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Abstract

Selection of resources for execution of scientific work-

flows in data grids becomes challenging with the exponen-

tial growth of files as a result of the distribution of scientific

experiments around the world. With more runs of these ex-

periments, huge number of data-files produced can be made

available from numerous resources. There is lack of work

in optimal selection of data-hosts and compute resources

in the presence of replicated files for scientific workflows.

Foreseeing this, the thesis work aims at proposing novel

workflow scheduling algorithms on data grids with large

number of replicated files that incorporates practical con-

straints in heterogeneous environments such as Grids.

In this paper, we define the workflow scheduling problem

statement in the context of data grids, supported by motivat-

ing applications; list research issues arising from practical

constraints; propose two algorithms for experimenting with

the problem; report simulation results obtained as a result

of preliminary studies. The results are promising enough to

motivate us to research on the problem stated.

1 Introduction

Scientific experiments like the Compact Muon Solenoid

(CMS) experiment for the Large Hadron Collider (LHC)

at CERN1, the Laser Interferometer Gravitational-Wave

Observatory’s (LIGO) science2 runs, the projects at Grid

Physics Network3 produce data in the scale of petabytes.

These experiments are usually represented using directed

acyclic graphs (DAG), called workflows, where jobs are

linked according to their flow dependencies. The workflow

is called compute-intensive when the computational needs

of individual jobs are high. Similarly, the workflow is called

data-intensive when the data requirements are high.

Optimizing the make-span and cost of execution is the

1http://lhc.web.cern.ch/lhc/LHC Experiments.htm
2http://www.ligo.caltech.edu/advLIGO/
3http://www.griphyn.org/

most common objective function of scheduling these sci-

entific applications. The make-span depends on both the

communication time involved in transferring the files and

the computation time to execute them. Scheduling the jobs

to minimize only one objective results in decreased perfor-

mance. Traditional scheduling algorithms which focus on

pull model cannot be just applied as pulling data toward

the computation resources incurs high bandwidth utilization

cost. This demands a different model where the selection

of both data-host and compute-host should be made rather

than selecting data-host first and then compute-host or vice

versa. In this paper, we define the problem with motivat-

ing examples and experiment with two algorithms. We then

present the research issues given the primary problem state-

ment.

The rest of the paper is structured as follows: Section 2

gives some example applications as motivation, Section 3

outlines the related work, Section 4 gives the model, Sec-

tion 5 states the problem, Section 6 proposes research is-

sues, Section 7 provides some preliminary results, and Sec-

tion 8 summarizes the paper with a timeline for the Ph.D.

candidature.

2 Motivation

The Laser Interferometer Gravitational-Wave Observa-

tory is a facility dedicated to the detection of cosmic grav-

itational waves and the harnessing of these waves for sci-

entific research. The LIGO Lab, the LIGO Scientific Col-

laboration (LSC), and international partners, are proposing

Advanced LIGO to improve the sensitivity by more than a

factor of 10. Since the volume of space that the instrument

can see grows as the cube of the distance, this means that

the event rates will be more than 1,000 times greater. Ad-

vanced LIGO will equal the 1 year integrated observation

time of initial LIGO in roughly 3 hours1. One such appli-

cation workflow is depicted in Figure 1a. The huge amount

of data produced will be made available to all of its sites.

The selection of data source and compute-host will need to

be done in an efficient manner such that the cost and time
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of execution are minimized. Cao et al. [3] have demon-

strated a Data Monitoring Toolkit (DMT) with LIGO Data

Grid (LDG). We are motivated to design more sophisticated

algorithms for scheduling applications like advanced LIGO.
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(a) Complex workflow as in LIGO. (b) Balanced workflow

as in Atlas.

Figure 1: Example workflow structures.

Magnetic Resonance Imaging (MRI) uses radio waves

and a strong magnetic field to provide detailed images of

internal organs and tissues. Functional MRI (fMRI) is a

procedure that uses MRI to measure the signal changes in

an active part of the brain. A typical study of fMRI data

requires multiple-stage processes that begin with the pre-

process of raw data and concludes with a statistical analy-

sis. Hundreds or even thousands of images are involved in

such processes. Population-based atlas [18] creation is one

of the major fMRI research activities. Figure 1b shows the

workflow structure employing the Automated Image Reg-

istration (AIR) and FSL suite for creating population-based

brain atlases from high resolution anatomical data [24]. A

proper scheduling algorithm is required to select the image

files from appropriate data-hosts and execute the jobs in se-

lected compute-hosts.

For executing these application workflows, the data re-

quired can be retrieved from several data-hosts as there ex-

ist replicas of data files. Among the large number of data-

hosts, the set of data-hosts that host the files required by a

job should be found such that the repeated transfer of these

huge files from one site to another is minimized. The prob-

lem of finding the set of data-hosts that provides all the files

in optimal time is NP-complete [21]. Data has to be staged

as input before any job can be executed. At the end of exe-

cution or during the execution, output data is produced that

may also be of similar sizes to the input data. These inter-

mediate data should be stored for subsequent jobs requiring

them. These new hosts can be treated as a new source of

data depending on the policy of retaining or deleting the

temporarily data. The total number of data-hosts thus in-

creases as the intermediate output files are stored and the

selection problem becomes complex.

The computation requirements of these jobs are also very

high. After the set of candidate data-hosts is found, the jobs

need to be mapped to the appropriate compute-host for exe-

cution. The mapping of these jobs depends on the objective

function. Scheduling of the jobs in the workflow primar-

ily focuses on some of the objective functions or combina-

tion of them: for example, minimizing the total make-span,

minimizing the overall cost of execution and data transfer,

deadline and budget. The mapping of the workflow jobs to

minimize one of the objective functions is a complex sub-

problem of the general job scheduling problem as stated in

Section 5. The problem becomes complex with the addition

of replicated data sets with jobs requiring more than a single

file.

3 Related Work

In order to find out the location of replicated files,

Replica Location Services (RLS) [5] Local Replica Catalog

(LRC) provides information about the data available at the

resource. RLS is a distributed replica management system

consisting of local catalogs that contain information about

logical to physical filename mappings and distributed in-

dexes that summarize the local catalog content. Informa-

tion about the state of the resources can be obtained via

the Monitoring and Discovery Service (MDS) [9]. MDS

provides information about the number and type of avail-

able resources, processor characteristics and the amount of

available memory [23].

The work done by Shankar et al. [17] is most closely

related to that of ours. While producing a schedule for the

jobs in a workflow, they have proposed a planner that uses

the file location table to determine the locations of cached

or replicated files. They take the volume of data into ac-

count while scheduling and have used cache mechanism

for future usage similar to our notion of re-use. However,

they do not consider the best location to get the data from.

Moreover, the scheduling is performed for cluster manage-

ment systems and not suitable for heterogeneous environ-

ments like Grid where instantaneous data replication, global

search is not at all feasible.

Considerable work has been done by Deelman et al.

[6, 7] on planning, mapping and data-reuse in workflow

scheduling. Their Concrete Workflow Generator (CWG)

queries the Transformation Catalog to determine if the com-

ponents are available in the execution environment and to

identify their locations. However, CWG selects a ran-

dom location to execute from among the returned locations

which does not necessarily give the best result. Also, if the

input files are replicated at several locations, it selects the

source location at random.

Zinn et al. [25] defined the mapping problem as Task

Handling Problem (THP). They make strong assumptions

by considering intrees and minimal series parallel graphs,

unity communication cost and execution cost, which is not

the case in heterogeneous environments. It is not always

possible to transform workflows to intrees or minimal series

parallel graphs.
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Task to host assignment heuristic given by the Casanova

et al. in the XSufferage [4] algorithm targets maximum file

re-use by assigning the job to a cluster which already has

the required file, provided the file is large compared to the

available bandwidth on the cluster network’s link. However,

they do not consider dependent jobs and replicated files.

Topcuouglu et al. have designed a list scheduling algo-

rithm called HEFT. This list scheduling algorithm assigns

ranks to the jobs according to both the communication and

computation costs and preserves the job execution prece-

dence. We have used a modified version of this algorithm

for experimenting with our case. We chose not to test Dy-

namic Critical Path (DCP) algorithm [11] due to its higher

complexity.

Ranganathan et al. [16, 15] have used dynamic repli-

cation strategies to improve data access. Significant per-

formance improvement is achieved when scheduling is per-

formed according to data availability while also using a dy-

namic replication strategy. Locality of access should be

leveraged by selecting the appropriate replica. However,

replication cannot be done instantaneously given the huge

data size and bandwidth constraints.

In Ramakrishnan et al. [14] work, workflow input data

is staged dynamically, new data products are generated dur-

ing execution. They focus on determining which data are

no longer needed and when, by adding nodes to the work-

flow to cleanup data along the way. This minimizes the disk

space usage as intermediate files generated are also of sim-

ilar order to that of the input files.

Venugopal and Buyya [21] have proposed a heuristic,

based on the Set Covering Problem (SCP), for selecting

compute and data resources for data-intensive bag-of-task

applications in an environment where the data is replicated

(SCP-MH). However, it does not consider storage con-

straints on the nodes and the dependencies between jobs,

and multiple-workflows. The work presented in this pro-

posal incorporates these concerns.

4 Model

4.1 A Workflow Model

A workflow W is represented by a directed acyclic graph

G = (V,E) , where V = D ∪ C ∪ J , and E represents

the edge that maintains execution precedence constraints.

Having a directed edge from jx to jy means that jy cannot

start to execute until jx is completed. Having a directed

edge from dx to jx means that job jx cannot start to execute

until file is transferred or made available to the execution

host executing the job. The components are described as

follows:

1. A set of jobs J = {j1, j2, . . . , jn}

2. A set of files F = {f1, f2, . . . , fn}

3. A set of compute-hosts C = {c1, c2, . . . , cn}

4. A set of data-hosts D = {d1, d2, . . . , dn}

A job jx requires a set of files Fx = {f1, f2, . . . , fn}
to be staged in for execution. In the set of files, we denote

f t
k as temporary file and f

f
k as fixed file to distinguish files

produced as a result of execution of a job and those files

already hosted by data-hosts, respectively. File f
f
k is hosted

by multiple data-hosts.

4.2 Resource Model

A compute resource is a high performance computing

platform such as a cluster which has a 'head' node that

manages a batch job submission system. Each compute-

host has its own storage constrained data-host. There ex-

ists data-hosts that are only for storage purposes and do not

provide computation. The communication cost between the

compute-host and its own data-host is local and thus mini-

mal in comparison to the communication cost between dif-

ferent hosts [22].

Data is organized in the form of datasets that are repli-

cated on the data-hosts by a separate replication process that

follows a strategy [2] that takes into consideration various

factors such as locality of access, load on the data-host and

available storage space. Information about the datasets and

their location is available through a catalog such as the Stor-

age Resource Broker Metadata Catalog [13][21].

5 Problem Statement

We now describe the problem of data-host selection and

job to resource mapping in the presence of large number of

replicated files.

A set of data-hosts that hosts the required files for the

jobs in the workflow should be found. The selection of the

optimal set of data-hosts in the presence of large number

of replicated files for a single job is computationally inten-

sive [21]. The selection is being made by using one of the

solutions to the Set-Coverage problem [1]. This selection

procedure is compute-intensive.

The mapping of jobs to the compute-resources is an NP-

complete problem in the general form. The problem is NP-

complete even in two simple cases: (1) scheduling jobs

with uniform weights to an arbitrary number of processors

and (2) scheduling jobs with weights equal to one or two

units to two processors [20]. There are only three special

cases for which there exist optimal polynomial-time algo-

rithms. These cases are (1) scheduling tree-structured job

graphs with uniform computation costs on an arbitrary num-

ber of processors [10]; (2) scheduling arbitrary job graphs

with uniform computation costs on two processors [12]; and

(3) scheduling an interval-ordered job graph [8]. However,

even in these cases, communication among jobs of the par-

allel program is assumed to take zero time.

The mapping of jobs in a workflow to the resources in

our case is significantly different than the general mapping
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problem. Given the replicated files and numerous data-

hosts, proper selection of data-hosts and compute-hosts

should be made for every job in the workflow such that the

dependent jobs will benefit from selection set of its parents.

The best case is such that each job gets the optimal data-

host set and compute-host pair for execution with the op-

timal make-span and minimum cost of the workflow. The

naive case is when the set is chosen for each job irrespective

of their dependencies.

Figure 2: Data-host and Compute-host Selection Problem.

Figure 2 shows a simple workflow with separate

compute-hosts and separate data-hosts mapped to each job.

Lets first consider the data-transfers occurring due to the se-

lection of compute-host and data-host for job a and job c.

Since the jobs are mapped to two different compute-hosts,

the intermediate files needs to be transferred from C1 to

C2 with cost dtc12. Job a has cost dta and job c has cost

dtc for transferring data from Dhs1 and Dhs3, respectively.

Now the optimal solution would select a combination of

C1, C2, Dhs1 and Dhs3 to minimize the data transfer cost∑
(dtc12 + dta + dtc) and execution time

∑
(C1 + C2)t.

There are several ways to select the data-hosts Dhs1 and

Dhs3 and compute-hosts C1 and C2. We describe two

techniques. The first way is by considering the proximity

of data-hosts in terms of network distance with the set of

compute-hosts. The second way is by trying to maximize

the co-relation between two set of data-hosts, depicted as

rs12 in the figure, for some set of jobs that require same set

of files.

The first way always searches the entire data-host and

compute-host set to find one combination (which is NP-

complete) that most closely satisfies the objective function.

But it does not take into account that jobs might be sharing

the same set of files. Moreover, previous iterations might

have already found the data-host and compute-host set com-

bination that can be applied to subsequent set of jobs. For

example jobs a and c might be requiring same set of files,

so the compute-intensive selection of candidate data-host

sets and compute-host can be avoided for the second job.

The second way would almost always select the same set

of data-hosts by trying to maximize their co-relation. This

also restricts the compute-host set to within the proximity

of the co-related data-host set. When the number of jobs in-

creases, both the compute-host and data-host become over-

loaded, increasing waiting time of the jobs. Hence a proper

selection algorithm should distribute the load and satisfy the

objective function. The problem is formally stated in Defi-

nition 1.

Definition 1. DDCSP (D,C, J, F,G,L) Given a set

of data-hosts D, a set of compute-hosts C, a set of jobs J , a

set of files F , the workflow DAG G and workflow execution

time bound L, Dynamic Data-Compute Scheduling Prob-

lem (DDCSP) is a problem of finding obtainable mappings

of jobs J , where each job ji may be requiring more than

one input file, to compute-hosts C with replicated files in

data-hosts D to 1) minimize the make-span of the workflow

bounded within L time limits, 2) minimize the total cost of

execution , 3) satisfy system and users’ constraints.

6 Research Issues

The scheduling of workflow jobs, as defined in Defini-

tion 1, becomes complicated when we consider the follow-

ing key challenges:

• Scheduling Policy. According to the selection of data-

hosts and mapping of resources, the workflow’s make-

span and overall cost changes significantly.

• Storage Constraints. Only limited storage capacity is

available at resources. As the jobs get executed, the

data produced should be either deleted or moved. Stor-

age aware resource scheduling problem is a major area

of research. Data providence should be associated with

scheduling policy.

• Fault Tolerance. If an assigned job fails, the effect gets

reflected to the entire workflow unless a fault tolerance

mechanism is in place. Pro-active scheduling techniques

should be looked into.

• Replication Policy. The availability of replicas of data

and their locality heavily depends on the replication pol-

icy in place. Given the statistical analysis of scientific

workflow runs, a dynamic replication policy that can bal-

ance the replicas among peers should be formulated.

• Resource Provisioning. A service-level-agreement

(SLA) based advance reservation can be in place to cir-

cumvent the sudden scarcity of resources and thus guar-

antee access at the scheduled time.

• Multiple Workflows, Multiple Runs. Efficient schedul-

ing of multiple workflows at the same time is a research

problem. Same workflows can be run many times at vary-

ing intervals and places. A proper scheduling algorithm

should be designed to incorporate simultaneity and im-

providence of users’ requests.

• User QoS. Users’ Quality of Service (QoS) such as bud-

get and deadline. should also be taken into account while

scheduling workflows.
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7 Preliminary Results

In the course of experimenting with the scheduling algo-

rithms, we have formulated a modified version of HEFT al-

gorithm [19], and call it Dynamic Data-Resource-Selection

(DDRS), as listed in Algorithm 1. Unlike the original

HEFT, the ranking of the jobs is recalculated in intervals

such that the scheduling is based on dynamic statistics of

the resources. This changes the job to resource mapping at

the time while forming the list of jobs. Jobs are selected in

descending order of their ranking for mapping to a resource.

The best compute resource is chosen based on SCP-MH. We

also modified the HEFT algorithm similar to DDRS and se-

lected compute resource using the earliest finish time.

Algorithm 1 DDRS algorithm.

1: repeat

2: Set the computation costs of unfinished jobs &

communication costs of edges with mean values

3: Compute ranku for all unfinished jobs by

traversing graph upward, starting from the exit job

4: Sort the jobs in a scheduling list by nonincreas-

ing order of ranku values

5: for each job ji ∈ J in the sorted list do

6: Choose the compute resource ck using SCP-MH

7: end for

8: for all ji ∈ J do

9: Assign job ji to the compute resource ck

10: end for

11: Dispatch all the mapped jobs

12: Wait for the POLLING TIME

13: Update the ready job list

14: until there are unscheduled jobs in the ready list

We also formulated a Level-Partitioner (LP) algorithm

that schedules jobs one by one according to the dependen-

cies, as listed in Algorithm 2. Instead of maintaining a list

of jobs, the algorithm starts dispatching jobs starting from

the root. Once the parent job has finished, the child job is

ready to be scheduled. So some dependency chains might

get scheduled earlier if the jobs in the chain demand less

compute and transfer time. For every job, the compute re-

source is chosen using SCP-MH. This algorithm however

does not consider the criticality of ordering the paths ac-

cording to path weights like done in algorithm 1.

We have used GridSim to simulate the data-intensive en-

vironment and evaluate the performance of the scheduling

algorithms. We model the data-intensive computing envi-

ronment based on the European Data Grid Testbed 1 given

by Bell, et al. [2] as has been simulated by Srikumar et al.

[21]. We refer the reader to this paper for more information

on the simulation environment setup. We experiment with

two workflows as depicted in Figure 1. Each job has at least

two file dependencies from its parents. Both the stage-in

Algorithm 2 Level-Partitioner algorithm.

1: repeat

2: for each ready job ji ∈ J do

3: Choose the compute resource ck using SCP-MH

4: end for

5: for all ji ∈ J do

6: Assign job ji to the compute resource ck

7: end for

8: Dispatch all the mapped jobs

9: Wait for the POLLING TIME

10: Update the ready job list

11: until there are unscheduled jobs in the ready list

and intermediate files are 10MB each in size and are dis-

tributed according to Zipf distribution among the resources.

The compute resources are rated in terms of MIPS (Million

Instructions Per Sec) and the make span is reported in sim-

ulation seconds.
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(a) Make-span of complex workflows like LIGO.
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(b) Make-span of balanced workflows like fMRI-Atlas.

Figure 3: Average Make-span of workflows in 100 iterations.

Figure 3 and Table 1 shows that DDRS algorithm per-

forms well in comparison to DHEFT and LP. For complex

workflows like that of LIGO’s, significant time reduction

(↓) is seen. However, for balanced workflows like that of

Atlas, DHEFT performs better than DDRS and LP.

8 Summary and Timeline

In this paper, we have formulated the problem of

scheduling job of scientific workflows in the presence of
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Table 1: Simulation results averaged over 100 iterations.

#Jobs Algorithm
LIGO Time ↓ Atlas Time ↓

(Simulation Seconds)

450

DHEFT 135000 5% 130000 −23%
DDRS 128000 160000

LP 185000 30% 360000 55%

large number of replicated files. Also, we have outlined

the research issues arising when physical and practical con-

straints are considered in the system. With the support of

the preliminary results, we believe that more promising re-

sults can be obtained from rigorous research efforts. Hence

we conclude that the outlined problem can be insighted to

Ph.D. research by following the plan as laid out in Table 2.

Table 2: Future research activities and timeline.

Timeline Description

Jan.'08-Jun.'08
Simulate/implement scheduling algorithms.
Work on taxonomy for workflow on data grids.

Jul.'08-Dec.'08

Work on solving constraints with workflows and
data grid scheduling.Work on surveying of archi-
tectures related to workflows and data grids.

Jan.'09-Jun.'09
Work on new `̀ workflow and data grid architec-
ture´́ and execution models.

Jul.'09-Dec.'09

Work on analytical comparison, verification,
performance modeling of work so far. Integrate
industry standards & requirements with our work.

Jan.'10-Jun.'10

Develop a prototype system for executing var-
ious scientific workflows.Assimilate the test-
bed and evaluate the system. Finalize thesis.

Ph.D. & Beyond
Give continuity to the work on management of
scientific workflows on Grids.
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