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ABSTRACT 

 
With the advent of Grid and application technologies, scientists and engineers are building more and more 

complex applications to manage and process large data sets, and execute scientific experiments on 

distributed resources. Such application scenarios require means for composing and executing complex 

workflows. Therefore, many efforts have been made towards the development of workflow management 

systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various 

approaches for building and executing workflows on Grids. We also survey several representative Grid 

workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the 

taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of 

state-of-the-art in Grid workflow systems, but also identifies the areas that need further research. 

 

Keywords: grid computing, resource management, scheduling, taxonomy, workflow management. 

 

  

1. INTRODUCTION 

 

Grids [51] have emerged as a global cyber-infrastructure for the next-generation of e-Science applications 

by integrating large-scale, distributed and heterogeneous resources. Scientific communities, such as high-

energy physics, gravitational-wave physics, geophysics, astronomy and bioinformatics, are utilizing Grids 

to share, manage and process large data sets. In order to support complex scientific experiments, distributed 

resources such as computational devices, data, applications, and scientific instruments need to be 

orchestrated while managing the application workflow operations within Grid environments [92].  

 

Workflow is concerned with the automation of procedures whereby files and data are passed between 

participants according to a defined set of rules to achieve an overall goal [35]. A workflow management 

system defines, manages and executes workflows on computing resources. Imposing the workflow 

paradigm for application composition on Grids offers several advantages [117] such as:  

• Ability to build dynamic applications which orchestrate distributed resources. 

• Utilization of resources that are located in a particular domain to increase throughput or reduce 

execution costs.  

• Execution spanning multiple administrative domains to obtain specific processing capabilities.  

• Integration of multiple teams involved in managing of different parts of the experiment workflow 

– thus promoting inter-organizational collaborations. 

 

Figure 1 shows the architecture and functionalities supported by various components of the Grid workflow 

system based on the workflow reference model [35] proposed by Workflow Management Coalition (WfMC) 

[137] in 1995. At the highest level, functions of Grid workflow management systems could be 

characterized into build time functions and run time functions. The build-time functions are concerned with 

defining, and modeling workflow tasks and their dependencies; while the run-time functions are concerned 

with managing workflow executions and interactions with Grid resources for processing workflow 

applications. Users interact with workflow modeling tools to generate a workflow specification, which is 

submitted to a run-time service called the workflow enactment service for execution. Major functions 
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provided by the workflow enactment service are scheduling, fault management and data movement. The 

workflow enactment service may be built on the top of low level Grid middleware (e.g. Globus toolkit [59], 

UNICORE [128] and Alchemi [86]), through which the workflow management system invokes services 

provided by Grid resources. At both the build-time and run-time stages, the information about resources 

and applications may need to be retrieved using Grid information services.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the recent past, several Grid workflow systems have been proposed and developed for defining, 

managing and executing scientific workflows. In order to enhance our understanding of the field, we 

propose a taxonomy that primarily (a) captures architectural styles and (b) identifies design and 

engineering similarities and differences between them. There are a number of proposed taxonomies for 

distributed and heterogeneous computing such as [20][29][73][108]. However, none of these focuses on 

distributed workflow managements. The taxonomy provides an in-depth understanding of building and 

executing workflows on Grids. It compares different approaches and also helps users to decide on 

minimum subset of features required for their systems. 

 

The rest of the paper is organized as follows: Section 2 presents the taxonomy that classifies approaches 

based on major functions and architectural styles of Grid workflow systems. In Section 3, we provide a 

detailed survey of several selected Grid workflow systems and the mapping of the proposed taxonomy to 

the systems. We conclude in Section 4 with a discussion and identification of areas that need further work.  

  

 

2. TAXONOMY 

 

The taxonomy characterizes and classifies approaches of workflow management in the context of Grid 

computing. As shown in Figure 2, it consists of five elements of a Grid workflow management system: (a) 
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Figure 1. Grid Workflow Management System.  
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workflow design, (b) information retrieval, (c) workflow scheduling, (d) fault tolerance and (e) data 

movement. In this section, we look at each element and its taxonomy in detail.   

 

 

 

 

 

 

 

 

 

 

2.1 Workflow Design  

 

As shown in Figure 3, workflow design includes four key factors, namely (a) workflow structure, (b) 

workflow model/specification, (c) workflow composition system, and (d) workflow QoS (Quality of 

Service) constraints.  

 

 

 

 

 

 

 

 

 

 

2.1.1 Workflow Structure 

 

 

 

 

 

 

 

 

 

 

A workflow is composed by connecting multiple tasks according to their dependencies. The workflow 

structure, also referred as workflow pattern [2][3][6], indicates the temporal relationship between these 

tasks. Figure 4 shows the workflow structure taxonomy. In general, a workflow can be represented as a 

Directed Acyclic Graph (DAG) [110] or a non-DAG. 

 

In DAG-based workflow, workflow structure can be classified as sequence, parallelism, and choice.  

Sequence is defined as an ordered series of tasks, with one task starting after a previous task has completed. 

Parallelism represents tasks which are performed concurrently, rather than serially. In choice control 

pattern, a task is selected to execute at run-time when its associated conditions are true.  

 

In addition to all patterns contained in a DAG-based workflow, a non-DAG workflow also includes the 

iteration structure in which sections of workflow tasks in an iteration block are allowed to be repeated. 

Iteration is also known as loop or cycle. The iteration structure is quite frequently used in scientific 

applications, where one or more tasks need to be executed repeatedly [91]. For example, in a promoter 

identification workflow [85] as shown in Figure 5, step 5 to step 8 are executed iteratively to create and 

refine a promoter model.  
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Sequence   Choice Iteration  Parallelism Sequence   Choice Parallelism 

Figure 4. Workflow Structure Taxonomy. 
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These four types of workflow structure, namely sequence, parallelism, choice and iteration, can be used to 

construct many complex workflows. Moreover, sub-workflows can also use these types of workflow 

structure as building blocks to form a large-scale workflow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.2 Workflow Model/Specification 

 

Workflow Model (also called workflow specification) defines a workflow including its task definition and 

structure definition. As shown in Figure 6, there are two types of workflow models, namely abstract and 

concrete. They are also referred to as abstract workflows and concrete workflows [40][42]. In some 

literature (e.g. [84]), concrete models are referred to as executable workflows.  

 

In an abstract model, a workflow is described in an abstract form in which the workflow is specified 

without referring to specific Grid resources for task execution.  An abstract model provides a flexible way 

for users to define workflows without being concerned about low-level implementation details. Tasks in an 

abstract model are portable and can be mapped onto any suitable Grid services at run-time by using suitable 

discovery and mapping mechanisms. Using abstract models also eases the sharing of workflow descriptions 

between Grid users [42]; in particular it benefits the participants of Virtual Organizations (VOs) [52]. 

 

 

 

 

 

 

 

 

 

In contrast, a concrete model binds workflow tasks to specific resources. In some cases, a concrete model 

may include tasks acting as data movement to transfer data in and out of the computation and data 

publication to publish newly derived data into VO [42]. In other situations, tasks in a concrete model may 

also include necessary application movement to transfer computational code to a data site for large scale 

data analysis.   

 

Given the dynamic nature of the Grid environment, it is more suitable for users to define workflow 

applications in abstract models. A full or partial concrete model can be generated just before or during 

workflow execution according to the current status of resources. Additionally, in some systems [144], every 

task in a workflow is concretized only at the time of task execution. However, concrete models may be 

used by some end users who want to control the execution sequence [75].  
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Figure 6. Workflow Model Taxonomy. 
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2.1.3 Workflow Composition System 

 

Workflow composition systems are designed for enabling users to assemble components into workflows.  

They need to provide a high level view for the construction of Grid workflow applications and hide the 

complexity of underlying Grid systems. Figure 7 shows the taxonomy for the workflow composition 

systems. User-directed composition systems allow users to edit workflows directly, whereas automatic 

composition systems generate workflows for users automatically.  In general, users can use workflow 

languages for language-based modeling and the tools for graph-based modeling to compose workflows. 

 

Within language-based modeling, users may express workflow using a markup language such as Extensible 

Markup Language (XML) [132] (e.g. GridAnt [75], WSFL [79], XLANG [125], BPEL4WS [14], W3C 

XML-Pipeline language [135], and Gridbus Workflow [144]) or other formats (e.g. Condor DAGman 

[120]). Language-based modeling may be convenient for skilled users, but they require users to memorize a 

lot of language-specific syntax. In addition, it is impossible for users to express a complex and large 

workflow by scripting workflow components manually. However, workflow languages are more 

appropriate for sharing and manipulation, whereas the graphical representations are intuitive but they 

require to be converted into other forms for manipulation. So in most Grid systems, workflow languages 

are designed to bridge the gap between the graphical clients and the Grid workflow execution engine [62]. 

XML-based languages are used widely for workflow specification as it facilitates information description 

in a nested structure. Moreover, many tools are provided to validate XML syntax and verify XML 

documents against XML schema [134] or DTD (Document Type Definition) [132]. Furthermore, many 

XML parsing tools (e.g. JDOM [69] and dom4j [44] ) are widely available.  

 

 
Graph-based modeling allows graphical definition of an arbitrary workflow through a few basic graph 

elements. It allows users to work with a graphical representation of the workflow. Users can compose and 

review a workflow by just clicking and dropping the components of interest.  It avoids low-level details and 

hence enables users to focus on higher levels of abstraction at application level [64]. The major modeling 

approaches are Petri Nets [104], UML (Unified Modeling Language) [99] and user-defined component. 

Graph-based modeling is preferred by users as opposed to language-based modeling. 

 

Petri Nets are a special class of directed graphs that can model sequential, parallel, loops and conditional 

execution of tasks [62][65]. They have been used in many workflow management systems such as Grid-

Flow [62], FlowManager [78], and XRL/Flower [131]. UML activity diagrams [102] have also been 

extended and applied as a workflow specification language [17][45][105]. Compared with UML activity 

diagrams, Petri Nets have formal semantics and have been used widely for constructing several workflows 

[1][46]. A vast number of algorithms and tools for Petri Nets analysis have been developed along the years 

[89]. However, Eshuis et al. [46] argue that Petri Nets may be unable to model workflow activities 

accurately without extending its semantics and this drawback has been addressed in UML activity diagrams. 

Rather than following the standard syntax and semantics of Petri Nets and UML, many workflow editors 

for Grid workflow tools create their own graphical representation of workflow components. For example, 

Triana [123] allows users to predefine software components and reuse them to design DAG-based 

workflows. Kepler [12] provides graphical environment and a framework that supports the design and reuse 

of grid workflows. These tools are more convenient for users to manipulate their workflow applications, as 

Figure 7.  Workflow Composition System Taxonomy. 
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they provide a more user-friendly programming environment. They have also been integrated into 

underlying local applications, Grid middleware and monitoring systems. For example, P-GRADE [71][83] 

interoperates with a wide range of parallel applications in addition to Condor and Globus based Grid 

middleware. It also allows users to access and modify program code of a workflow task through a graphical 

editor. However, lack of standards hinders the collaboration between these projects. Many works are thus 

replicated such as different user interfaces developed by different projects for the same functionality. 

Moreover, workflow structures supported by most of them are limited to only sequence and parallelism.  

 

Graph-based modeling is very intuitive and can be handled easily even by a non-expert user. However, the 

layout of workflow components on a display screen can become very huge and difficult to manage [101]. 

One of the solutions to overcome this limitation is to use hierarchical graph definition [65]. Another 

solution is to have a system which composes workflows automatically. Pegasus [42] is one such automatic 

composition system for Grid computing; it has to be adapted to particular applications, because the 

composition is based on application-dependent metadata. It receives a metadata description of desired data 

products and initial input values from users. The tasks are then composed automatically to form a workflow 

by querying a virtual data catalog [53] that contains information for data derivation of application 

components. Compared with user-directed systems, automatic composition systems are ideal for large scale 

workflows which are very time consuming to compose manually. However, the automatic composition of 

application components is challenging because it is difficult to capture the functionality of components and 

data types used by the components [27] [101].   

 

2.1.4 Workflow QoS Constraints 

 

In a Grid environment, there are a large number of similar or equivalent resources provided by different 

parties. Grid users can select suitable resources and use them for their workflow applications. These 

resources may provide the same functionality, but optimize different QoS measures. In addition, different 

users or applications may have different expectations and requirements. Therefore, it is not sufficient for a 

workflow management system to only consider functional characteristics of the workflow. QoS 

requirements such as time limit (deadline) and expenditure limit (budget) for workflow execution also need 

to be managed by workflow management systems. Users must be able to specify their QoS expectations of 

the workflow at the design level. Then, the actions conducted by workflow systems using run-time must be 

chosen according to the initial QoS requirements. 

 

 

 

 

 

 
 

 

 

Figure 8 shows the taxonomy of Grid workflow QoS constraints based on a QoS model for Web services 

based workflow provided by Cardoso et al. [28] and QoS of Web services [88][103]. It includes five 

dimensions: time, cost, fidelity, reliability and security. Time is a basic measure of performance. For 

workflow systems, it refers to the total time required for completing the execution of a workflow. Cost 

represents the cost associated with the execution of workflows including the cost for managing workflow 

systems and usage charge of Grid resources for processing workflow tasks. Fidelity refers to the 

measurement related to the quality of the output of workflow execution. Reliability is related to the number 

of failures for execution of workflows. Security refers to confidentiality of the execution of workflow tasks 

and trustworthiness of resources.  
 

As indicated in Figure 9, there are two different ways to assign QoS constraints in a workflow model. One 

way is to allow users to assign QoS constraints at task-level. The overall QoS can be assessed by computing 

all individual tasks. For example, a user assigns desired execution time for every task in a workflow. The 

deadline for the entire workflow execution can be calculated by a workflow reduction algorithm (e.g. 

SWR(w) algorithm [26]). Another way is to assign QoS constraints at workflow-level, allowing users to 

Reliability Security Fidelity Cost Time 

Workflow QoS Constraints 

Figure 8. Workflow QoS Constraints Taxonomy. 
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define the overall workflow QoS requirements. However, QoS constraints for each task may be required by 

schedulers for resource allocation at run-time. For the time dimension, users are likely to specify a deadline 

for the entire workflow execution rather than for every single task. In order to fulfill the deadline for the 

entire workflow, the scheduler needs to decide how fast each task has to be processed using a deadline 

assignment approach (e.g. Ultimate Deadline, Effective Deadline, Equal Slack, and Equal Flexibility 

strategies in [72]).  

 

 

 

 

 

 

 

 

 

2.2 Information Retrieval  

 

A Grid workflow management system does not execute the tasks itself, but it merely coordinates the 

execution of the tasks by the Grid resources. To map tasks onto suitable resources, information about the 

resources has to be retrieved from appropriate sources [141]. As indicated in Figure 10, there are three 

dimensions of information retrieval: static information, historical information and dynamic information.  

 

Static information refers to information that does not vary with time. It may include infrastructure-related 

(e.g. the number of processors), configuration-related (e.g. operating system, libraries), QoS-related (e.g. 

flat usage charge), access-related (e.g. service operations), and user-related information (e.g. 

authentication ID). Generally, static information is utilized by Grid workflow management systems to pre-

select resources during the initiation of the workflow execution.  

 

 

 
 

As Grid resources are not dedicated to the owners of the workflow management systems, the Grid 

workflow management system also needs to identify dynamic information such as resource accessibility, 

system workload, and network performance during execution time. Unlike static information, dynamic 

information reflects the status of the Grid resources, such as load average of a cluster, available disk space, 

CPU usage, and active processes. It also includes task execution information and market related 

information such as dynamic resource price.  

 

Historical information is obtained from previous events that have occurred such as performance history and 

execution history of Grid resources and application components. Generally, workflow management systems 

can analyze historical information to predict the future behaviors of resources and application components 

on a given set of resources. Historical information can also be used to improve the reliability of future 

workflow execution. For example, the user can correct the logic of a failed workflow according to the log 

of the workflow system. 
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Figure 10. Information Retrieval Taxonomy. 
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Several information services are available for accessing static and dynamic information about Grid 

resources. For example, Monitoring and Discovery System (MDS) [109] provides static hardware 

information such as CPU type, memory size and software information such as operating system 

information, and some dynamic information such as CPU load snapshot. Network Weather Service (NWS) 

[136] provides additional dynamic information about availability of CPU, memory, and bandwidth. An 

object oriented model for publication and retrieval of electronic resources is given in [33]. 

 

 

2.3 Workflow Scheduling 

 

Casavant et al. [29] categorized task scheduling in distributed computing systems into ‘local’ task 

scheduling and ‘global’ task scheduling. Local scheduling involves handling the assignment of tasks to 

time-slices of a single resource whereas global scheduling involves deciding where to execute a task.  

According to this definition, workflow scheduling is a kind of global task scheduling as it focuses on 

mapping and managing the execution of inter-dependent tasks on shared resources that are not directly 

under its control.  

 

The workflow scheduler needs to coordinate with diverse local management systems as Grid resources are 

heterogeneous in terms of local configuration and policies. Taking into account users’ QoS constraints is 

also important in the scheduling process so as to satisfy user requirements.  In this section, we discuss 

workflow scheduling taxonomy from the view of (a) scheduling architecture, (b) decision making, (c) 

planning scheme, (d) scheduling strategy, and (e) performance estimation as shown in Figure 11.  

 

 

 

 

 

 

 

 

2.3.1 Scheduling Architecture 

 

The architecture of the scheduling infrastructure is very important for scalability, autonomy, quality and 

performance of the system [63]. Three major categories of workflow scheduling architecture as shown in 

Figure 12 are centralized, hierarchical and decentralized scheduling schemes.   

 

 

 

 

 

 

 

 
In a centralized workflow enactment environment, one central workflow scheduler makes scheduling 

decisions for all tasks in the workflow. The scheduler has the information about the entire workflow and 

collects information of all available processing resources.  It is believed that the centralized scheme can 

produce efficient schedules because it has all necessary information [63]. However, it is not scalable with 

respect to the number of tasks, the classes and number of Grid resources. It is thus only suitable for a small 

scale workflow or a large scale workflow in which every task has the same objective (e.g. same class of 

resources).  

 

Unlike centralized scheduling, both hierarchical and decentralized scheduling allow tasks to be scheduled 

by multiple schedulers.  Therefore, one scheduler only maintains the information related to a sub-workflow. 

Thus, compared to centralized scheduling, they are more scalable since they limit the number of tasks 

managed by one scheduler. However, the best decision made for a partial workflow may lead to sub-

optimal performance for the overall workflow execution.  Moreover, conflict problems are more severe 

Scheduling Architecture 

Decentralized Hierarchical Centralized 

Figure 12. Scheduling Architecture Taxonomy. 
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[90].  One example of conflict is that tasks from different sub-workflows scheduled by different schedulers 

may compete for the same resource.  

 

For hierarchical scheduling, there is a central manager and multiple lower-level sub-workflow schedulers. 

This central manager is responsible for controlling the workflow execution and assigning the sub-

workflows to the low-level schedulers.  For example, in GridFlow project [25], there is one workflow 

manager and multiple lower-level schedulers. The workflow manager schedules sub-workflows onto 

corresponding lower-level schedulers. Each lower-level scheduler is responsible for scheduling tasks in a 

sub-workflow onto resources owned by one organization. The major advantage of using the hierarchical 

architecture is that the different scheduling policies can be deployed in the central manager and lower-level 

schedulers [63]. However, the failure of the central manager will result in entire system failure. 

 

 In contrast, there are multiple schedulers without a central controller in decentralized scheduling. Every 

scheduler can communicate with each other and schedule a sub-workflow to another scheduler with lower 

load. Compared to hierarchical scheduling, decentralized scheduling is more scalable but faces more 

challenges to generate optimal solutions for overall workflow performance and minimize conflict problems.  

  

2.3.2 Decision Making 

 

There is no single best solution for mapping workflows onto resources for all workflow applications, since 

the applications can have very different characteristics. It depends to some degree on the application 

models to be scheduled. In general, decisions about mapping tasks in a workflow onto resources can be 

based on the information of the current task or of the entire workflow and can be of two types, namely local 

decision and global decision [40] as shown in Figure 13. Scheduling decisions made with reference to just 

the task or sub-workflow at hand are called local decisions whereas scheduling decisions made with 

reference to the whole workflow are called global decisions.  

 

 

 

 

 

 

 

 

 

Local decision based scheduling only takes one task or sub-workflow into account, so it may produce the 

best schedule for the current task or sub-workflow but could also reduce the entire workflow performance. 

An example given by Deelman et al. [40] assumes that there is a data-intensive application where the 

overall run-time is driven by data transfer costs. Consider a situation where the output of a task is very 

large. If the selection of a resource for a task is based only on a local decision without consideration of data 

transfer between other resources, when selection of a resource for child tasks need to be made, the initial 

selection may be found to be a poor choice if latency between the nodes is very high. This would lead to 

higher data transfer costs for this child task and hence the entire workflow. 

 

Scheduling workflow tasks using global decision improves the performance of entire workflow. There are 

some algorithms for scheduling task graphs in parallel systems that could be applied to Grid workflow 

scheduling. Li et al. [80] developed the Forward-Looking Analysis Method (FLAM). It analyses 

dependencies of the entire graph to resolve the conflicts of parallel tasks which compete for the same 

resource. It is believed that global decision based scheduling can provide a better overall result. However, it 

may take much more time in scheduling decision making. Thus, the overhead produced by global 

scheduling could reduce the overall benefit and may even exceed the benefits it will produce [40]. 

Therefore, the choice of decision making for workflow scheduling should not be made without considering 

balance between the overall execution time and scheduling time. However, for some applications such as a 

data analysis application where the outputs of tasks in the workflow are always smaller than the inputs, 

using local decision based scheduling is sufficient.   

 

Decision Making 

Global Local 

Figure 13. Decision Making Taxonomy. 
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2.3.3 Planning Scheme 

 

A planning scheme is a method for translating abstract workflows to concrete workflows. As shown in 

Figure 14, schemes for the schedule planning of workflow applications can be categorized into either static 

scheme or dynamic scheme. In a static scheme, concrete models have to be generated before the execution 

according to current information about the execution environment and the dynamically changing state of 

the resources is not taken into account. In contrast, a dynamic scheme uses both dynamic information and 

static information about resources to make scheduling decisions at run-time. 

 
Static schemes, also known as full-ahead planning, include user-directed and simulation-based scheduling. 

In user-directed scheduling, users emulate the scheduling process and make resource mapping decisions 

according to their knowledge, preference and/or performance criteria. For example, users prefer to map 

tasks to resources on which they have not experienced failures. In simulation-based scheduling, the ‘best’ 

schedule is achieved by simulating task execution on a given set of resources before a workflow starts 

execution. The simulation can be processed based on static information or the result of performance 

estimation. For example, in GridFlow [25], the ‘best’ resource selected for scheduling a task is based on the 

predictive task execution time that resource provides.  

 

Dynamic schemes include prediction-based and just in-time scheduling. Prediction-based dynamic 

scheduling uses dynamic information in conjunction with some results based on prediction. It is similar to 

simulation-based static scheduling, in which the scheduler is required to predict the performance of task 

execution on resources and generate a near optimal schedule for the task before it starts execution. 

However, it changes the initial schedule dynamically during the execution. For example, GrADS [32] 

generates preliminary mapping by using prediction results, but it migrates a task execution to another 

resource when its initial contract is broken or a better resource is found for execution. Sakellariou et al. 

[110] developed a low-cost rescheduling policy for the mapping of workflows on Grids. It considers 

rescheduling workflow tasks at a few carefully selected points during execution in a dynamically changing 

Grid environment, since the initial schedule built using inaccurate predictions can affect performance 

significantly.  

 

Rather than making a schedule ahead, just in-time scheduling [42] only makes scheduling decision at the 

time of task execution. Planning ahead in Grid environments may produce a poor schedule, since it is a 

dynamic environment where utilization and availability of resources varies over time and a better resource 

can join at any time. Moreover, it is not easy to accurately predict the execution time of all application 

components on Grid resources. However, as the technology of advance reservation [119] for various 

resources improves, it is believed that the role of static and prediction-based planning will increase [40].  

 

2.3.4 Scheduling Strategy 

 

In general, scheduling workflow applications in a distributed system is an NP-complete problem [50]. 

Therefore, many heuristics have been developed to obtain near-optimal solutions to match users’ QoS 

constraints. As shown in Figure 15 we categorize strategies of major scheduling approaches into 

performance-driven, market-driven and trust-driven.  

 

Static Dynamic 

Planning Scheme  

Figure 14. Planning Scheme Taxonomy. 
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Performance-driven strategies try to find a mapping of workflow tasks onto resources that achieves optimal 

execution performance such as minimize overall execution time. Most of Grid workflow scheduling 

systems falls in this category. GrADS [32] optimizes DAG-based workflows using Min-Min, Max-Min and 

Suffrage heuristics, hoping to obtain minimum completion times. Prodan et al. [106] use classical genetic 

algorithms with cycle elimination techniques to minimize non-DAG based workflow execution on Grids.  

 

  

 

 

 

 

 

 

 

Market-driven strategies employ market models to manage resource allocation for processing workflow 

tasks. They apply computational economy principle and establish an open electronic marketplace between 

workflow management systems and participating resource providers. Workflow schedulers act as 

consumers buying services from the resource providers and pay some notion of electronic currency for 

executing tasks in the workflow. The tasks in the workflow are dynamically scheduled at run-time 

depending on resource cost, quality and availability, to achieve the desired level of quality for deadline and 

budget. Unlike the performance-driven strategy, market-driven schedulers may choose a resource with later 

deadline if its usage price is cheaper. Market-driven strategies have been applied to several Grid systems 

such as Nimrod-G [21] and Gridbus data resource broker [130]. One example of the market-driven 

workflow scheduling proposed by Geppert et al. [58] utilizes market mechanisms during the task 

assignment. In the system, bids are collected from eligible resource providers for each task. The optimal bid 

is selected by computing the amount of time and cost saved or overdrawn up to the point. If the execution 

time has been minimized at the expense of an overdrawn cost, a bid with lower price will be chosen as the 

optimal bid. Consequently, scheduler assigns the task to the resource whose provider offers the optimal bid. 

A recent work on cost-based scheduling of workflow tasks on Grids is reported in [19]. 

 

Recently, trust-driven scheduling approaches (e.g. CCOF project in [147] and GridSec project in 

[114][115]) in distributed systems are emerging.  Trust-driven schedulers select resources based on their 

trust levels. For example, within GridSec, the scheduler accesses the trust level of Grid sites. It maps tasks 

onto resources whose trust level is higher than users’ demand. Trust model of resources is based on 

attributes such as security policy, accumulated reputation, self-defense capability, attack history, and site 

vulnerability. By using trust-driven approaches, workflow management systems can reduce the chance of 

selecting malicious hosts, and non-reputable resources [147]. Therefore, overall accuracy and reliability of 

workflow execution will be increased.  

 

2.3.5 Performance Estimation  

 

In order to produce a good schedule, estimating the performance of tasks on resources is crucial, especially 

for constructing a preliminary workflow schedule. By using performance estimation techniques, it is 

possible for workflow schedulers to predict how tasks in a workflow or sub-workflow will behave on 

distributed heterogeneous resources and thus make decisions on how and where to run them. As indicated 

in Figure 16, there are several performance estimation approaches: simulation, analytical modeling, 

historical data, on-line learning, and hybrid.  

 

 

 

 

 

 

 

 

 

Scheduling Strategy 

Trust-driven Market-driven Performance-driven 

Figure 15. Scheduling Strategy Taxonomy. 

Performance Estimation 

Figure 16. Performance Estimation Taxonomy. 
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Simulation approaches [43][148] provide resource simulation environments to emulate the execution of 

tasks in the workflow prior to its actual execution. In analytical modeling [32][37][98], a scheduler predicts 

the performance of tasks in workflow on a given set of resources based on an analytic metric. For example, 

in GrADS [32], two types of performance models are developed, namely memory hierarchy performance 

model and computational model. By using these models, one can predict memory requirements and the 

execution time of an application component for a resource according to the associated problem size. The 

historical data approach [68][91][113] relies on historical data to predict the task’s execution performance. 

The historical data related to a particular user’s application performance or experience can also be used in 

predicting the share of available of resources for that user while making scheduling decisions based on QoS 

constraints. The on-line learning approach predicts task execution performance from on-line experience 

without prior knowledge of the environment’s dynamics.  For example, Buyya et al. [22] and Galstyan et al. 

[57] map a job onto a ‘best’ Grid resource by learning the completion time of most recent jobs submitted to 

resources. As historical and on-line learning approaches use experimental data, they can be broadly termed 

as empirical modeling approaches for performance estimation. 

 

In certain conditions, these approaches could be used together in a hybrid approach for generating 

performance evaluation of workflow tasks. For instance, Bacigalupo et al. [16] use both layered queuing 

modeling and historical performance data to predict the performance of dynamic e-Commerce systems on 

heterogeneous servers. In addition, GrADS constructs computational models semi-automatically by 

emulating the execution of workflow components on small data sets. That is, it uses a combination of 

historical and analytical approaches for performance estimation. 

 

2.4 Fault Tolerance 

 

In a Grid environment, workflow execution failure can occur for various reasons: the variation in the 

execution environment configuration, non-availability of required services or software components, 

overloaded resource conditions, system running out of memory, and faults in computational and network 

fabric components. Grid workflow management systems should be able to identify and handle failures and 

support reliable execution in the presence of concurrency and failures.  

 

 
As shown in Figure 17, Hwang et al. [66] divided workflow failure handling techniques into two different 

levels, namely task-level and workflow-level. Task-level techniques mask the effects of the execution failure 

of tasks in the workflow, while workflow-level techniques manipulate the workflow structure such as 

execution flow to deal with erroneous conditions.  

 

Task-level techniques have been widely studied in parallel and distributed systems. They can be cataloged 

into retry, alternate resource, checkpoint/restart and replication. The retry technique [121] is the simplest 

failure recovery technique, as it simply tries to execute the same task on the same resource after failure. 

The alternate resource technique [121] submits failed task to another resource. The checkpoint/restart 

technique [36] moves failed tasks transparently to other resources, so that the task can continue its 

execution from the point of failure. The replication technique [7][66] runs the same task simultaneously on 

different Grid resources to ensure task execution provided that at least one of the replicas does not fail.  

 

Workflow-level techniques include alternate task, redundancy, user-defined exception handling and rescue 

workflow. The first three approaches proposed in [66] assume there is more than one implementation for a 

Rescue  

workflow 

Checkpoint 

/Restart 

Replication Retry Alternate  

Task 

User-defined  

Exception 

Handling 

Redundancy 

Task-level Workflow-level 

Fault Tolerance 

Alternate  

Resource 

Figure 17. Fault Tolerance Taxonomy. 
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certain computation with different execution characteristics. The alternate task technique executes another 

implementation of a certain task if the previous one failed, while the redundancy technique executes 

multiple alternative tasks simultaneously. The user-defined exception handling allows the users to specify a 

special treatment for a certain failure of a task in workflow. The rescue workflow technique developed in 

Condor DAGMan system [36] ignores the failed tasks and continues to execute the remainder of the 

workflow until no more forward progress can be made. Then, a rescue workflow description called rescue 

DAG, which indicates failed nodes with statistical information, is generated for later submission.  

 

2.5 Intermediate Data Movement 
 

 

 

 

 

 

 

 

 

 

 

 

For Grid workflow applications, the input files of tasks need to be staged to a remote site before processing 

the task. Similarly, output files may be required by their children tasks which are processed on other 

resources. Therefore, the intermediate data has to be staged out to the corresponding Grid sites. Some 

systems require users to manage intermediate data transfer in the workflow specification, rather than 

providing automatic mechanisms to transfer intermediate data. As indicated in Figure 18, we categorize 

approaches of automatic intermediate data movement into centralized, mediated and peer-to-peer.  

 

Basically a centralized approach transfers intermediate data between resources via a central point. For 

example, a central workflow execution engine can collect the execution results after task completion and 

transfer them to the processing entities of corresponding successors.  Centralized approaches are easy to 

implement and suit workflow applications in which large-scale data flow is not required.  

 

In a mediated approach, rather than using a central point, the locations of the intermediate data are managed 

by a distributed data management system. For example, in Pegasus system, the intermediate data generated 

at every step is registered in a replication catalog service [30], so that input files of every task can be 

obtained by querying the replication catalog service. Mediated approaches are more scalable and suitable 

for applications which need to keep intermediate data for later use.  

 

A peer-to-peer approach transfers data between processing resources. Since data is transmitted from the 

source resource to the destination resource directly without involving any third-party service, peer-to-peer 

approaches save the transmission time and reduce the bottleneck problem caused by the centralized and 

mediated approaches. Thus, they are suitable for large-scale intermediate data transfer. However, there are 

more difficulties in deployment because they require every Grid node to be capable of providing both data 

management and movement service. In contrast, centralized and meditated approaches are more suitable to 

be used in applications such as bio-applications, in which users need to monitor and browse intermediate 

results. In addition, they also need to record them for future verification purposes.  

 

3. GRID WORKFLOW MANAGEMENT SYSTEM SURVEY  

 

In this section, we present a detailed survey of existing Grid workflow systems in addition to mapping the 

proposed taxonomy. Table 1 shows the summary of selected Grid workflow management projects. A 

comparison of various Grid workflow systems and their categorization based on the taxonomy is shown in 

Table 2, Table 3, and Table 4.  

 

 

              Intermediate Data Movement 

User-directed Automatic  

Centralized   Mediated  Peer-to-Peer  

Figure 18. Intermediate Data Movement. 
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Name Organization  Prerequisite Grid 

Integration  

Applications Availability 

DAGMan 

[120] 

University of 

Wisconsin-

Madison, USA. 

http://www.cs.wisc

.edu/condor/dagma

n/ 

 

Condor  Condor which 

can run on top 

of Globus 

Toolkit 

version 2 

(GT2) 

Compute-

intensive  

GPL(General 

Public License) 

Pegasus 

[41] 

University of 

Southern 

California, USA. 

http://pegasus.isi.e

du 

 

Condor 

DAGMan,  

Globus RLS. 

Condor and 

Globus. 

Targeted for 

data-intensive, 

but supports 

other types. 

GTPL (Globus 

Toolkit Public 

License)  

Triana 

[123] 

Cardiff University, 

UK. 

http://www.trianac

ode.org/ 

 

Grid 

Application 

Toolkit 

(GAT) 

GAT (JXTA, 

Web 

services, 

Globus) 

Compute-

intensive 

the Apache 

Software 

License  

ICENI 

[93] 

London e-Science 

Centre, UK. 

http://www.lesc.ic.

ac.uk/iceni/ 

 

Globus 

Toolkit 

Jini, JXTA, 

Globus 

Compute-

intensive 

ICENI Open 

Source Code 

Licence 

Taverna 

[100] 

Collaboration 

between several 

European Institutes 

and industries. 

http://taverna.sourc

eforge.net/ 

 

Java 1.4+ Web 

services, 

Soaplab, 

local 

processor, 

BioMoby, 

etc. 

 

Service Grids GNU Lesser 

General Public 

License (LGPL) 

GridAnt 

[75] 

Argonne National 

Laboratory, USA. 

http://www.cogkit.

org/ 

 

Apache Ant, 

Globus 

Toolkit 

GT2, GT3, 

GT4 

Client controllable 

workflow 

applications 

GTPL 

GrADS 

[18] 

Collaboration 

between several 

American  

Universities. 

http://www.hiperso

ft.rice.edu/grads/ 

 

Globus 

Tookit, 

Autopilot, 

NWS 

Globus, 

Parallel 

Systems (e.g. 

MPI)  

Compute-

intensive and 

communication-

intensive 

applications with 

MPI components 

Not yet available 

in public 

GridFlow 

[25] 

University of 

Warwick, UK 

http://www.dcs.war

wick.ac.uk/researc

h/hpsg/workflow/w

orkflow.html 

Agent-based 

Resource 

Management 

System, 

Performance 

Analysis and 

Characterize 

Environment 

(PACE) 

Parallel 

Systems (e.g. 

MPI and 

PVM) 

MPI and PVM 

based 

components 

Not yet available 

in public  

Table 1. Summary of Grid Workflow Management Projects. 
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Name Organization  Prerequisite Grid 

Integration  

Applications Availability 

Toolkit,  Titan 

 

Unicore 

[11]  

Collaboration 

between German 

research 

institutions and 

industries 

http://www.unicore

.org/ 

 

Unicore 

middleware 

Unicore Computational-

intensive and 

MPI components 

Community  

Source License  

Gridbus 

workflow 

[144] 

The University of 

Melbourne, 

Australia. 

http://www.gridbus

.org 

Globus 

Toolkit 

GT2 Computational-

and Data-

intensive  

GPL 

 

Askalon 

[49] 

 

University of 

Innsbruck 

http://dps.uibk.ac.at

/askalon 

 

 

Globus 

Toolkit 

 

GT2, GT4, 

WSRF, Web 

services 

 

Performance- 

oriented 

applications 

 

GTPL 

Karajan 

[76] 

Argonne National 

Laboratory 

http://www.cogkit.

org 

Java 1.4 GT2, GT3, 

GT4, Condor, 

runtime exec, 

ssh, 

WebDAV 

 

Those required to 

access Grid 

middleware  

GPTL 

Kepler 

[12] 

A cross-project 

collaboration. 

http://kepler-

project.org/ 

Java Globus, 

Storage 

Resource 

Broker(SRB), 

EcoGrid, 

Web services 

Scientific 

workflow 

applications 

UC Berkeley 

License 

 

 

 

Project 

Name 

Structure Model Composition 

Systems 

QoS Constraints 

DAGMan DAG Abstract User-directed 

• Language-based 

User specified rank 

expression for 

desired resources 

 

Pegasus DAG Abstract User-directed 

• Language-based  

Automatic 

 

N/A 

Triana  Non-DAG Abstract User-directed 

• Graph-based  

 

N/A 

 

ICENI Non-DAG Abstract User-directed 

• Language-based  

• Graph-based 

Metrics specified by 

users 

Table 2. Workflow Design Taxonomy Mapping. 
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Project 

Name 

Structure Model Composition 

Systems 

QoS Constraints 

Taverna DAG 

 

Abstract/

Concrete 

User-directed  

• Language-based   

• Graph-based 

 

N/A 

GridAnt Non-DAG  Concrete User-directed 

• Language-based 

 

N/A 

 

GrADS DAG Abstract User-directed 

• Language-based 

Estimated 

application 

execution time 

 

GridFlow DAG Abstract User-directed 

• Graph-based 

• Language-based 

 

Application 

execution time 

 

Unicore 

  

Non-DAG Concrete User-directed 

• Graph-based 

 

N/A 

 

Gridbus 

workflow 

DAG Abstract/

Concrete 

User-directed 

• Language-based 

 

Deadline, Cost 

minimisation 

 

Askalon Non-DAG Abstract User-directed 

• Graph-based 

• Language-based 

 

Constrains and 

properties specified 

by users or pre-

defined 

 

Karajan Non-DAG Abstract User-directed 

• Language-based 

• Graph-based 

 

N/A 

Kepler Non-DAG Abstract/

Concrete 

User-directed 

• Graph-based 

N/A 

 

 

 

Project 

Name 

Architecture Decision 

Making 

Planning 

Scheme 

Strategies Performance 

Estimation 

DAGMan Centralized Local Just in-time Performance-

driven 

 

N/A 

Pegasus Centralized Local/ 

Global 

User-directed/ 

Just in-time 

 

Performance-

driven 

Historical Data, 

Analytical modeling 

Triana  Decentralized Local Just in-time Performance-

driven 

N/A 

 

ICENI Centralized Global Prediction-

based 

Performance 

& Market-

driven 

 

Historical Data 

Taverna Centralized Local Just in-time Performance-

driven 

 

N/A 

 

GridAnt Centralized User- User-directed User-defined* N/A 

Table 3. Workflow Scheduling Taxonomy Mapping. 
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Project 

Name 

Architecture Decision 

Making 

Planning 

Scheme 

Strategies Performance 

Estimation 

defined*  

 

GrADS Centralized Local/ 

Global 

Prediction-

based 

Performance-

driven  

 

Historical data 

(empirical) , 

Analytical modeling 

 

GridFlow Hierarchical Local Simulation-

based 

Performance-

driven 

 

Analytical modeling 

Unicore  

 

 

Centralized User-

defined* 

User-directed User-defined* N/A 

Gridbus 

Workflow 

Hierarchical Local User-directed 

Just in-time 

 

Market-driven Historical data 

(empirical) 

Askalon Decentralized Global Just in-time/ 

Prediction-

based 

Performance 

& Market-

driven 

 

Analytical modeling, 

Historical data 

Karajan  Centralized User-

defined* 

 

User-defined* User-defined* N/A 

Kepler Centralized User-

defined* 

User-defined* User-defined* N/A 

*user-defined - the architecture of the system has been explicitly designed for user extension.    

 

 

 

Project 

Name 

Information Retrieval Fault-tolerance Data 

Movement 

DAGMan Resource information is retrieved by 

Condor Matchmaker that manages 

resource and task info advertisement 

and notification. 

Task Level 

• Migration 

• Retrying 

Workflow Level  

• Rescue workflow  

 

User-

directed 

Pegasus Resource information retrieved 

through Globus MDS and RLS. 

Application component information 

is retrieved from the GriPhyN 

Transformation Catalog. 

 

Based on DAGMan Mediated 

Triana Based on GAT protocol 

 

Based on GAT manger Peer-to-Peer 

ICENI Application component information 

is retrieved by the component 

metadata service and performance 

repository service. 

 

Based on middleware Mediated 

Taverna Service information is retrieved 

through DAML-S web service 

ontology, domain ontology 

information service, and UDDI.  

 

Task Level  

• Retry 

• Alternate Resource 

 

Centralized 

Table 4. Information Retrieval, Fault-tolerance and Data Movement Taxonomy Mapping. 
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Project 

Name 

Information Retrieval Fault-tolerance Data 

Movement 

GridAnt Resource information is retrieved 

through Globus MDS. 

User-defined* User-

directed 

 

GrADS Resource information is retrieved 

through Globus MDS and GrADS 

information service (GIS). Dynamic 

information is retrieved by NWS. 

Autopilot is used for provide 

performance contract information. 

 

Task Level in rescheduling 

work in GrADS, but not in 

workflows. 

Peer-to-Peer 

GridFlow Resource information is retrieved 

through Titan  

Task Level 

• Alternate resource 

 

Peer-to-Peer 

Unicore 

 

Unicore information service Based on Unicore 

middleware 

 

Mediated 

Gridbus 

workflow 

Resource information is retrieved 

through the Grid Market Directory  

 

Task Level 

• Alternate resource 

Centralized 

Askalon Static information 

• Infrastructure-related 

• Configuration-related 

• QoS-related 

Dynamic information 

• Resource-related 

• Execution-related 

 

Task Level 

• Retry 

• Alternate resource 

Workflow level 

• Rescue workflow 

 

Centralized 

User-

directed 

 

Karajan User-defined* Task Level 

• Retry 

• Alternate resource 

Workflow Level 

• User-defined exception 

handling 

 

User-

directed 

Kepler User-defined* Task Level 

• Alternative resource 

Workflow Level 

• User-defined exception 

handling 

• Workflow rescue 

Centralized 

Mediated 

Peer-to-Peer 

*user-defined - the architecture of the system has been explicitly designed for user extension.    

          

        

3.1 Condor DAGMan 

 

Condor [81][120][124] is a specialized resource management system (RMS) developed at the University of 

Wisconsin-Madison for compute-intensive jobs. Condor provides a High Throughput Computing (HTC) 

environment based on large collections of distributed computing resources ranging from desktop 

workstations to super computers. Condor-G, a component within Condor, utilizes Globus GRAM serving 

as a uniform interface to heterogeneous batch systems, thus enabling large scale computational Grids. 

Matchmaking within Condor, matches jobs and available resources according to their job and resource 

classified advertisement. When more than one resource satisfies the job requirement, the resource with 

higher value of rank expression, which expresses the desirability of a match, is preferred. 
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The Directed Acyclic Graph Manager (DAGMan) [36][120] is a meta-scheduler for Condor jobs. While 

Condor aims to discover available machines for the execution of jobs, DAGMan handles the dependencies 

between the jobs.  DAGMan uses DAG as the data structure to represent job dependencies. Each job is a 

node in the graph and the edges identify their dependencies. Each node can have any number of “parent” or 

“children” nodes. Children cannot run until their parents have completed. Cycles, where two jobs are both 

descended from one another, are prohibited, because it would lead to deadlock. DAGMan does not support 

automatic intermediate data movement, so users have to specify data movement transfer through pre-

processing and post-processing commands associated with processing job.  

 

The individual job execution is managed by Condor scheduler. So if a job fails due to the nature of the 

distributed system, such as loss of network connection, it will be recovered by Condor while DAGMan is 

unaware of such failures. However, DAGMan is responsible for reporting errors for the set of submitted 

jobs, and generates a rescue DAG. In the case of a job failure, the remainder of the DAG continues until no 

more progress can be made. A failed node can be retried a configurable number of times. The rescue DAG 

indicates the uncompleted portions of the DAG with detail of failures. Users can correct the errors of failed 

jobs and resubmit the rescue DAG.  

 

3.2 Pegasus in GriPhyN 

 

GriPhyN [61] aims to support large-scale data management in physics experiments such as high-energy 

physics, astronomy, and gravitational wave physics. Pegasus [40][41][42] (Planning for Execution in Grids) 

is a workflow manger in GriPhyN developed by the University of Southern California. 

 

Pegasus performs a mapping from an abstract workflow to the set of available Grid resources, and 

generates an executable workflow. An abstract workflow can be constructed by querying Chimera [53], a 

virtual data system, or provided by users in DAX (DAG XML description). An abstract workflow describes 

the computation in terms of logical files and logical application components and indicates their 

dependencies in the form of Directed Acyclic Graph (DAG). Before mapping, Pegasus reduces the abstract 

workflow by reusing a materialized dataset which is produced by other users within a VO. Reduction 

optimization assumes that it is more costly to produce a dataset than access the processing results. The 

reduction algorithm removes any antecedents of the redundant jobs that do not have any unmaterialized 

descendents in order to reduce the complexity of the executable workflow.  

 

Pegasus consults various Grid information services to find the resources, software, and data that are used in 

the workflow. A Replica Location Service (RLS) [30] and Transformation Catalog (TC) [39] are used to 

locate the replicas of the required data, and to find the location of the logical application components 

respectively. Pegasus also queries Globus Monitoring and Discovery Service (MDS) [34] to find available 

resources and their characteristics.  

 

There are two methods used in Pegasus for resource selection, one is through random allocation, the other 

is through a performance prediction approach. In the latter approach, Pegasus interacts with Prophesy 

[68][140], which serves as an infrastructure for performance analysis and modeling of parallel and 

distributed applications. Prophesy is used to predict the best site to execute an application component by 

using performance historical data. Prophesy gathers and stores the performance data of every application. 

The performance information can provide insight into the performance relationship between the application 

and hardware and between the application, compilers, and run-time systems. An analytical model is 

produced based on the performance data and is used by the prediction engine to predict the performance of 

the application on different platforms. It is required that Pegasus send the request associated with 

information such as the component name, the semantic parameter names and their values, and the list of 

available resources. The ranking of the given resources is returned by Prophesy after the query is received.   

 

For ease of use, Pegasus is able to generate a workflow from a metadata description of the desired data 

product with the aid of artificial intelligence planning techniques. Although, the workflow execution of 

Pegasus is based on static planning and its executable workflow is transformed into Condor jobs for 
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execution management by Condor DAGMan, it has been recently extended to support just in-time 

scheduling [42] and pluggable task scheduling strategies. 

 

3.3 Triana  

 

Triana [122][123] is a visual workflow-oriented data analysis environment developed at Cardiff University. 

In 2002, Triana was extended to implement a consumer Grid [122] by using a peer-to-peer approach.  

Recently, Triana has been redesigned and integrated with Grids via GridLab GAT (Grid Application 

Toolkit) interface [10].  GAT defines a high level API for core Grid service access through JXTA [70], 

Web services [133], and OGSA [54][126]. 

 

Triana provides a visual programming interface with functionality represented by units. Applications are 

written by dragging the required units onto the workplace and connecting them to construct a workflow. 

Apart from many implemented tool units, Triana also provides a custom user interface to allow users to 

build their own units. Several control units (e.g. loop) and logic units (e.g. if) are also provided for users to 

control the logic of workflow execution. Since control and logic units are implemented as a standard Triana 

unit, it is easy to introduce new flow patterns. Interconnected units can also be grouped into a group unit, 

which has the same properties as normal unit.  

 

Triana clients such as Triana GUI can log into a Triana Controlling Service (TCS), remotely build and run 

a workflow and then visualize the result on their device (e.g. PC, PDA, etc). Each TCS interacts with the 

Triana engine and every engine provides a service and is capable of executing complete or partial task-

graphs locally, or by distributing the code to other servers based on the specified distribution policy for the 

supplied task-graph. The distribution policy is based on the concept of group units and two distribution 

policies have been implemented, namely parallel and peer-to-peer. Both policies distribute every unit in the 

group to separated hosts, however while the peer-to-peer mechanism relies on intermediate data being 

passed between hosts, there is no such host-based communication with the parallel policy. Since a 

distributed task-graph is not fixed to a specific set of resources, it can be dynamically allocated to available 

services in the most effective way. 

 

3.4 Workflow Management in ICENI 

 
The ICENI (Imperial College e-Science Network Infrastructure) [93][94] developed at London e-Science 

Centre provides component-based Grid middleware. Within ICENI, users construct an abstract workflow, 

which is a collection of components, and then submit this to ICENI environment for execution.  

 

Each ICENI component is described in terms of meaning, control flow and implementation. The workflow 

components are primarily composed based on a spatial view, in which all units are represented concurrently, 

with details of how they relate and interact with each other. Then a temporal view is derived from the 

spatial view by the system. In the temporal view, workflow information is attached to each component that 

consists of a graph in which the directed arcs contain the partnership according to the temporal dependence. 

Within ICENI, the workflow model is similar to that of the YAWL (Yet Another Workflow Language) [4], 

although simplified in certain respects. The workflow language includes all basic workflow structure such 

as sequence, parallelism, choice and iteration. 

  

The scheduling service [93][142][143] within ICENI is responsible for concretizing the abstract workflow. 

The scheduling task includes matching component meaning with component implementation and mapping 

these qualified components onto a suitable subset of the available resources. Several scheduling algorithms 

used to determine resource mapping have been implemented. They include random, best of n random, 

simulated annealing and game theory. Most schedulers implemented within ICENI aim to provide 

approximate optimal solutions to map the abstract workflow to a combination of component 

implementations and resources in terms of execution time and cost. The schedulers take into account all 

components in applications rather than standalone components. The scheduling framework also allows 

third-party scheduling algorithms to be plugged in.  
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ICENI has developed a performance repository system [91] which is able to monitor running applications 

and obtain and store performance data for the components within the applications. This data is stored 

within a repository with meta-data about the resource the component was executed on, the implementation 

of the component used, and the number of other components concurrently running on the same resource. 

This data can be used by schedulers for future runs of applications to estimate the execution times of each 

component within the workflow.  

 

Two scheduling schemes [93] are considered within ICENI, namely lazy scheduling and advanced 

reservation. The metadata of the component implementation indicates which scheme the component can 

benefit from. Non-reservation component is scheduled to a resource just before it is required, while 

reservation component has been allocated to a resource and has made a reservation in advance. The 

schedulers can interrogate the performance repository to predict execution in order to produce accurate 

reservation. The reservation negotiation protocol is based on WS-Agreement [60]. 

 

3.5 Taverna in 
my

Grid 

 

Taverna [100] is the workflow management system of the 
my

Grid [118] project, which aims to exploit Grid 

technology to develop high-level middleware for supporting personalized in silico experiments in biology.  

Taverna is a collaboration between several European universities, institutes and industries. The purpose of 

Taverna is used to assist scientists with the development and execution of bioinformatics workflows on the 

Grid. Taverna provides data models, enactor task extensions, and graphical user interfaces. FreeFluo [55] is 

also integrated into Taverna as a workflow enactment engine to transfer intermediate data and invoke 

services.  

 

In Taverna, data models can be represented in either a graphical format or in an XML based language 

called Simple Conceptual Unified Flow Language (SCUFL). The data model consists of inputs, outputs, 

processors, data flow and control flow. In addition to specifying execution order, the control flow can also 

be trigged by state transitions during the execution of parent processors. Compared to other workflow 

languages, such as the Business Process Execution Language for Web Services (BPEL4WS) [14] , SCUFL 

allows implicit iteration over incoming data sets based on a specified strategy. At the execution level, the 

workflow enactor also provides a multithreading mechanism to speed up the iteration process. Users are 

allowed to set the Thread property to specify how many concurrent instances will send parallel requests to 

the iteration processor. It is especially suitable for services that are capable of handling significant 

simultaneous processing, for example, a service that is backed by a cluster. It also can reduce service 

waiting time since workflow engine can send the next input data at the same time as the service is working 

on the current input.  

 

Taverna also provides a user-friendly multi-window environment for users to manipulate workflows, 

validate and select available resources, and then execute and monitor these workflows. The enactment 

status panel [121] of Taverna shows the current progress of a workflow invocation. It also allows the users 

to browse the intermediate and final results. Through the enactment panel, users can handle storage of those 

results on local or remote data stores in a variety of formats.  

 

Fault tolerance [121] in the workflow management of 
my

Grid is achieved by setting configuration for each 

processor in the workflow, for example, the number of retries, time delay and alternate processors. It also 

allows users to specify the critical level for faults on each processor. If the processor is set as Critical, after 

all retries and alternates have failed, entire workflow execution will be terminated, otherwise, the workflow 

will continue but children nodes of the failed processor will never be invoked.  

 

 
my

Grid follows service-oriented grid architecture and supports several different types of services within the 

workflow management system, including WSDL-based [138] single operation web services, soaplab bio-

services [111] and local services such as programs coded as java classes. In addition, information services 

such as UDDI (the Universal Description, Discovery and Integration) [127] and ontology directory [139] 

are adopted for service discovery.  
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3.6 GridAnt 

 

The GridAnt [13][75] is an extensible client-side workflow management system developed by Argonne 

National Laboratory. It has been designed for Grid end-users as a convenient tool to express and control the 

execution sequence without having any expertise in sophisticated workflow systems. GridAnt focuses on 

distributed process management rather than the aggregation of services which is the concern of most other 

Grid-enabled workflow frameworks.  

 

GridAnt consists of four major components, namely workflow engine, run-time environment, workflow 

vocabulary and workflow monitoring. The workflow engine is the central controller that handles task 

dependencies, failure recoveries, performance analysis, and process synchronization. GridAnt workflow 

engine extends Ant [15], an existing commodity tool for controlling build process in Java, by adding 

additional components to support workflow orchestration and composition. GridAnt also provides an 

environment for inter-task communication, so that individual GridAnt tasks can read and write intermediate 

data by using a globally accessible whiteboard-style communication model. Several important constructs 

such as constants, arithmetic expressions, global variables, array references, and literals are supported by 

the run-time environment. GridAnt extends Ant’s vocabulary in the Grid domain with the addition of the 

tags such as grid-copy, grid-authenticate and grid-query. These new tags are used by users to predefine the 

Grid tasks and construct complex workflows at compile time. It uses a control construct provided by Ant 

container for expressing parallel and sequential tasks.  Furthermore, users are allowed to monitor the 

progress of the execution by means of graphical visualization tool.    

 

In addition to mapping complex client-side workflows, GridAnt can be used for testing the functionality of 

different Grid services. It has been developed to support version 2 and version 3 of the Globus toolkit [59] 

by using the Java CoG kit [74]. It has been applied for Position-Resolved Diffraction [13], which is a new 

experimental technique for the study of nanoscale structures as part of the Argonne National Laboratory’s 

advanced analytical electron microscope. 

 

3.7 Workflow management in GrADS 

 

The Grid Application Development Software (GrADS) project [18] aims to provide programming tools and 

execution environments for ordinary scientific users to develop, execute, and tune applications on the Grid. 

GrADS is a collaboration between several American Universities. GrADS supports application 

development either by assembling domain-specific components from a high-level toolkit or by creating a 

module by relatively low-level (e.g., MPI ) code [32].   

 

GrADS provides application-level scheduling to map workflow application tasks to a set of resources. New 

Grid scheduling and rescheduling methods [32] are introduced in GrADS. These scheduling methods are 

guided by an objective function to minimize the overall job completion time (makespan) of the workflow 

application. The scheduler obtains resource information by using services such as MDS [109] and NWS 

[136] and locates necessary software on the scheduled node by query GrADS Information Service (GIS). 

The workflow scheduler ranks each qualified resource for each application component. A rank value is 

calculated by using “a weighted sum of the expected execution time on the resource and the expected cost 

of data movement for the component.” After ranking, a performance matrix is constructed and used by the 

scheduling heuristics to obtain a mapping of components onto resources. Three heuristics have been 

applied in GrADS; those are Min-Min, Max-Min, and Sufferage heuristics [87].  

 

GrADS has built up an architecture-independent model of the workflow component from individual 

component models. It employs analytical models that are constructed semi-automatically from empirical 

models (historical data/sample execution data), in order to estimate the performance of a workflow 

component on a single Grid node. It uses hardware performance counters to collect operation counts from 

several executions of the workflow components with different, small-size input problems, and then it 

performs a least-squares fit to the data to construct computational models.  In addition, GrADS reuses 

distance data on small inputs to predict the faction of cache hits and misses on the given data and cache 

configuration by its memory-hierarchy performance models.  
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GrADS utilizes Autopilot [107] to monitor performance of the agreement between the application demands 

and resource capabilities. Once the contract is violated, the rescheduler [32] of the GrADS takes corrective 

actions. It has been implemented using two rescheduling approaches for MPI applications, the stop/restart 

approach and process swapping. In the former approach, an executing application component is suspended 

and migrated to a new resource if better resources are found for improving the execution performance [129]. 

As a migration event can involve large data transfers, expensive startup costs and significant application 

code modifications, process swapping provides a lightweight, but less flexible, alternative approach. In 

process swapping more machines than will actually be used for the computation are launched for an MPI 

application component, and slower machines in the active set are swapped with faster machines in the 

inactive set periodically, according to the performance of machines. 

 

3.8 GridFlow  

 

GridFlow [25] is a Grid workflow management system developed at the University of Warwick. This work 

is built on the top of an agent-based resource management system for Grid computing (ARMS) [24]. Rather 

than focusing on workflow specification and the communication protocol, GridFlow is more concerned 

about service-level scheduling and workflow management.  

 

There are three layers of Grid resource management within the GridFlow system: the Grid resource, the 

local Grid and the global Grid. A Grid resource is simply just a particular grid resource; local Grid consists 

of multiple Grid resources that belong to one organization; and a global Grid consists of all local Grids. 

Global Grid also provides a portal for compose the workflow.  

 

A workflow in GridFlow is represented as a flow of several different activities, each activity represented by 

a sub-workflow. Each sub-workflow is a flow of closely related tasks that is to be executed in a local grid. 

A portal has been developed by GridFlow as graphical user interface for users to compose workflow 

elements.   

 

The workflow management within GridFlow is conducted by a hierarchical scheduling system including 

global Grid workflow manager and local Grid sub-workflow scheduling. Global grid workflow manager 

receives requests from the GridFlow portal with the workflow description in the format of XML, and then 

simulates workflow execution to find a near-optimal schedule. After the users accept the simulated result, 

GridFlow schedules the workflow onto different local Grids through ARMS. Within ARMS, each agent 

represents a local Grid at a global level of Grid resource management, and conducts local Grid sub-

workflow scheduling. In contrast to the global Grid workflow management, the local Grid schedulers 

handle conflicts since scheduled sub-workflows may belong to different workflows.   

 

ARMS has integrated Titan [116], which utilizes performance data obtained from PACE [98], a toolset for 

resource performance and usage analysis, with iterative heuristic algorithms to minimize the makespan and 

idle time of a grid resource. PACE can exact control flow, and use an analytical model approach based on 

queuing theory, to predict application performance on a given set of resources such as time, scalability and 

system resource usage. Titan also provides Grid resource information.  

 

3.9 Workflow Management in Unicore Plus 

 

Unicore plus [128] provides seamless and secure access to distributed resources of the German high 

performance computing centers. Unicore plus is a follow-on project of Unicore (Uniform Interface to 

Computing Resources) [11], started in 1997 to improve uniform interfaces to distributed High Performance 

Computing and data resources using the mechanisms of the World Wide Web. Unicore plus provides a 

programming environment for users to design and execute job flow.  

 

Within Unicore, one job or job group that can be executed on any Unicore site may contains other jobs 

and/or job groups. The original Unicore job model supports jobs that are constructed as a set of directed 

acyclic graphs with temporal dependencies. Since Unicore version 4, advanced flow controls have been 

added, which include conditional execution (e.g. if-then-else), repeated execution (e.g. do-n), conditional 

repeated execution (e.g. do-repeat), and conditional suspend action (e.g. hold-job). In addition, three types 
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of run-time conditions are implemented for supporting conditional checking; these are based on the return 

code of a previous executed task, existence or properties of a file and whether a given time and date have 

passed.  

 

Unicore plus provides graphical tools that allow users to create a job flow and convert it into an Abstract 

Job Object (AJO) which is a serialized java object. The AJO is submitted from a user client to a Unicore 

server. The server translates the job specification into a number of batch jobs and dispatches them to the 

target resource. The server also makes sure that a successor is executed if its predecessors are finished and 

all necessary data is available at the executing site.  

 

Unicore allows users to specify jobs and different parts of job group onto multiple resources. The output of 

individual jobs may be needed by its successors.  Therefore, a temporary Unicore space is created for each 

job group for transferring data sets. Unicore also allows users to explicitly specify the transfer function as a 

task through GUI; it is also able to perform the necessary data movement function without user intervention.  

 

3.10 Workflow Management in Gridbus 

 

The Gridbus Toolkit [23] developed by the University of Melbourne provides Grid technologies for 

service-oriented utility computing. Its architecture is driven by the requirements of Grid economy [22]. A 

Grid economy mechanism has been proposed as a technique for efficient management of distributed 

resources.  It helps in efficient allocation of resources to different users and applications based on their QoS 

requirements in addition to regulation of the supply and demand for Grid resources. 

 

The workflow management in Gridbus [144] provides a simple XML-based workflow language for users to 

define their tasks and dependencies. The workflow description language of Gridbus is aimed towards 

enabling the expression of parameter sweep tasks [8] and users’ QoS requirements [146].  

 

The workflow engine of Gridbus provides a hierarchical scheduling architecture to adapt to heterogeneous 

and dynamic Grid environments. Within the workflow execution engine, the schedules of the workflow 

tasks are driven by the events by using the tuple-space model [56]. An event-driven mechanism with 

subscription-notification approach makes the workflow execution loosely-coupled and flexible. The system 

also supports just in-time scheduling, allowing scheduling decision to be made at the time of task execution. 

The scheduler can also reschedule failed tasks to an alternative resource. In addition, Grid Market Directory 

(GMD) [145] is utilized by the workflow schedulers for run-time resource discovery.   

 

In contrast to other workflow management systems, the Gridbus workflow system emphasizes on the use of 

market-based principles and algorithms for resource allocation and scheduling applications in global Grid 

environments. It has been targeted to support applications in both scientific and business domains such as 

natural language processing and molecular modeling for drug discovery.  

 

3.11 Askalon 

 

Askalon [49] is a Grid application development and computing environment developed by the University 

of Innsbruck, Austria.  The main objective of Askalon is to simplify the development and optimization of 

mostly Grid workflow applications that can harness the power of Grid computing. 

  

Askalon comes with two separate composition systems, AGWL (Abstract Grid Workflow Language) [47] 

and Teuta [48], that support the development of Grid workflow applications. AGWL is an XML-based 

language. It provides a rich set of constructs to express sequence, parallelism, choice, and iteration 

workflow structure. In addition, programmers can specify high-level constraints and properties defined 

over functional and non-functional parameters for tasks and their dependencies which can be useful for a 

runtime system to optimize the workflow execution. Teuta supports the graphical specification of Grid 

workflow applications based on the UML activity diagram which is a graphical interface to AGWL. 

  

Askalon provides a new hybrid approach for scheduling workflow applications on the Grid through 

dynamic monitoring and steering combined with a static optimization. Static scheduling maps entire 
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workflows onto the Grid using genetic algorithms. A problem-independent objective function design allows 

to plug-in a variety of optimization metrics such as the execution time, efficiency, economical cost, or any 

user-defined QoS parameter. A dynamic scheduling algorithm takes into consideration the dynamic nature 

of the Grid resources such as machine crashes or external CPU and network load. Performance contracts 

are defined for every task and monitor whether tasks execute properly or whether they should be migrated. 

Askalon develops a fault tolerant execution engine that supports reliable workflow execution in the 

presence of resource failures through checkpointing and migration techniques. 

  

In order to provide automatic workflow orchestration, Askalon Grid Resource Management (GridARM) 

provides a distributed GT4-based registry to map generic or domain specific tasks to their implementations.  

Askalon also includes automatic search for performance problems and faults in Grid infrastructures and 

applications. The monitoring and performance analysis component provides static information of Grid 

infrastructure and dynamic information of computational resources, networks, and applications. Dynamic 

information of workflow-based applications is provided for the entire workflow as well as for invoked 

applications called within tasks. The performance of workflow components is estimated based on a training 

phase which measures the actual execution time of tasks for different loads and problem sizes on a variety 

of Grid sites.  The performance estimation of the workflow is conducted based on a combination of 

historical data obtained from a training phase and analytical modeling. 

 

3.12 Karajan 

 

Karajan [76][77], developed by Argonne National Laboratory, aims to provide an integrated approach of 

exposing workflow to the Grid community. It is an extensible workflow framework and can be easily 

utilized by third parties to provide workflow solutions for a variety of users.  It is derived from GridAnt and 

provides additional capabilities such as scalability, workflow structure and error handling.   

 

Karajan is part of Java CoG Kit. Java CoG Kit is based on modular design and provides mechanisms for 

fast application development and easy integration of the variety of Grid middleware. It provides a number 

of programming abstractions for job executions and file transfers. The concept of Grid providers is 

introduced to facilitate different middleware to be used as part of an instantiation of Grid abstractions. As a 

result, it is easy to integrate Karajan to any middleware. To date, it has been integrated into various 

versions of Globus, Condor, runtime exec, ssh, and some data transfer techniques such as WebDAV [31] 

and scp. Karajan leverages lower-level programming abstractions in Java CoG Kit to access the Grid, and 

at the same time it provides programming interfaces for higher level applications such as workflow 

schedulers and application portlets to develop users’ strategies. 

 

In addition to sequence and parallelism, Karajan supports choices and loops of workflow structures. It also 

provides a user friendly XML-based workflow language. Elements used for the description of workflow 

tasks are user-definable. Thus, the user can define names and parameters along with annotations and 

descriptions for a new element. A number of standard operators including mathematical and Boolean 

operators are defined for integration within execution control statements. It also provides advanced data 

structures such as list, range, and map (or hash tables) for repetitive tasks (e.g. parameter studies) as part of 

the workflow.    

 

A number of fault handling methods are supported in Karajan. Error handling allows users to integrate 

strategies for errors and exceptions into the workflow. Checkpointing enables users to store intermediate 

states of the workflow execution for later roll back when a problem occurs.  

 

3.13 Kepler 
 

Kepler [12][85] is one of the popular workflow systems with advanced features for composing scientific 

applications. It is derived from Ptolemy II system [82] and currently under development across a number of 

scientific data management projects. In addition to a user-friendly graphical user-interface and an 

extendable open source platform, Kepler also inherits the actor-oriented feature from Ptolemy II. It models 

a workflow system as a composition of independent components (actors) that communicate through well-

defined interfaces. An actor is an encapsulation of parameterized operations performed on input to produce 
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output data. An execution model of a workflow, which can be defined in a director object, imposes an 

execution order and communication mechanisms on the usable actors of the workflow. This modular design 

approach allows different execution models or machineries to be implemented and easily plugged into 

workflows without changing any of the components of workflows.   

 

Kepler has been extended to support seamless access to remote resources and services. A web service 

HARVESTER component can retrieve all service description files in a web page or service repository to 

create instantiations of web services actors in the user’s local actor library. Each web services actor can be 

instantiated for any particular operation specified in its service description. A number of fault-tolerant 

methods have been developed to make workflows with web services more reliable. Instead of associating a 

service operation with a fixed URL, a list of services is allowed to provide the alternative invocation during 

service failure. It is also able to produce partial results even when the entire workflow fails. Advanced 

failure handling can also be supported through extensions of exception-catching actors. In addition, Kepler 

has defined a set of Grid actors for access authentication, file copy, job execution, job monitoring, 

execution reporting, storage access, data discovery, and service discovery. 

 

 

4. SUMMARY AND DISCUSSION 

 

We have presented a taxonomy for Grid workflow management systems. The taxonomy focuses on 

workflow design, workflow scheduling, fault management and data movement. We also surveyed some 

workflow management systems for Grid computing and classify them into different categories using the 

taxonomy. This paper thus helps to understand key workflow management approaches and identify 

possible future enhancements.  

 

Many Grid workflow-enabled systems have developed graph-based editing environments. They allow users 

to compose the workflow by dragging and dropping components on a composition panel. A workflow 

abstract specification or concrete specification is then generated by these visual tools and passed to the 

workflow enactment engine. These processes are transparent to users for better usability. Currently, only 

Pegasus supports automatic workflow composition. In order to support the automatic composition, catalogs 

with rich information about application components and services need to be addressed. Besides GriPhyN 

Chimera system and UDDI (Universal Description, Discovery and Integration) directory service for web 

services discovery, many efforts from semantic Web such as DAML+OIL ontology [67] can be used for 

providing accurate description and flexible discovery of application components and services.   

 

Most of the Grid workflow projects discussed in this paper have their own graphical workflow modeling 

and language. Obviously, the lack of standardized syntax and semantic description for workflow modeling 

and language results in many replicated works. More effort is thus needed towards workflow modeling 

standardization. Even though there are some proposed workflow languages for web services such as 

BPEL4WS, they are still not sufficient due to lack of implementation, levels of abstraction and limited 

supported services [9].  

 

Quality of Service (QoS) issues have not been addressed very well in most Grid workflow management 

systems due to their focus on the use of system centric policies in resource allocation. However, when 

workflow management systems are used in commercial or production environments, supporting QoS at 

both specification and execution level becomes increasingly critical. At the specification level, workflow 

languages need to allow users to express their QoS requirements. At the execution level, the workflow 

scheduling must be able to map the workflow onto Grid resources to meet users’ QoS requirements.  

Therefore, the role of market-driven strategies will become increasingly important, currently being ignored 

in most Grid workflow management systems. Trust-based scheduling is another approach to improve QoS 

in open distributed systems such as Grid and peer-to-peer; however, it has not been addressed very well in 

the context of workflow management.   

 

It is impossible to make an optimal scheduler without knowledge of estimated time of task execution.  

Several performance information services are utilized in Grid workflow projects to predict performance 

prediction. One example is PACE employed in GridFlow project. It uses analytical model to predict 
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application performance, but the current implementation is only adapted to MPI program.  Prophesy used 

by Pegasus uses historical performance database to gain insight into the relationship between applications 

and resources in order to predict the performance of the applications on a given set of resources. Similarly, 

ICENI developed a performance repository system which is able to collect performance data for application 

components. GrADS have developed two analytical models for their GrADS programs. 

 

Given the dynamic nature of Grid environments, fault tolerance should be fully supported by Grid 

workflow management systems. However, most fault handling techniques have not been developed or 

implemented in many Grid workflow systems, especially at the workflow execution level. It is hard for a 

workflow management system to survive in real Grid environments without robust fault handling 

techniques.  
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