3-10 cost units per a time unit). For benchmarking, two tasks are selected from the
first four dominating categories. The user submits 400 tasks to the scheduler at start-up
time and periodically submits 200 tasks at intervals set by Poisson distribution with
λ=1.0 time unit. Figure 4 depicts the performance table/charts of the scheduler from the
following experiments.

EXPERIMENT I: First, we trace the performance of the scheduler with three re-
sources (R0-R2), UBudget=6000 cost units, and UDeadline=200K time units. Table 1
depicts the number of remaining tasks in each TCat during the deployment iterations.
Initially, 13 categories are created as indicated in Column I. Column II shows the tasks
upon the benchmark phase (BTasksTOTAL = 24) with remaining UDeadline=190K time
units and UBudget=5815 cost units.

After the benchmark, the task granularity is computed for each resource based on
TCatk −R j average deployment matrices. The resulting task groups for the three re-
sources:

R0 : TCat0(24),R1 : TCat0(13)+T cat1(56),R2 : TCat1(4)+TCat2(20)
e.g. TCat0(24) indicates 24 tasks from TCat0

Table 2. The Validation of Task Granularity

R Estimated Average Matrices according

to the Task Granularity vs Objective

Functions

Actual Deployment

Matrices of the

Processed Task

Groups (Proposed

Scheduler)

Average

Deployment

Matrices of the

Processed

Individual Tasks

(Conventional

Scheduler)

R0 AvgCPUTime:29 vs MaxCPUTime:30 CPU time:22 CPU time:1.6

AvgWCTime:31 vs MaxWCTime:700 Wall-clock time:25 Wall-clock time:2

AvgTrantTime:1600 vs

MaxTransTime:9500

Transmission

time:1712

Transmission

time:634

AvgSpace:336 vs MaxSpace:5000 Space:355 Space:20

AvgPCost:88 vs UBudget:5815 Processing cost:66 Processing cost:4.8

AvgTRTime:965 vs UDeadline:190K

R1 AvgCPUTime:49 vs MaxCPUTime:50 CPU time:34 CPU time:1.1

AvgWCTime:53 vs MaxWCTime:700 Wall-clock time:38 Wall-clock time:2

AvgTrantTime:7310 vs

MaxTransTime:8000

Transmission

time:4900

Transmission

time:564

AvgSpace:1274 vs MaxSpace:10000 Space:1113 Space:20

AvgPCost:299 vs UBudget:5727 Processing cost:204 Processing cost:6.6

AvgTRTime:7365 vs UDeadline:190K

1 2 3 4 5 6 7 8

0

200

400

600

800

1000

1200

Processed Task at Time Intervals

With

Grouping

Without
Grouping

Time Intervals

N
u
m

b
e
r

o
f

T
a
sk

s

1 2 3 4 5 6 7 8

0

200

400

600

800

1000

1200

Processed Task and Task Group Counts

Tasks

Task

Groups

Time Intervals

N
um

be
r

o
f

T
as

k
s

Chart (b)Chart (a)

Table 1. Remaining Category Tasks

TCat 0 1 2 3 4 5 6 7 8 9 10 11 12 Total

I 37 66 80 67 2 62 16 35 29 1 3 1 1 400

II 37 60 74 61 2 56 16 35 29 1 3 1 1 376

III 0 0 54 61 2 56 16 35 29 1 3 1 1 259

IV 0 0 20 9 2 56 16 35 29 1 3 1 1 173

V 15 45 63 38 3 82 23 51 44 2 4 2 1 373

VI 0 0 0 0 0 31 11 83 74 4 6 4 1 214

Fig. 4. Performance Tables and Charts of the Proposed Scheduler

Table 2 shows how the estimated granularities for R0 and R1 adhere to the con-
straints in the objective functions. The actual deployment matrices of the relevant pro-
cessed task groups prove that the scheduling algorithm fulfills all the seven objective
functions for deploying 117 tasks (Table 1, Column III) in batches. The next iteration
uses the same average deployment matrices, resulting in groups with R0 : TCat1(17),R1 :
TCat2(17)+T cat3(19),R2 : TCat3(33); Column IV indicates the remaining 173 tasks.

After this point, a new set of 200 tasks arrived at the scheduler (Column V). The
subsequent iteration is guided by the average analysis and task groups are formed based
on the latest grid status; R0 : TCat0(15)+TCat1(14),R1 : TCat1(31)+TCat2(19),R2 :
TCat2(44)+TCat3(1). The scheduler flow continues with average analysis, task gran-
ularity, grouping, deployment and new task arrival. At the end, the scheduler managed
to complete 786 tasks out of 1000 within the UDeadline (Column VI). For comparison
purpose, a similar experiment was conducted with conventional task scheduling (de-
ploying tasks one-by-one). The scheduler deployed only 500 tasks out of 1000 within
the UDeadline.

An instance of average deployment matrices of the conventional scheduler is shown
in Table 2. R0 manage to process 24 tasks (in a group) in 1759 time units which can be
averaged as 73.29 time units per task. However, the conventional scheduler spent 637.6
time units to process one task; 99.4% of the deployment time is used for file transmis-
sion purpose. This indicates that a grid environment is not suitable for lightweight tasks.
Hence, there is a strong need for the proposed scheduler which can adaptively resize the
batch size for efficient grid utilisation.

EXPERIMENT II: Here, we conduct the simulation in an environment of eight
resources with UDeadline=600K time units and UBudget=8000 cost units. The charts
in Fig. 4 show the performance based on the observations at eight time intervals upon
scheduler start-up. After the second interval, the scheduler produced better outcome
throughout the application deployment in terms of total processed tasks as shown in
Chart (a). For example, our scheduler successfully executed 1181 tasks by interval 8,
whereas the conventional scheduler executed only 800 tasks, resulting in a performance
improvement of 47.63%. Chart (b) depicts the task and task group counts processed
by the proposed scheduler. For example, 716 tasks are successfully processed by our
scheduler at interval 5 (Chart (a)). Interval 5 on Chart (b) indicates that there are only
113 file transmissions needed to process the 716 tasks (24 benchmark tasks and 89
groups). However, the conventional scheduler had 560 file transmissions by this interval
(Chart (a)), an additional communication overhead of 20.18%.

6 Conclusion

The proposed scheduling algorithm uses simple statistical computations to decide on
the task granularity that satisfies the current resource-network utilisation constraints
and user’s QoS requirements. The experiments prove that the scheduler leads towards
an economic and efficient usage of grid resources and network utilities. The scheduler
is currently being implemented for real grid applications. In future, the algorithm will
be adapted to support work-flow application models. The scheduler will be improved to
deal with unforeseen circumstances such as task failure and migration as well.

References

1. Berman, F., Fox, G.C., Hey, A.J.G., eds.: Grid Computing - Making the Global Infrastructure
a Reality. Wiley and Sons (2003)

2. Baker, M., Buyya, R., Laforenza, D.: Grids and grid technologies for wide-area distributed
computing. Softw. Pract. Exper. 32 (2002) 1437–1466

3. Jacob, B., Brown, M., Fukui, K., Trivedi, N.: Introduction to Grid Computing. IBM Publi-
cation (2005)

4. Buyya, R., Date, S., Mizuno-Matsumoto, Y., Venugopal, S., Abramson, D.: Neuroscience
instrumentation and distributed analysis of brain activity data: a case for escience on global
grids: Research articles. Concurrency and Computation: Practice and Experience (CCPE) 17
(2005) 1783–1798

5. Muthuvelu, N., Liu, J., Soe, N.L., Venugopal, S., Sulistio, A., Buyya, R.: A dynamic
job grouping-based scheduling for deploying applications with fine-grained tasks on global
grids. In: Proceedings of the 2005 Australasian workshop on Grid computing and e-research,
Australian Computer Society, Inc. (2005) 41–48

6. Feng, J., Wasson, G., Humphrey, M.: Resource usage policy expression and enforcement
in grid computing. In: Proceedings of the 8th IEEE/ACM International Conference on Grid
Computing, Washington, DC, USA, IEEE Computer Society (2007) 66–73

7. Arnon, R.G.O.: Fallacies of distributed computing explained.
http://www.webperformancematters.com/ (2007)

8. Ranaldo, N., Zimeo, E.: A framework for qos-based resource brokering in grid comput-
ing. In: Proceedings of the 5th IEEE European Conference on Web Services, the 2nd Work-
shop on Emerging Web Services Technology. Volume 313., Halle, Germany, Birkhuser Basel
(2007) 159–170

9. James, H., Hawick, K., Coddington, P.: Scheduling independent tasks on metacomputing
systems. In: Proceedings of Parallel and Distributed Computing Systems, Fort Lauderdale,
US (1999) 156–162

10. Sodan, A.C., Kanavallil, A., Esbaugh, B.: Group-based optimizaton for parallel job schedul-
ing with scojo-pect-o. In: Proceedings of the 2008 22nd International Symposium on High
Performance Computing Systems and Applications, Washington, DC, USA, IEEE Computer
Society (2008) 102–109

11. Maghraoui, K.E., Desell, T.J., Szymanski, B.K., Varela, C.A.: The internet operating system:
Middleware for adaptive distributed computing. International Journal of High Performance
Computing Applications 20 (2006) 467–480

12. Ng, W.K., Ang, T., Ling, T., Liew, C.: Scheduling framework for bandwidth-aware job
grouping-based scheduling in grid computing. Malaysian Journal of Computer Science 19
(2006) 117–126

13. Stokes, J.H.: Behind the benchmarks: Spec, gflops, mips et al.
http://arstechnica.com/cpu/2q99/benchmarking-2.html (2000)

14. Muthuvelu, N., Chai, I., Chikkannan, E.: An adaptive and parameterized job grouping al-
gorithm for scheduling grid jobs. In: Proceedings of the 10th International Conference on
Advanced Communication Technology. Volume 2. (2008) 975–980

15. Lowekamp, B., Tierney, B., Cottrell, L., Jones, R.H., Kielmann, T., Swany, M.: A Hierarchy
of Network Performance Characteristics for Grid Applications and Services. (2003)

16. Buyya, R., Murshed, M.M.: Gridsim: A toolkit for the modeling and simulation of distributed
resource management and scheduling for grid computing. Concurrency and Computation:
Practice and Experience (CCPE) 14 (2002)

