
 1

A Taxonomy of Workflow Management Systems for Grid Computing

Jia Yu and Rajkumar Buyya

1

Grid Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

http://www.gridbus.org

ABSTRACT

With the advent of Grid and application technologies, scientists and engineers are building more and more

complex applications to manage and process large data sets, and execute scientific experiments on

distributed resources. Such application scenarios require means for composing and executing complex

workflows. Therefore, many efforts have been made towards the development of workflow management

systems for Grid computing. In this paper, we propose a taxonomy that characterizes and classifies various

approaches for building and executing workflows on Grids. We also survey several representative Grid

workflow systems developed by various projects world-wide to demonstrate the comprehensiveness of the

taxonomy. The taxonomy not only highlights the design and engineering similarities and differences of

state-of-the-art in Grid workflow systems, but also identifies the areas that need further research.

Keywords: grid computing, resource management, scheduling, taxonomy, workflow management.

1. INTRODUCTION

Grids [51] have emerged as a global cyber-infrastructure for the next-generation of e-Science applications

by integrating large-scale, distributed and heterogeneous resources. Scientific communities, such as high-

energy physics, gravitational-wave physics, geophysics, astronomy and bioinformatics, are utilizing Grids

to share, manage and process large data sets. In order to support complex scientific experiments, distributed

resources such as computational devices, data, applications, and scientific instruments need to be

orchestrated while managing the application workflow operations within Grid environments [92].

Workflow is concerned with the automation of procedures whereby files and data are passed between

participants according to a defined set of rules to achieve an overall goal [35]. A workflow management

system defines, manages and executes workflows on computing resources. Imposing the workflow

paradigm for application composition on Grids offers several advantages [117] such as:

• Ability to build dynamic applications which orchestrate distributed resources.

• Utilization of resources that are located in a particular domain to increase throughput or reduce

execution costs.

• Execution spanning multiple administrative domains to obtain specific processing capabilities.

• Integration of multiple teams involved in managing of different parts of the experiment workflow

– thus promoting inter-organizational collaborations.

Figure 1 shows the architecture and functionalities supported by various components of the Grid workflow

system based on the workflow reference model [35] proposed by Workflow Management Coalition (WfMC)

[137] in 1995. At the highest level, functions of Grid workflow management systems could be

characterized into build time functions and run time functions. The build-time functions are concerned with

defining, and modeling workflow tasks and their dependencies; while the run-time functions are concerned

with managing workflow executions and interactions with Grid resources for processing workflow

applications. Users interact with workflow modeling tools to generate a workflow specification, which is

submitted to a run-time service called the workflow enactment service for execution. Major functions

1
 Corresponding author, raj@cs.mu.oz.au

 2

provided by the workflow enactment service are scheduling, fault management and data movement. The

workflow enactment service may be built on the top of low level Grid middleware (e.g. Globus toolkit [59],

UNICORE [128] and Alchemi [86]), through which the workflow management system invokes services

provided by Grid resources. At both the build-time and run-time stages, the information about resources

and applications may need to be retrieved using Grid information services.

In the recent past, several Grid workflow systems have been proposed and developed for defining,

managing and executing scientific workflows. In order to enhance our understanding of the field, we

propose a taxonomy that primarily (a) captures architectural styles and (b) identifies design and

engineering similarities and differences between them. There are a number of proposed taxonomies for

distributed and heterogeneous computing such as [20][29][73][108]. However, none of these focuses on

distributed workflow managements. The taxonomy provides an in-depth understanding of building and

executing workflows on Grids. It compares different approaches and also helps users to decide on

minimum subset of features required for their systems.

The rest of the paper is organized as follows: Section 2 presents the taxonomy that classifies approaches

based on major functions and architectural styles of Grid workflow systems. In Section 3, we provide a

detailed survey of several selected Grid workflow systems and the mapping of the proposed taxonomy to

the systems. We conclude in Section 4 with a discussion and identification of areas that need further work.

2. TAXONOMY

The taxonomy characterizes and classifies approaches of workflow management in the context of Grid

computing. As shown in Figure 2, it consists of five elements of a Grid workflow management system: (a)

Grid Workflow Application Modeling

& Definition Tools

Grid Workflow

Specification

Grid Workflow Enactment Service

Grid Resources

Resource Info Service

Application Info Service

Build Time

Run Time

Grid Users

Workflow Design
& Definition

Workflow Execution

& Control

Interaction with Grid
resources

Grid Information Services

……

Interaction with
Information services

workflow change

Workflow Scheduling

Fault ManagementData Movement

Grid Middleware

Grid Workflow Application Modeling

& Definition Tools

Grid Workflow

Specification

Grid Workflow Enactment Service

Grid Resources

Resource Info Service

Application Info Service

Build Time

Run Time

Grid Users

Workflow Design
& Definition

Workflow Execution

& Control

Interaction with Grid
resources

Grid Information Services

……

Interaction with
Information services

workflow change

Workflow Scheduling

Fault ManagementData Movement

Grid Middleware

Figure 1. Grid Workflow Management System.

 3

workflow design, (b) information retrieval, (c) workflow scheduling, (d) fault tolerance and (e) data

movement. In this section, we look at each element and its taxonomy in detail.

2.1 Workflow Design

As shown in Figure 3, workflow design includes four key factors, namely (a) workflow structure, (b)

workflow model/specification, (c) workflow composition system, and (d) workflow QoS (Quality of

Service) constraints.

2.1.1 Workflow Structure

A workflow is composed by connecting multiple tasks according to their dependencies. The workflow

structure, also referred as workflow pattern [2][3][6], indicates the temporal relationship between these

tasks. Figure 4 shows the workflow structure taxonomy. In general, a workflow can be represented as a

Directed Acyclic Graph (DAG) [110] or a non-DAG.

In DAG-based workflow, workflow structure can be classified as sequence, parallelism, and choice.

Sequence is defined as an ordered series of tasks, with one task starting after a previous task has completed.

Parallelism represents tasks which are performed concurrently, rather than serially. In choice control

pattern, a task is selected to execute at run-time when its associated conditions are true.

In addition to all patterns contained in a DAG-based workflow, a non-DAG workflow also includes the

iteration structure in which sections of workflow tasks in an iteration block are allowed to be repeated.

Iteration is also known as loop or cycle. The iteration structure is quite frequently used in scientific

applications, where one or more tasks need to be executed repeatedly [91]. For example, in a promoter

identification workflow [85] as shown in Figure 5, step 5 to step 8 are executed iteratively to create and

refine a promoter model.

DAG Non-DAG

Workflow Structure

Sequence Choice Iteration Parallelism Sequence Choice Parallelism

Figure 4. Workflow Structure Taxonomy.

Figure 2. Elements of a Grid Workflow Management System.

Workflow

Design

Information

Retrieval

Workflow

Scheduling

Fault

Tolerance

Data

Movement

Grid Workflow Management System

 Workflow

Structure

Workflow

Composition System

Figure 3. Workflow Design Taxonomy.

 Workflow

Model/Specification
Workflow

QoS Constraints

Workflow Design

 4

These four types of workflow structure, namely sequence, parallelism, choice and iteration, can be used to

construct many complex workflows. Moreover, sub-workflows can also use these types of workflow

structure as building blocks to form a large-scale workflow.

2.1.2 Workflow Model/Specification

Workflow Model (also called workflow specification) defines a workflow including its task definition and

structure definition. As shown in Figure 6, there are two types of workflow models, namely abstract and

concrete. They are also referred to as abstract workflows and concrete workflows [40][42]. In some

literature (e.g. [84]), concrete models are referred to as executable workflows.

In an abstract model, a workflow is described in an abstract form in which the workflow is specified

without referring to specific Grid resources for task execution. An abstract model provides a flexible way

for users to define workflows without being concerned about low-level implementation details. Tasks in an

abstract model are portable and can be mapped onto any suitable Grid services at run-time by using suitable

discovery and mapping mechanisms. Using abstract models also eases the sharing of workflow descriptions

between Grid users [42]; in particular it benefits the participants of Virtual Organizations (VOs) [52].

In contrast, a concrete model binds workflow tasks to specific resources. In some cases, a concrete model

may include tasks acting as data movement to transfer data in and out of the computation and data

publication to publish newly derived data into VO [42]. In other situations, tasks in a concrete model may

also include necessary application movement to transfer computational code to a data site for large scale

data analysis.

Given the dynamic nature of the Grid environment, it is more suitable for users to define workflow

applications in abstract models. A full or partial concrete model can be generated just before or during

workflow execution according to the current status of resources. Additionally, in some systems [144], every

task in a workflow is concretized only at the time of task execution. However, concrete models may be

used by some end users who want to control the execution sequence [75].

Workflow Model/Specification

Concrete Abstract

Figure 6. Workflow Model Taxonomy.

MicroArray
analysis

Clusfavor
analysis

GenBank

sequence

retrieval

NCBI BLAST

search

Transfac
search

Promoter

Identification
Promoter

Model

generator

NCBI BLAST

search

new candidate target genes

Figure 5. Promoter Identification Workflow [85].

Step 1 Step 2
Step 3

Step 4

Step 5 Step 6 Step 7 Step 8

 5

2.1.3 Workflow Composition System

Workflow composition systems are designed for enabling users to assemble components into workflows.

They need to provide a high level view for the construction of Grid workflow applications and hide the

complexity of underlying Grid systems. Figure 7 shows the taxonomy for the workflow composition

systems. User-directed composition systems allow users to edit workflows directly, whereas automatic

composition systems generate workflows for users automatically. In general, users can use workflow

languages for language-based modeling and the tools for graph-based modeling to compose workflows.

Within language-based modeling, users may express workflow using a markup language such as Extensible

Markup Language (XML) [132] (e.g. GridAnt [75], WSFL [79], XLANG [125], BPEL4WS [14], W3C

XML-Pipeline language [135], and Gridbus Workflow [144]) or other formats (e.g. Condor DAGman

[120]). Language-based modeling may be convenient for skilled users, but they require users to memorize a

lot of language-specific syntax. In addition, it is impossible for users to express a complex and large

workflow by scripting workflow components manually. However, workflow languages are more

appropriate for sharing and manipulation, whereas the graphical representations are intuitive but they

require to be converted into other forms for manipulation. So in most Grid systems, workflow languages

are designed to bridge the gap between the graphical clients and the Grid workflow execution engine [62].

XML-based languages are used widely for workflow specification as it facilitates information description

in a nested structure. Moreover, many tools are provided to validate XML syntax and verify XML

documents against XML schema [134] or DTD (Document Type Definition) [132]. Furthermore, many

XML parsing tools (e.g. JDOM [69] and dom4j [44]) are widely available.

Graph-based modeling allows graphical definition of an arbitrary workflow through a few basic graph

elements. It allows users to work with a graphical representation of the workflow. Users can compose and

review a workflow by just clicking and dropping the components of interest. It avoids low-level details and

hence enables users to focus on higher levels of abstraction at application level [64]. The major modeling

approaches are Petri Nets [104], UML (Unified Modeling Language) [99] and user-defined component.

Graph-based modeling is preferred by users as opposed to language-based modeling.

Petri Nets are a special class of directed graphs that can model sequential, parallel, loops and conditional

execution of tasks [62][65]. They have been used in many workflow management systems such as Grid-

Flow [62], FlowManager [78], and XRL/Flower [131]. UML activity diagrams [102] have also been

extended and applied as a workflow specification language [17][45][105]. Compared with UML activity

diagrams, Petri Nets have formal semantics and have been used widely for constructing several workflows

[1][46]. A vast number of algorithms and tools for Petri Nets analysis have been developed along the years

[89]. However, Eshuis et al. [46] argue that Petri Nets may be unable to model workflow activities

accurately without extending its semantics and this drawback has been addressed in UML activity diagrams.

Rather than following the standard syntax and semantics of Petri Nets and UML, many workflow editors

for Grid workflow tools create their own graphical representation of workflow components. For example,

Triana [123] allows users to predefine software components and reuse them to design DAG-based

workflows. Kepler [12] provides graphical environment and a framework that supports the design and reuse

of grid workflows. These tools are more convenient for users to manipulate their workflow applications, as

Figure 7. Workflow Composition System Taxonomy.

Markup

User-directed

Graph-based Modeling

Automatic

Others

Language-based Modeling

Petri Net UML User-defined Component

Workflow Composition System

 6

they provide a more user-friendly programming environment. They have also been integrated into

underlying local applications, Grid middleware and monitoring systems. For example, P-GRADE [71][83]

interoperates with a wide range of parallel applications in addition to Condor and Globus based Grid

middleware. It also allows users to access and modify program code of a workflow task through a graphical

editor. However, lack of standards hinders the collaboration between these projects. Many works are thus

replicated such as different user interfaces developed by different projects for the same functionality.

Moreover, workflow structures supported by most of them are limited to only sequence and parallelism.

Graph-based modeling is very intuitive and can be handled easily even by a non-expert user. However, the

layout of workflow components on a display screen can become very huge and difficult to manage [101].

One of the solutions to overcome this limitation is to use hierarchical graph definition [65]. Another

solution is to have a system which composes workflows automatically. Pegasus [42] is one such automatic

composition system for Grid computing; it has to be adapted to particular applications, because the

composition is based on application-dependent metadata. It receives a metadata description of desired data

products and initial input values from users. The tasks are then composed automatically to form a workflow

by querying a virtual data catalog [53] that contains information for data derivation of application

components. Compared with user-directed systems, automatic composition systems are ideal for large scale

workflows which are very time consuming to compose manually. However, the automatic composition of

application components is challenging because it is difficult to capture the functionality of components and

data types used by the components [27] [101].

2.1.4 Workflow QoS Constraints

In a Grid environment, there are a large number of similar or equivalent resources provided by different

parties. Grid users can select suitable resources and use them for their workflow applications. These

resources may provide the same functionality, but optimize different QoS measures. In addition, different

users or applications may have different expectations and requirements. Therefore, it is not sufficient for a

workflow management system to only consider functional characteristics of the workflow. QoS

requirements such as time limit (deadline) and expenditure limit (budget) for workflow execution also need

to be managed by workflow management systems. Users must be able to specify their QoS expectations of

the workflow at the design level. Then, the actions conducted by workflow systems using run-time must be

chosen according to the initial QoS requirements.

Figure 8 shows the taxonomy of Grid workflow QoS constraints based on a QoS model for Web services

based workflow provided by Cardoso et al. [28] and QoS of Web services [88][103]. It includes five

dimensions: time, cost, fidelity, reliability and security. Time is a basic measure of performance. For

workflow systems, it refers to the total time required for completing the execution of a workflow. Cost

represents the cost associated with the execution of workflows including the cost for managing workflow

systems and usage charge of Grid resources for processing workflow tasks. Fidelity refers to the

measurement related to the quality of the output of workflow execution. Reliability is related to the number

of failures for execution of workflows. Security refers to confidentiality of the execution of workflow tasks

and trustworthiness of resources.

As indicated in Figure 9, there are two different ways to assign QoS constraints in a workflow model. One

way is to allow users to assign QoS constraints at task-level. The overall QoS can be assessed by computing

all individual tasks. For example, a user assigns desired execution time for every task in a workflow. The

deadline for the entire workflow execution can be calculated by a workflow reduction algorithm (e.g.

SWR(w) algorithm [26]). Another way is to assign QoS constraints at workflow-level, allowing users to

Reliability Security Fidelity Cost Time

Workflow QoS Constraints

Figure 8. Workflow QoS Constraints Taxonomy.

 7

define the overall workflow QoS requirements. However, QoS constraints for each task may be required by

schedulers for resource allocation at run-time. For the time dimension, users are likely to specify a deadline

for the entire workflow execution rather than for every single task. In order to fulfill the deadline for the

entire workflow, the scheduler needs to decide how fast each task has to be processed using a deadline

assignment approach (e.g. Ultimate Deadline, Effective Deadline, Equal Slack, and Equal Flexibility

strategies in [72]).

2.2 Information Retrieval

A Grid workflow management system does not execute the tasks itself, but it merely coordinates the

execution of the tasks by the Grid resources. To map tasks onto suitable resources, information about the

resources has to be retrieved from appropriate sources [141]. As indicated in Figure 10, there are three

dimensions of information retrieval: static information, historical information and dynamic information.

Static information refers to information that does not vary with time. It may include infrastructure-related

(e.g. the number of processors), configuration-related (e.g. operating system, libraries), QoS-related (e.g.

flat usage charge), access-related (e.g. service operations), and user-related information (e.g.

authentication ID). Generally, static information is utilized by Grid workflow management systems to pre-

select resources during the initiation of the workflow execution.

As Grid resources are not dedicated to the owners of the workflow management systems, the Grid

workflow management system also needs to identify dynamic information such as resource accessibility,

system workload, and network performance during execution time. Unlike static information, dynamic

information reflects the status of the Grid resources, such as load average of a cluster, available disk space,

CPU usage, and active processes. It also includes task execution information and market related

information such as dynamic resource price.

Historical information is obtained from previous events that have occurred such as performance history and

execution history of Grid resources and application components. Generally, workflow management systems

can analyze historical information to predict the future behaviors of resources and application components

on a given set of resources. Historical information can also be used to improve the reliability of future

workflow execution. For example, the user can correct the logic of a failed workflow according to the log

of the workflow system.

Dynamic Information Static Information

Information Retrieval

Figure 10. Information Retrieval Taxonomy.

Infrastructure-related

Configuration-related

QoS-related

Access-related

User-related Resource-related

Execution-related

Market-related

Historical Information

Workflow-level Task-level

QoS Constraints Assignment

Figure 9. QoS Constraints Assignment Taxonomy.

 8

Several information services are available for accessing static and dynamic information about Grid

resources. For example, Monitoring and Discovery System (MDS) [109] provides static hardware

information such as CPU type, memory size and software information such as operating system

information, and some dynamic information such as CPU load snapshot. Network Weather Service (NWS)

[136] provides additional dynamic information about availability of CPU, memory, and bandwidth. An

object oriented model for publication and retrieval of electronic resources is given in [33].

2.3 Workflow Scheduling

Casavant et al. [29] categorized task scheduling in distributed computing systems into ‘local’ task

scheduling and ‘global’ task scheduling. Local scheduling involves handling the assignment of tasks to

time-slices of a single resource whereas global scheduling involves deciding where to execute a task.

According to this definition, workflow scheduling is a kind of global task scheduling as it focuses on

mapping and managing the execution of inter-dependent tasks on shared resources that are not directly

under its control.

The workflow scheduler needs to coordinate with diverse local management systems as Grid resources are

heterogeneous in terms of local configuration and policies. Taking into account users’ QoS constraints is

also important in the scheduling process so as to satisfy user requirements. In this section, we discuss

workflow scheduling taxonomy from the view of (a) scheduling architecture, (b) decision making, (c)

planning scheme, (d) scheduling strategy, and (e) performance estimation as shown in Figure 11.

2.3.1 Scheduling Architecture

The architecture of the scheduling infrastructure is very important for scalability, autonomy, quality and

performance of the system [63]. Three major categories of workflow scheduling architecture as shown in

Figure 12 are centralized, hierarchical and decentralized scheduling schemes.

In a centralized workflow enactment environment, one central workflow scheduler makes scheduling

decisions for all tasks in the workflow. The scheduler has the information about the entire workflow and

collects information of all available processing resources. It is believed that the centralized scheme can

produce efficient schedules because it has all necessary information [63]. However, it is not scalable with

respect to the number of tasks, the classes and number of Grid resources. It is thus only suitable for a small

scale workflow or a large scale workflow in which every task has the same objective (e.g. same class of

resources).

Unlike centralized scheduling, both hierarchical and decentralized scheduling allow tasks to be scheduled

by multiple schedulers. Therefore, one scheduler only maintains the information related to a sub-workflow.

Thus, compared to centralized scheduling, they are more scalable since they limit the number of tasks

managed by one scheduler. However, the best decision made for a partial workflow may lead to sub-

optimal performance for the overall workflow execution. Moreover, conflict problems are more severe

Scheduling Architecture

Decentralized Hierarchical Centralized

Figure 12. Scheduling Architecture Taxonomy.

Planning Scheme

Figure 11. Workflow Scheduling Taxonomy.

Strategies Decision Making Performance Estimation

Workflow Scheduling

Architecture

 9

[90]. One example of conflict is that tasks from different sub-workflows scheduled by different schedulers

may compete for the same resource.

For hierarchical scheduling, there is a central manager and multiple lower-level sub-workflow schedulers.

This central manager is responsible for controlling the workflow execution and assigning the sub-

workflows to the low-level schedulers. For example, in GridFlow project [25], there is one workflow

manager and multiple lower-level schedulers. The workflow manager schedules sub-workflows onto

corresponding lower-level schedulers. Each lower-level scheduler is responsible for scheduling tasks in a

sub-workflow onto resources owned by one organization. The major advantage of using the hierarchical

architecture is that the different scheduling policies can be deployed in the central manager and lower-level

schedulers [63]. However, the failure of the central manager will result in entire system failure.

 In contrast, there are multiple schedulers without a central controller in decentralized scheduling. Every

scheduler can communicate with each other and schedule a sub-workflow to another scheduler with lower

load. Compared to hierarchical scheduling, decentralized scheduling is more scalable but faces more

challenges to generate optimal solutions for overall workflow performance and minimize conflict problems.

2.3.2 Decision Making

There is no single best solution for mapping workflows onto resources for all workflow applications, since

the applications can have very different characteristics. It depends to some degree on the application

models to be scheduled. In general, decisions about mapping tasks in a workflow onto resources can be

based on the information of the current task or of the entire workflow and can be of two types, namely local

decision and global decision [40] as shown in Figure 13. Scheduling decisions made with reference to just

the task or sub-workflow at hand are called local decisions whereas scheduling decisions made with

reference to the whole workflow are called global decisions.

Local decision based scheduling only takes one task or sub-workflow into account, so it may produce the

best schedule for the current task or sub-workflow but could also reduce the entire workflow performance.

An example given by Deelman et al. [40] assumes that there is a data-intensive application where the

overall run-time is driven by data transfer costs. Consider a situation where the output of a task is very

large. If the selection of a resource for a task is based only on a local decision without consideration of data

transfer between other resources, when selection of a resource for child tasks need to be made, the initial

selection may be found to be a poor choice if latency between the nodes is very high. This would lead to

higher data transfer costs for this child task and hence the entire workflow.

Scheduling workflow tasks using global decision improves the performance of entire workflow. There are

some algorithms for scheduling task graphs in parallel systems that could be applied to Grid workflow

scheduling. Li et al. [80] developed the Forward-Looking Analysis Method (FLAM). It analyses

dependencies of the entire graph to resolve the conflicts of parallel tasks which compete for the same

resource. It is believed that global decision based scheduling can provide a better overall result. However, it

may take much more time in scheduling decision making. Thus, the overhead produced by global

scheduling could reduce the overall benefit and may even exceed the benefits it will produce [40].

Therefore, the choice of decision making for workflow scheduling should not be made without considering

balance between the overall execution time and scheduling time. However, for some applications such as a

data analysis application where the outputs of tasks in the workflow are always smaller than the inputs,

using local decision based scheduling is sufficient.

Decision Making

Global Local

Figure 13. Decision Making Taxonomy.

 10

2.3.3 Planning Scheme

A planning scheme is a method for translating abstract workflows to concrete workflows. As shown in

Figure 14, schemes for the schedule planning of workflow applications can be categorized into either static

scheme or dynamic scheme. In a static scheme, concrete models have to be generated before the execution

according to current information about the execution environment and the dynamically changing state of

the resources is not taken into account. In contrast, a dynamic scheme uses both dynamic information and

static information about resources to make scheduling decisions at run-time.

Static schemes, also known as full-ahead planning, include user-directed and simulation-based scheduling.

In user-directed scheduling, users emulate the scheduling process and make resource mapping decisions

according to their knowledge, preference and/or performance criteria. For example, users prefer to map

tasks to resources on which they have not experienced failures. In simulation-based scheduling, the ‘best’

schedule is achieved by simulating task execution on a given set of resources before a workflow starts

execution. The simulation can be processed based on static information or the result of performance

estimation. For example, in GridFlow [25], the ‘best’ resource selected for scheduling a task is based on the

predictive task execution time that resource provides.

Dynamic schemes include prediction-based and just in-time scheduling. Prediction-based dynamic

scheduling uses dynamic information in conjunction with some results based on prediction. It is similar to

simulation-based static scheduling, in which the scheduler is required to predict the performance of task

execution on resources and generate a near optimal schedule for the task before it starts execution.

However, it changes the initial schedule dynamically during the execution. For example, GrADS [32]

generates preliminary mapping by using prediction results, but it migrates a task execution to another

resource when its initial contract is broken or a better resource is found for execution. Sakellariou et al.

[110] developed a low-cost rescheduling policy for the mapping of workflows on Grids. It considers

rescheduling workflow tasks at a few carefully selected points during execution in a dynamically changing

Grid environment, since the initial schedule built using inaccurate predictions can affect performance

significantly.

Rather than making a schedule ahead, just in-time scheduling [42] only makes scheduling decision at the

time of task execution. Planning ahead in Grid environments may produce a poor schedule, since it is a

dynamic environment where utilization and availability of resources varies over time and a better resource

can join at any time. Moreover, it is not easy to accurately predict the execution time of all application

components on Grid resources. However, as the technology of advance reservation [119] for various

resources improves, it is believed that the role of static and prediction-based planning will increase [40].

2.3.4 Scheduling Strategy

In general, scheduling workflow applications in a distributed system is an NP-complete problem [50].

Therefore, many heuristics have been developed to obtain near-optimal solutions to match users’ QoS

constraints. As shown in Figure 15 we categorize strategies of major scheduling approaches into

performance-driven, market-driven and trust-driven.

Static Dynamic

Planning Scheme

Figure 14. Planning Scheme Taxonomy.

User-directed Simulation-based Prediction-based Just in-time

 11

Performance-driven strategies try to find a mapping of workflow tasks onto resources that achieves optimal

execution performance such as minimize overall execution time. Most of Grid workflow scheduling

systems falls in this category. GrADS [32] optimizes DAG-based workflows using Min-Min, Max-Min and

Suffrage heuristics, hoping to obtain minimum completion times. Prodan et al. [106] use classical genetic

algorithms with cycle elimination techniques to minimize non-DAG based workflow execution on Grids.

Market-driven strategies employ market models to manage resource allocation for processing workflow

tasks. They apply computational economy principle and establish an open electronic marketplace between

workflow management systems and participating resource providers. Workflow schedulers act as

consumers buying services from the resource providers and pay some notion of electronic currency for

executing tasks in the workflow. The tasks in the workflow are dynamically scheduled at run-time

depending on resource cost, quality and availability, to achieve the desired level of quality for deadline and

budget. Unlike the performance-driven strategy, market-driven schedulers may choose a resource with later

deadline if its usage price is cheaper. Market-driven strategies have been applied to several Grid systems

such as Nimrod-G [21] and Gridbus data resource broker [130]. One example of the market-driven

workflow scheduling proposed by Geppert et al. [58] utilizes market mechanisms during the task

assignment. In the system, bids are collected from eligible resource providers for each task. The optimal bid

is selected by computing the amount of time and cost saved or overdrawn up to the point. If the execution

time has been minimized at the expense of an overdrawn cost, a bid with lower price will be chosen as the

optimal bid. Consequently, scheduler assigns the task to the resource whose provider offers the optimal bid.

A recent work on cost-based scheduling of workflow tasks on Grids is reported in [19].

Recently, trust-driven scheduling approaches (e.g. CCOF project in [147] and GridSec project in

[114][115]) in distributed systems are emerging. Trust-driven schedulers select resources based on their

trust levels. For example, within GridSec, the scheduler accesses the trust level of Grid sites. It maps tasks

onto resources whose trust level is higher than users’ demand. Trust model of resources is based on

attributes such as security policy, accumulated reputation, self-defense capability, attack history, and site

vulnerability. By using trust-driven approaches, workflow management systems can reduce the chance of

selecting malicious hosts, and non-reputable resources [147]. Therefore, overall accuracy and reliability of

workflow execution will be increased.

2.3.5 Performance Estimation

In order to produce a good schedule, estimating the performance of tasks on resources is crucial, especially

for constructing a preliminary workflow schedule. By using performance estimation techniques, it is

possible for workflow schedulers to predict how tasks in a workflow or sub-workflow will behave on

distributed heterogeneous resources and thus make decisions on how and where to run them. As indicated

in Figure 16, there are several performance estimation approaches: simulation, analytical modeling,

historical data, on-line learning, and hybrid.

Scheduling Strategy

Trust-driven Market-driven Performance-driven

Figure 15. Scheduling Strategy Taxonomy.

Performance Estimation

Figure 16. Performance Estimation Taxonomy.

Historical

Data Hybrid
Analytical

Modeling

On-line

Learning Simulation

 12

Simulation approaches [43][148] provide resource simulation environments to emulate the execution of

tasks in the workflow prior to its actual execution. In analytical modeling [32][37][98], a scheduler predicts

the performance of tasks in workflow on a given set of resources based on an analytic metric. For example,

in GrADS [32], two types of performance models are developed, namely memory hierarchy performance

model and computational model. By using these models, one can predict memory requirements and the

execution time of an application component for a resource according to the associated problem size. The

historical data approach [68][91][113] relies on historical data to predict the task’s execution performance.

The historical data related to a particular user’s application performance or experience can also be used in

predicting the share of available of resources for that user while making scheduling decisions based on QoS

constraints. The on-line learning approach predicts task execution performance from on-line experience

without prior knowledge of the environment’s dynamics. For example, Buyya et al. [22] and Galstyan et al.

[57] map a job onto a ‘best’ Grid resource by learning the completion time of most recent jobs submitted to

resources. As historical and on-line learning approaches use experimental data, they can be broadly termed

as empirical modeling approaches for performance estimation.

In certain conditions, these approaches could be used together in a hybrid approach for generating

performance evaluation of workflow tasks. For instance, Bacigalupo et al. [16] use both layered queuing

modeling and historical performance data to predict the performance of dynamic e-Commerce systems on

heterogeneous servers. In addition, GrADS constructs computational models semi-automatically by

emulating the execution of workflow components on small data sets. That is, it uses a combination of

historical and analytical approaches for performance estimation.

2.4 Fault Tolerance

In a Grid environment, workflow execution failure can occur for various reasons: the variation in the

execution environment configuration, non-availability of required services or software components,

overloaded resource conditions, system running out of memory, and faults in computational and network

fabric components. Grid workflow management systems should be able to identify and handle failures and

support reliable execution in the presence of concurrency and failures.

As shown in Figure 17, Hwang et al. [66] divided workflow failure handling techniques into two different

levels, namely task-level and workflow-level. Task-level techniques mask the effects of the execution failure

of tasks in the workflow, while workflow-level techniques manipulate the workflow structure such as

execution flow to deal with erroneous conditions.

Task-level techniques have been widely studied in parallel and distributed systems. They can be cataloged

into retry, alternate resource, checkpoint/restart and replication. The retry technique [121] is the simplest

failure recovery technique, as it simply tries to execute the same task on the same resource after failure.

The alternate resource technique [121] submits failed task to another resource. The checkpoint/restart

technique [36] moves failed tasks transparently to other resources, so that the task can continue its

execution from the point of failure. The replication technique [7][66] runs the same task simultaneously on

different Grid resources to ensure task execution provided that at least one of the replicas does not fail.

Workflow-level techniques include alternate task, redundancy, user-defined exception handling and rescue

workflow. The first three approaches proposed in [66] assume there is more than one implementation for a

Rescue

workflow

Checkpoint

/Restart

Replication Retry Alternate

Task

User-defined

Exception

Handling

Redundancy

Task-level Workflow-level

Fault Tolerance

Alternate

Resource

Figure 17. Fault Tolerance Taxonomy.

 13

certain computation with different execution characteristics. The alternate task technique executes another

implementation of a certain task if the previous one failed, while the redundancy technique executes

multiple alternative tasks simultaneously. The user-defined exception handling allows the users to specify a

special treatment for a certain failure of a task in workflow. The rescue workflow technique developed in

Condor DAGMan system [36] ignores the failed tasks and continues to execute the remainder of the

workflow until no more forward progress can be made. Then, a rescue workflow description called rescue

DAG, which indicates failed nodes with statistical information, is generated for later submission.

2.5 Intermediate Data Movement

For Grid workflow applications, the input files of tasks need to be staged to a remote site before processing

the task. Similarly, output files may be required by their children tasks which are processed on other

resources. Therefore, the intermediate data has to be staged out to the corresponding Grid sites. Some

systems require users to manage intermediate data transfer in the workflow specification, rather than

providing automatic mechanisms to transfer intermediate data. As indicated in Figure 18, we categorize

approaches of automatic intermediate data movement into centralized, mediated and peer-to-peer.

Basically a centralized approach transfers intermediate data between resources via a central point. For

example, a central workflow execution engine can collect the execution results after task completion and

transfer them to the processing entities of corresponding successors. Centralized approaches are easy to

implement and suit workflow applications in which large-scale data flow is not required.

In a mediated approach, rather than using a central point, the locations of the intermediate data are managed

by a distributed data management system. For example, in Pegasus system, the intermediate data generated

at every step is registered in a replication catalog service [30], so that input files of every task can be

obtained by querying the replication catalog service. Mediated approaches are more scalable and suitable

for applications which need to keep intermediate data for later use.

A peer-to-peer approach transfers data between processing resources. Since data is transmitted from the

source resource to the destination resource directly without involving any third-party service, peer-to-peer

approaches save the transmission time and reduce the bottleneck problem caused by the centralized and

mediated approaches. Thus, they are suitable for large-scale intermediate data transfer. However, there are

more difficulties in deployment because they require every Grid node to be capable of providing both data

management and movement service. In contrast, centralized and meditated approaches are more suitable to

be used in applications such as bio-applications, in which users need to monitor and browse intermediate

results. In addition, they also need to record them for future verification purposes.

3. GRID WORKFLOW MANAGEMENT SYSTEM SURVEY

In this section, we present a detailed survey of existing Grid workflow systems in addition to mapping the

proposed taxonomy. Table 1 shows the summary of selected Grid workflow management projects. A

comparison of various Grid workflow systems and their categorization based on the taxonomy is shown in

Table 2, Table 3, and Table 4.

 Intermediate Data Movement

User-directed Automatic

Centralized Mediated Peer-to-Peer

Figure 18. Intermediate Data Movement.

 14

Name Organization Prerequisite Grid

Integration

Applications Availability

DAGMan

[120]

University of

Wisconsin-

Madison, USA.

http://www.cs.wisc

.edu/condor/dagma

n/

Condor Condor which

can run on top

of Globus

Toolkit

version 2

(GT2)

Compute-

intensive

GPL(General

Public License)

Pegasus

[41]

University of

Southern

California, USA.

http://pegasus.isi.e

du

Condor

DAGMan,

Globus RLS.

Condor and

Globus.

Targeted for

data-intensive,

but supports

other types.

GTPL (Globus

Toolkit Public

License)

Triana

[123]

Cardiff University,

UK.

http://www.trianac

ode.org/

Grid

Application

Toolkit

(GAT)

GAT (JXTA,

Web

services,

Globus)

Compute-

intensive

the Apache

Software

License

ICENI

[93]

London e-Science

Centre, UK.

http://www.lesc.ic.

ac.uk/iceni/

Globus

Toolkit

Jini, JXTA,

Globus

Compute-

intensive

ICENI Open

Source Code

Licence

Taverna

[100]

Collaboration

between several

European Institutes

and industries.

http://taverna.sourc

eforge.net/

Java 1.4+ Web

services,

Soaplab,

local

processor,

BioMoby,

etc.

Service Grids GNU Lesser

General Public

License (LGPL)

GridAnt

[75]

Argonne National

Laboratory, USA.

http://www.cogkit.

org/

Apache Ant,

Globus

Toolkit

GT2, GT3,

GT4

Client controllable

workflow

applications

GTPL

GrADS

[18]

Collaboration

between several

American

Universities.

http://www.hiperso

ft.rice.edu/grads/

Globus

Tookit,

Autopilot,

NWS

Globus,

Parallel

Systems (e.g.

MPI)

Compute-

intensive and

communication-

intensive

applications with

MPI components

Not yet available

in public

GridFlow

[25]

University of

Warwick, UK

http://www.dcs.war

wick.ac.uk/researc

h/hpsg/workflow/w

orkflow.html

Agent-based

Resource

Management

System,

Performance

Analysis and

Characterize

Environment

(PACE)

Parallel

Systems (e.g.

MPI and

PVM)

MPI and PVM

based

components

Not yet available

in public

Table 1. Summary of Grid Workflow Management Projects.

 15

Name Organization Prerequisite Grid

Integration

Applications Availability

Toolkit, Titan

Unicore

[11]

Collaboration

between German

research

institutions and

industries

http://www.unicore

.org/

Unicore

middleware

Unicore Computational-

intensive and

MPI components

Community

Source License

Gridbus

workflow

[144]

The University of

Melbourne,

Australia.

http://www.gridbus

.org

Globus

Toolkit

GT2 Computational-

and Data-

intensive

GPL

Askalon

[49]

University of

Innsbruck

http://dps.uibk.ac.at

/askalon

Globus

Toolkit

GT2, GT4,

WSRF, Web

services

Performance-

oriented

applications

GTPL

Karajan

[76]

Argonne National

Laboratory

http://www.cogkit.

org

Java 1.4 GT2, GT3,

GT4, Condor,

runtime exec,

ssh,

WebDAV

Those required to

access Grid

middleware

GPTL

Kepler

[12]

A cross-project

collaboration.

http://kepler-

project.org/

Java Globus,

Storage

Resource

Broker(SRB),

EcoGrid,

Web services

Scientific

workflow

applications

UC Berkeley

License

Project

Name

Structure Model Composition

Systems

QoS Constraints

DAGMan DAG Abstract User-directed

• Language-based

User specified rank

expression for

desired resources

Pegasus DAG Abstract User-directed

• Language-based

Automatic

N/A

Triana Non-DAG Abstract User-directed

• Graph-based

N/A

ICENI Non-DAG Abstract User-directed

• Language-based

• Graph-based

Metrics specified by

users

Table 2. Workflow Design Taxonomy Mapping.

 16

Project

Name

Structure Model Composition

Systems

QoS Constraints

Taverna DAG

Abstract/

Concrete

User-directed

• Language-based

• Graph-based

N/A

GridAnt Non-DAG Concrete User-directed

• Language-based

N/A

GrADS DAG Abstract User-directed

• Language-based

Estimated

application

execution time

GridFlow DAG Abstract User-directed

• Graph-based

• Language-based

Application

execution time

Unicore

Non-DAG Concrete User-directed

• Graph-based

N/A

Gridbus

workflow

DAG Abstract/

Concrete

User-directed

• Language-based

Deadline, Cost

minimisation

Askalon Non-DAG Abstract User-directed

• Graph-based

• Language-based

Constrains and

properties specified

by users or pre-

defined

Karajan Non-DAG Abstract User-directed

• Language-based

• Graph-based

N/A

Kepler Non-DAG Abstract/

Concrete

User-directed

• Graph-based

N/A

Project

Name

Architecture Decision

Making

Planning

Scheme

Strategies Performance

Estimation

DAGMan Centralized Local Just in-time Performance-

driven

N/A

Pegasus Centralized Local/

Global

User-directed/

Just in-time

Performance-

driven

Historical Data,

Analytical modeling

Triana Decentralized Local Just in-time Performance-

driven

N/A

ICENI Centralized Global Prediction-

based

Performance

& Market-

driven

Historical Data

Taverna Centralized Local Just in-time Performance-

driven

N/A

GridAnt Centralized User- User-directed User-defined* N/A

Table 3. Workflow Scheduling Taxonomy Mapping.

 17

Project

Name

Architecture Decision

Making

Planning

Scheme

Strategies Performance

Estimation

defined*

GrADS Centralized Local/

Global

Prediction-

based

Performance-

driven

Historical data

(empirical) ,

Analytical modeling

GridFlow Hierarchical Local Simulation-

based

Performance-

driven

Analytical modeling

Unicore

Centralized User-

defined*

User-directed User-defined* N/A

Gridbus

Workflow

Hierarchical Local User-directed

Just in-time

Market-driven Historical data

(empirical)

Askalon Decentralized Global Just in-time/

Prediction-

based

Performance

& Market-

driven

Analytical modeling,

Historical data

Karajan Centralized User-

defined*

User-defined* User-defined* N/A

Kepler Centralized User-

defined*

User-defined* User-defined* N/A

*user-defined - the architecture of the system has been explicitly designed for user extension.

Project

Name

Information Retrieval Fault-tolerance Data

Movement

DAGMan Resource information is retrieved by

Condor Matchmaker that manages

resource and task info advertisement

and notification.

Task Level

• Migration

• Retrying

Workflow Level

• Rescue workflow

User-

directed

Pegasus Resource information retrieved

through Globus MDS and RLS.

Application component information

is retrieved from the GriPhyN

Transformation Catalog.

Based on DAGMan Mediated

Triana Based on GAT protocol

Based on GAT manger Peer-to-Peer

ICENI Application component information

is retrieved by the component

metadata service and performance

repository service.

Based on middleware Mediated

Taverna Service information is retrieved

through DAML-S web service

ontology, domain ontology

information service, and UDDI.

Task Level

• Retry

• Alternate Resource

Centralized

Table 4. Information Retrieval, Fault-tolerance and Data Movement Taxonomy Mapping.

 18

Project

Name

Information Retrieval Fault-tolerance Data

Movement

GridAnt Resource information is retrieved

through Globus MDS.

User-defined* User-

directed

GrADS Resource information is retrieved

through Globus MDS and GrADS

information service (GIS). Dynamic

information is retrieved by NWS.

Autopilot is used for provide

performance contract information.

Task Level in rescheduling

work in GrADS, but not in

workflows.

Peer-to-Peer

GridFlow Resource information is retrieved

through Titan

Task Level

• Alternate resource

Peer-to-Peer

Unicore

Unicore information service Based on Unicore

middleware

Mediated

Gridbus

workflow

Resource information is retrieved

through the Grid Market Directory

Task Level

• Alternate resource

Centralized

Askalon Static information

• Infrastructure-related

• Configuration-related

• QoS-related

Dynamic information

• Resource-related

• Execution-related

Task Level

• Retry

• Alternate resource

Workflow level

• Rescue workflow

Centralized

User-

directed

Karajan User-defined* Task Level

• Retry

• Alternate resource

Workflow Level

• User-defined exception

handling

User-

directed

Kepler User-defined* Task Level

• Alternative resource

Workflow Level

• User-defined exception

handling

• Workflow rescue

Centralized

Mediated

Peer-to-Peer

*user-defined - the architecture of the system has been explicitly designed for user extension.

3.1 Condor DAGMan

Condor [81][120][124] is a specialized resource management system (RMS) developed at the University of

Wisconsin-Madison for compute-intensive jobs. Condor provides a High Throughput Computing (HTC)

environment based on large collections of distributed computing resources ranging from desktop

workstations to super computers. Condor-G, a component within Condor, utilizes Globus GRAM serving

as a uniform interface to heterogeneous batch systems, thus enabling large scale computational Grids.

Matchmaking within Condor, matches jobs and available resources according to their job and resource

classified advertisement. When more than one resource satisfies the job requirement, the resource with

higher value of rank expression, which expresses the desirability of a match, is preferred.

 19

The Directed Acyclic Graph Manager (DAGMan) [36][120] is a meta-scheduler for Condor jobs. While

Condor aims to discover available machines for the execution of jobs, DAGMan handles the dependencies

between the jobs. DAGMan uses DAG as the data structure to represent job dependencies. Each job is a

node in the graph and the edges identify their dependencies. Each node can have any number of “parent” or

“children” nodes. Children cannot run until their parents have completed. Cycles, where two jobs are both

descended from one another, are prohibited, because it would lead to deadlock. DAGMan does not support

automatic intermediate data movement, so users have to specify data movement transfer through pre-

processing and post-processing commands associated with processing job.

The individual job execution is managed by Condor scheduler. So if a job fails due to the nature of the

distributed system, such as loss of network connection, it will be recovered by Condor while DAGMan is

unaware of such failures. However, DAGMan is responsible for reporting errors for the set of submitted

jobs, and generates a rescue DAG. In the case of a job failure, the remainder of the DAG continues until no

more progress can be made. A failed node can be retried a configurable number of times. The rescue DAG

indicates the uncompleted portions of the DAG with detail of failures. Users can correct the errors of failed

jobs and resubmit the rescue DAG.

3.2 Pegasus in GriPhyN

GriPhyN [61] aims to support large-scale data management in physics experiments such as high-energy

physics, astronomy, and gravitational wave physics. Pegasus [40][41][42] (Planning for Execution in Grids)

is a workflow manger in GriPhyN developed by the University of Southern California.

Pegasus performs a mapping from an abstract workflow to the set of available Grid resources, and

generates an executable workflow. An abstract workflow can be constructed by querying Chimera [53], a

virtual data system, or provided by users in DAX (DAG XML description). An abstract workflow describes

the computation in terms of logical files and logical application components and indicates their

dependencies in the form of Directed Acyclic Graph (DAG). Before mapping, Pegasus reduces the abstract

workflow by reusing a materialized dataset which is produced by other users within a VO. Reduction

optimization assumes that it is more costly to produce a dataset than access the processing results. The

reduction algorithm removes any antecedents of the redundant jobs that do not have any unmaterialized

descendents in order to reduce the complexity of the executable workflow.

Pegasus consults various Grid information services to find the resources, software, and data that are used in

the workflow. A Replica Location Service (RLS) [30] and Transformation Catalog (TC) [39] are used to

locate the replicas of the required data, and to find the location of the logical application components

respectively. Pegasus also queries Globus Monitoring and Discovery Service (MDS) [34] to find available

resources and their characteristics.

There are two methods used in Pegasus for resource selection, one is through random allocation, the other

is through a performance prediction approach. In the latter approach, Pegasus interacts with Prophesy

[68][140], which serves as an infrastructure for performance analysis and modeling of parallel and

distributed applications. Prophesy is used to predict the best site to execute an application component by

using performance historical data. Prophesy gathers and stores the performance data of every application.

The performance information can provide insight into the performance relationship between the application

and hardware and between the application, compilers, and run-time systems. An analytical model is

produced based on the performance data and is used by the prediction engine to predict the performance of

the application on different platforms. It is required that Pegasus send the request associated with

information such as the component name, the semantic parameter names and their values, and the list of

available resources. The ranking of the given resources is returned by Prophesy after the query is received.

For ease of use, Pegasus is able to generate a workflow from a metadata description of the desired data

product with the aid of artificial intelligence planning techniques. Although, the workflow execution of

Pegasus is based on static planning and its executable workflow is transformed into Condor jobs for

 20

execution management by Condor DAGMan, it has been recently extended to support just in-time

scheduling [42] and pluggable task scheduling strategies.

3.3 Triana

Triana [122][123] is a visual workflow-oriented data analysis environment developed at Cardiff University.

In 2002, Triana was extended to implement a consumer Grid [122] by using a peer-to-peer approach.

Recently, Triana has been redesigned and integrated with Grids via GridLab GAT (Grid Application

Toolkit) interface [10]. GAT defines a high level API for core Grid service access through JXTA [70],

Web services [133], and OGSA [54][126].

Triana provides a visual programming interface with functionality represented by units. Applications are

written by dragging the required units onto the workplace and connecting them to construct a workflow.

Apart from many implemented tool units, Triana also provides a custom user interface to allow users to

build their own units. Several control units (e.g. loop) and logic units (e.g. if) are also provided for users to

control the logic of workflow execution. Since control and logic units are implemented as a standard Triana

unit, it is easy to introduce new flow patterns. Interconnected units can also be grouped into a group unit,

which has the same properties as normal unit.

Triana clients such as Triana GUI can log into a Triana Controlling Service (TCS), remotely build and run

a workflow and then visualize the result on their device (e.g. PC, PDA, etc). Each TCS interacts with the

Triana engine and every engine provides a service and is capable of executing complete or partial task-

graphs locally, or by distributing the code to other servers based on the specified distribution policy for the

supplied task-graph. The distribution policy is based on the concept of group units and two distribution

policies have been implemented, namely parallel and peer-to-peer. Both policies distribute every unit in the

group to separated hosts, however while the peer-to-peer mechanism relies on intermediate data being

passed between hosts, there is no such host-based communication with the parallel policy. Since a

distributed task-graph is not fixed to a specific set of resources, it can be dynamically allocated to available

services in the most effective way.

3.4 Workflow Management in ICENI

The ICENI (Imperial College e-Science Network Infrastructure) [93][94] developed at London e-Science

Centre provides component-based Grid middleware. Within ICENI, users construct an abstract workflow,

which is a collection of components, and then submit this to ICENI environment for execution.

Each ICENI component is described in terms of meaning, control flow and implementation. The workflow

components are primarily composed based on a spatial view, in which all units are represented concurrently,

with details of how they relate and interact with each other. Then a temporal view is derived from the

spatial view by the system. In the temporal view, workflow information is attached to each component that

consists of a graph in which the directed arcs contain the partnership according to the temporal dependence.

Within ICENI, the workflow model is similar to that of the YAWL (Yet Another Workflow Language) [4],

although simplified in certain respects. The workflow language includes all basic workflow structure such

as sequence, parallelism, choice and iteration.

The scheduling service [93][142][143] within ICENI is responsible for concretizing the abstract workflow.

The scheduling task includes matching component meaning with component implementation and mapping

these qualified components onto a suitable subset of the available resources. Several scheduling algorithms

used to determine resource mapping have been implemented. They include random, best of n random,

simulated annealing and game theory. Most schedulers implemented within ICENI aim to provide

approximate optimal solutions to map the abstract workflow to a combination of component

implementations and resources in terms of execution time and cost. The schedulers take into account all

components in applications rather than standalone components. The scheduling framework also allows

third-party scheduling algorithms to be plugged in.

 21

ICENI has developed a performance repository system [91] which is able to monitor running applications

and obtain and store performance data for the components within the applications. This data is stored

within a repository with meta-data about the resource the component was executed on, the implementation

of the component used, and the number of other components concurrently running on the same resource.

This data can be used by schedulers for future runs of applications to estimate the execution times of each

component within the workflow.

Two scheduling schemes [93] are considered within ICENI, namely lazy scheduling and advanced

reservation. The metadata of the component implementation indicates which scheme the component can

benefit from. Non-reservation component is scheduled to a resource just before it is required, while

reservation component has been allocated to a resource and has made a reservation in advance. The

schedulers can interrogate the performance repository to predict execution in order to produce accurate

reservation. The reservation negotiation protocol is based on WS-Agreement [60].

3.5 Taverna in
my

Grid

Taverna [100] is the workflow management system of the
my

Grid [118] project, which aims to exploit Grid

technology to develop high-level middleware for supporting personalized in silico experiments in biology.

Taverna is a collaboration between several European universities, institutes and industries. The purpose of

Taverna is used to assist scientists with the development and execution of bioinformatics workflows on the

Grid. Taverna provides data models, enactor task extensions, and graphical user interfaces. FreeFluo [55] is

also integrated into Taverna as a workflow enactment engine to transfer intermediate data and invoke

services.

In Taverna, data models can be represented in either a graphical format or in an XML based language

called Simple Conceptual Unified Flow Language (SCUFL). The data model consists of inputs, outputs,

processors, data flow and control flow. In addition to specifying execution order, the control flow can also

be trigged by state transitions during the execution of parent processors. Compared to other workflow

languages, such as the Business Process Execution Language for Web Services (BPEL4WS) [14] , SCUFL

allows implicit iteration over incoming data sets based on a specified strategy. At the execution level, the

workflow enactor also provides a multithreading mechanism to speed up the iteration process. Users are

allowed to set the Thread property to specify how many concurrent instances will send parallel requests to

the iteration processor. It is especially suitable for services that are capable of handling significant

simultaneous processing, for example, a service that is backed by a cluster. It also can reduce service

waiting time since workflow engine can send the next input data at the same time as the service is working

on the current input.

Taverna also provides a user-friendly multi-window environment for users to manipulate workflows,

validate and select available resources, and then execute and monitor these workflows. The enactment

status panel [121] of Taverna shows the current progress of a workflow invocation. It also allows the users

to browse the intermediate and final results. Through the enactment panel, users can handle storage of those

results on local or remote data stores in a variety of formats.

Fault tolerance [121] in the workflow management of
my

Grid is achieved by setting configuration for each

processor in the workflow, for example, the number of retries, time delay and alternate processors. It also

allows users to specify the critical level for faults on each processor. If the processor is set as Critical, after

all retries and alternates have failed, entire workflow execution will be terminated, otherwise, the workflow

will continue but children nodes of the failed processor will never be invoked.

my

Grid follows service-oriented grid architecture and supports several different types of services within the

workflow management system, including WSDL-based [138] single operation web services, soaplab bio-

services [111] and local services such as programs coded as java classes. In addition, information services

such as UDDI (the Universal Description, Discovery and Integration) [127] and ontology directory [139]

are adopted for service discovery.

 22

3.6 GridAnt

The GridAnt [13][75] is an extensible client-side workflow management system developed by Argonne

National Laboratory. It has been designed for Grid end-users as a convenient tool to express and control the

execution sequence without having any expertise in sophisticated workflow systems. GridAnt focuses on

distributed process management rather than the aggregation of services which is the concern of most other

Grid-enabled workflow frameworks.

GridAnt consists of four major components, namely workflow engine, run-time environment, workflow

vocabulary and workflow monitoring. The workflow engine is the central controller that handles task

dependencies, failure recoveries, performance analysis, and process synchronization. GridAnt workflow

engine extends Ant [15], an existing commodity tool for controlling build process in Java, by adding

additional components to support workflow orchestration and composition. GridAnt also provides an

environment for inter-task communication, so that individual GridAnt tasks can read and write intermediate

data by using a globally accessible whiteboard-style communication model. Several important constructs

such as constants, arithmetic expressions, global variables, array references, and literals are supported by

the run-time environment. GridAnt extends Ant’s vocabulary in the Grid domain with the addition of the

tags such as grid-copy, grid-authenticate and grid-query. These new tags are used by users to predefine the

Grid tasks and construct complex workflows at compile time. It uses a control construct provided by Ant

container for expressing parallel and sequential tasks. Furthermore, users are allowed to monitor the

progress of the execution by means of graphical visualization tool.

In addition to mapping complex client-side workflows, GridAnt can be used for testing the functionality of

different Grid services. It has been developed to support version 2 and version 3 of the Globus toolkit [59]

by using the Java CoG kit [74]. It has been applied for Position-Resolved Diffraction [13], which is a new

experimental technique for the study of nanoscale structures as part of the Argonne National Laboratory’s

advanced analytical electron microscope.

3.7 Workflow management in GrADS

The Grid Application Development Software (GrADS) project [18] aims to provide programming tools and

execution environments for ordinary scientific users to develop, execute, and tune applications on the Grid.

GrADS is a collaboration between several American Universities. GrADS supports application

development either by assembling domain-specific components from a high-level toolkit or by creating a

module by relatively low-level (e.g., MPI) code [32].

GrADS provides application-level scheduling to map workflow application tasks to a set of resources. New

Grid scheduling and rescheduling methods [32] are introduced in GrADS. These scheduling methods are

guided by an objective function to minimize the overall job completion time (makespan) of the workflow

application. The scheduler obtains resource information by using services such as MDS [109] and NWS

[136] and locates necessary software on the scheduled node by query GrADS Information Service (GIS).

The workflow scheduler ranks each qualified resource for each application component. A rank value is

calculated by using “a weighted sum of the expected execution time on the resource and the expected cost

of data movement for the component.” After ranking, a performance matrix is constructed and used by the

scheduling heuristics to obtain a mapping of components onto resources. Three heuristics have been

applied in GrADS; those are Min-Min, Max-Min, and Sufferage heuristics [87].

GrADS has built up an architecture-independent model of the workflow component from individual

component models. It employs analytical models that are constructed semi-automatically from empirical

models (historical data/sample execution data), in order to estimate the performance of a workflow

component on a single Grid node. It uses hardware performance counters to collect operation counts from

several executions of the workflow components with different, small-size input problems, and then it

performs a least-squares fit to the data to construct computational models. In addition, GrADS reuses

distance data on small inputs to predict the faction of cache hits and misses on the given data and cache

configuration by its memory-hierarchy performance models.

 23

GrADS utilizes Autopilot [107] to monitor performance of the agreement between the application demands

and resource capabilities. Once the contract is violated, the rescheduler [32] of the GrADS takes corrective

actions. It has been implemented using two rescheduling approaches for MPI applications, the stop/restart

approach and process swapping. In the former approach, an executing application component is suspended

and migrated to a new resource if better resources are found for improving the execution performance [129].

As a migration event can involve large data transfers, expensive startup costs and significant application

code modifications, process swapping provides a lightweight, but less flexible, alternative approach. In

process swapping more machines than will actually be used for the computation are launched for an MPI

application component, and slower machines in the active set are swapped with faster machines in the

inactive set periodically, according to the performance of machines.

3.8 GridFlow

GridFlow [25] is a Grid workflow management system developed at the University of Warwick. This work

is built on the top of an agent-based resource management system for Grid computing (ARMS) [24]. Rather

than focusing on workflow specification and the communication protocol, GridFlow is more concerned

about service-level scheduling and workflow management.

There are three layers of Grid resource management within the GridFlow system: the Grid resource, the

local Grid and the global Grid. A Grid resource is simply just a particular grid resource; local Grid consists

of multiple Grid resources that belong to one organization; and a global Grid consists of all local Grids.

Global Grid also provides a portal for compose the workflow.

A workflow in GridFlow is represented as a flow of several different activities, each activity represented by

a sub-workflow. Each sub-workflow is a flow of closely related tasks that is to be executed in a local grid.

A portal has been developed by GridFlow as graphical user interface for users to compose workflow

elements.

The workflow management within GridFlow is conducted by a hierarchical scheduling system including

global Grid workflow manager and local Grid sub-workflow scheduling. Global grid workflow manager

receives requests from the GridFlow portal with the workflow description in the format of XML, and then

simulates workflow execution to find a near-optimal schedule. After the users accept the simulated result,

GridFlow schedules the workflow onto different local Grids through ARMS. Within ARMS, each agent

represents a local Grid at a global level of Grid resource management, and conducts local Grid sub-

workflow scheduling. In contrast to the global Grid workflow management, the local Grid schedulers

handle conflicts since scheduled sub-workflows may belong to different workflows.

ARMS has integrated Titan [116], which utilizes performance data obtained from PACE [98], a toolset for

resource performance and usage analysis, with iterative heuristic algorithms to minimize the makespan and

idle time of a grid resource. PACE can exact control flow, and use an analytical model approach based on

queuing theory, to predict application performance on a given set of resources such as time, scalability and

system resource usage. Titan also provides Grid resource information.

3.9 Workflow Management in Unicore Plus

Unicore plus [128] provides seamless and secure access to distributed resources of the German high

performance computing centers. Unicore plus is a follow-on project of Unicore (Uniform Interface to

Computing Resources) [11], started in 1997 to improve uniform interfaces to distributed High Performance

Computing and data resources using the mechanisms of the World Wide Web. Unicore plus provides a

programming environment for users to design and execute job flow.

Within Unicore, one job or job group that can be executed on any Unicore site may contains other jobs

and/or job groups. The original Unicore job model supports jobs that are constructed as a set of directed

acyclic graphs with temporal dependencies. Since Unicore version 4, advanced flow controls have been

added, which include conditional execution (e.g. if-then-else), repeated execution (e.g. do-n), conditional

repeated execution (e.g. do-repeat), and conditional suspend action (e.g. hold-job). In addition, three types

 24

of run-time conditions are implemented for supporting conditional checking; these are based on the return

code of a previous executed task, existence or properties of a file and whether a given time and date have

passed.

Unicore plus provides graphical tools that allow users to create a job flow and convert it into an Abstract

Job Object (AJO) which is a serialized java object. The AJO is submitted from a user client to a Unicore

server. The server translates the job specification into a number of batch jobs and dispatches them to the

target resource. The server also makes sure that a successor is executed if its predecessors are finished and

all necessary data is available at the executing site.

Unicore allows users to specify jobs and different parts of job group onto multiple resources. The output of

individual jobs may be needed by its successors. Therefore, a temporary Unicore space is created for each

job group for transferring data sets. Unicore also allows users to explicitly specify the transfer function as a

task through GUI; it is also able to perform the necessary data movement function without user intervention.

3.10 Workflow Management in Gridbus

The Gridbus Toolkit [23] developed by the University of Melbourne provides Grid technologies for

service-oriented utility computing. Its architecture is driven by the requirements of Grid economy [22]. A

Grid economy mechanism has been proposed as a technique for efficient management of distributed

resources. It helps in efficient allocation of resources to different users and applications based on their QoS

requirements in addition to regulation of the supply and demand for Grid resources.

The workflow management in Gridbus [144] provides a simple XML-based workflow language for users to

define their tasks and dependencies. The workflow description language of Gridbus is aimed towards

enabling the expression of parameter sweep tasks [8] and users’ QoS requirements [146].

The workflow engine of Gridbus provides a hierarchical scheduling architecture to adapt to heterogeneous

and dynamic Grid environments. Within the workflow execution engine, the schedules of the workflow

tasks are driven by the events by using the tuple-space model [56]. An event-driven mechanism with

subscription-notification approach makes the workflow execution loosely-coupled and flexible. The system

also supports just in-time scheduling, allowing scheduling decision to be made at the time of task execution.

The scheduler can also reschedule failed tasks to an alternative resource. In addition, Grid Market Directory

(GMD) [145] is utilized by the workflow schedulers for run-time resource discovery.

In contrast to other workflow management systems, the Gridbus workflow system emphasizes on the use of

market-based principles and algorithms for resource allocation and scheduling applications in global Grid

environments. It has been targeted to support applications in both scientific and business domains such as

natural language processing and molecular modeling for drug discovery.

3.11 Askalon

Askalon [49] is a Grid application development and computing environment developed by the University

of Innsbruck, Austria. The main objective of Askalon is to simplify the development and optimization of

mostly Grid workflow applications that can harness the power of Grid computing.

Askalon comes with two separate composition systems, AGWL (Abstract Grid Workflow Language) [47]

and Teuta [48], that support the development of Grid workflow applications. AGWL is an XML-based

language. It provides a rich set of constructs to express sequence, parallelism, choice, and iteration

workflow structure. In addition, programmers can specify high-level constraints and properties defined

over functional and non-functional parameters for tasks and their dependencies which can be useful for a

runtime system to optimize the workflow execution. Teuta supports the graphical specification of Grid

workflow applications based on the UML activity diagram which is a graphical interface to AGWL.

Askalon provides a new hybrid approach for scheduling workflow applications on the Grid through

dynamic monitoring and steering combined with a static optimization. Static scheduling maps entire

 25

workflows onto the Grid using genetic algorithms. A problem-independent objective function design allows

to plug-in a variety of optimization metrics such as the execution time, efficiency, economical cost, or any

user-defined QoS parameter. A dynamic scheduling algorithm takes into consideration the dynamic nature

of the Grid resources such as machine crashes or external CPU and network load. Performance contracts

are defined for every task and monitor whether tasks execute properly or whether they should be migrated.

Askalon develops a fault tolerant execution engine that supports reliable workflow execution in the

presence of resource failures through checkpointing and migration techniques.

In order to provide automatic workflow orchestration, Askalon Grid Resource Management (GridARM)

provides a distributed GT4-based registry to map generic or domain specific tasks to their implementations.

Askalon also includes automatic search for performance problems and faults in Grid infrastructures and

applications. The monitoring and performance analysis component provides static information of Grid

infrastructure and dynamic information of computational resources, networks, and applications. Dynamic

information of workflow-based applications is provided for the entire workflow as well as for invoked

applications called within tasks. The performance of workflow components is estimated based on a training

phase which measures the actual execution time of tasks for different loads and problem sizes on a variety

of Grid sites. The performance estimation of the workflow is conducted based on a combination of

historical data obtained from a training phase and analytical modeling.

3.12 Karajan

Karajan [76][77], developed by Argonne National Laboratory, aims to provide an integrated approach of

exposing workflow to the Grid community. It is an extensible workflow framework and can be easily

utilized by third parties to provide workflow solutions for a variety of users. It is derived from GridAnt and

provides additional capabilities such as scalability, workflow structure and error handling.

Karajan is part of Java CoG Kit. Java CoG Kit is based on modular design and provides mechanisms for

fast application development and easy integration of the variety of Grid middleware. It provides a number

of programming abstractions for job executions and file transfers. The concept of Grid providers is

introduced to facilitate different middleware to be used as part of an instantiation of Grid abstractions. As a

result, it is easy to integrate Karajan to any middleware. To date, it has been integrated into various

versions of Globus, Condor, runtime exec, ssh, and some data transfer techniques such as WebDAV [31]

and scp. Karajan leverages lower-level programming abstractions in Java CoG Kit to access the Grid, and

at the same time it provides programming interfaces for higher level applications such as workflow

schedulers and application portlets to develop users’ strategies.

In addition to sequence and parallelism, Karajan supports choices and loops of workflow structures. It also

provides a user friendly XML-based workflow language. Elements used for the description of workflow

tasks are user-definable. Thus, the user can define names and parameters along with annotations and

descriptions for a new element. A number of standard operators including mathematical and Boolean

operators are defined for integration within execution control statements. It also provides advanced data

structures such as list, range, and map (or hash tables) for repetitive tasks (e.g. parameter studies) as part of

the workflow.

A number of fault handling methods are supported in Karajan. Error handling allows users to integrate

strategies for errors and exceptions into the workflow. Checkpointing enables users to store intermediate

states of the workflow execution for later roll back when a problem occurs.

3.13 Kepler

Kepler [12][85] is one of the popular workflow systems with advanced features for composing scientific

applications. It is derived from Ptolemy II system [82] and currently under development across a number of

scientific data management projects. In addition to a user-friendly graphical user-interface and an

extendable open source platform, Kepler also inherits the actor-oriented feature from Ptolemy II. It models

a workflow system as a composition of independent components (actors) that communicate through well-

defined interfaces. An actor is an encapsulation of parameterized operations performed on input to produce

 26

output data. An execution model of a workflow, which can be defined in a director object, imposes an

execution order and communication mechanisms on the usable actors of the workflow. This modular design

approach allows different execution models or machineries to be implemented and easily plugged into

workflows without changing any of the components of workflows.

Kepler has been extended to support seamless access to remote resources and services. A web service

HARVESTER component can retrieve all service description files in a web page or service repository to

create instantiations of web services actors in the user’s local actor library. Each web services actor can be

instantiated for any particular operation specified in its service description. A number of fault-tolerant

methods have been developed to make workflows with web services more reliable. Instead of associating a

service operation with a fixed URL, a list of services is allowed to provide the alternative invocation during

service failure. It is also able to produce partial results even when the entire workflow fails. Advanced

failure handling can also be supported through extensions of exception-catching actors. In addition, Kepler

has defined a set of Grid actors for access authentication, file copy, job execution, job monitoring,

execution reporting, storage access, data discovery, and service discovery.

4. SUMMARY AND DISCUSSION

We have presented a taxonomy for Grid workflow management systems. The taxonomy focuses on

workflow design, workflow scheduling, fault management and data movement. We also surveyed some

workflow management systems for Grid computing and classify them into different categories using the

taxonomy. This paper thus helps to understand key workflow management approaches and identify

possible future enhancements.

Many Grid workflow-enabled systems have developed graph-based editing environments. They allow users

to compose the workflow by dragging and dropping components on a composition panel. A workflow

abstract specification or concrete specification is then generated by these visual tools and passed to the

workflow enactment engine. These processes are transparent to users for better usability. Currently, only

Pegasus supports automatic workflow composition. In order to support the automatic composition, catalogs

with rich information about application components and services need to be addressed. Besides GriPhyN

Chimera system and UDDI (Universal Description, Discovery and Integration) directory service for web

services discovery, many efforts from semantic Web such as DAML+OIL ontology [67] can be used for

providing accurate description and flexible discovery of application components and services.

Most of the Grid workflow projects discussed in this paper have their own graphical workflow modeling

and language. Obviously, the lack of standardized syntax and semantic description for workflow modeling

and language results in many replicated works. More effort is thus needed towards workflow modeling

standardization. Even though there are some proposed workflow languages for web services such as

BPEL4WS, they are still not sufficient due to lack of implementation, levels of abstraction and limited

supported services [9].

Quality of Service (QoS) issues have not been addressed very well in most Grid workflow management

systems due to their focus on the use of system centric policies in resource allocation. However, when

workflow management systems are used in commercial or production environments, supporting QoS at

both specification and execution level becomes increasingly critical. At the specification level, workflow

languages need to allow users to express their QoS requirements. At the execution level, the workflow

scheduling must be able to map the workflow onto Grid resources to meet users’ QoS requirements.

Therefore, the role of market-driven strategies will become increasingly important, currently being ignored

in most Grid workflow management systems. Trust-based scheduling is another approach to improve QoS

in open distributed systems such as Grid and peer-to-peer; however, it has not been addressed very well in

the context of workflow management.

It is impossible to make an optimal scheduler without knowledge of estimated time of task execution.

Several performance information services are utilized in Grid workflow projects to predict performance

prediction. One example is PACE employed in GridFlow project. It uses analytical model to predict

 27

application performance, but the current implementation is only adapted to MPI program. Prophesy used

by Pegasus uses historical performance database to gain insight into the relationship between applications

and resources in order to predict the performance of the applications on a given set of resources. Similarly,

ICENI developed a performance repository system which is able to collect performance data for application

components. GrADS have developed two analytical models for their GrADS programs.

Given the dynamic nature of Grid environments, fault tolerance should be fully supported by Grid

workflow management systems. However, most fault handling techniques have not been developed or

implemented in many Grid workflow systems, especially at the workflow execution level. It is hard for a

workflow management system to survive in real Grid environments without robust fault handling

techniques.

ACKNOWLEDGEMENTS

We would like to acknowledge all developers of the workflow management systems described in the paper.

We thank Chee Shin Yeo, Hussein Gibbins, Anthony Sulistio, Srikumar Venugopal, Tianchi Ma, Sushant

Goel, Krishna Nadiminti, and Baden Hughes (Melbourne University, Australia), Rob Gray (Monash

University, Australia), Wolfram Schiffmann (FernUniversitaet in Hagen, Germany), Ivona Brandic

(University of Vienna, Austria), Soonwook Hwang (National Institute of Informatics, Japan), Ewa

Deelman (University of Southern California, USA), Chris Mattmann (NASA Jet Propulsion Laboratory,

USA), Henan Zhao (University of Manchester, UK), Bertram Ludaescher (University of California, Davis),

Thomas Fahringer (University of Innsbruck, Austria), Gregor von Laszewski (Argonne National

Laboratory, USA), Ken Kennedy, Anirban Mandal, and Chuck Koelbel (Rice University, USA) for their

comments on this paper. We thank anonymous reviewers for their constructive comments. This work is

partially supported through the Australian Research Council (ARC) Discovery Project grant and Storage

Technology Corporation sponsorship of Grid Fellowship.

REFERENCES

[1] W.M.P. van der Aalst, K. M. van Hee, and G. J. Houben. Modelling and Analysing Workflow using a Petri-net

based approach. In 2nd Workshop on Computer-supported Cooperative Work, Petri nets related formalisms,

1994; 31-50. http://citeseer.ist.psu.edu/vanderaalst94modelling.html [December 2004]

[2] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Workflow Patterns. Technical

Report, Eindhoven University of Technology, 2000.

[3] W.M.P. van der Aalst, A.H.M ter Hofstede, B. Kiepuszewski, and A. P. Barros. Advanced Workflow Patterns.

In CoopIS 2000, Lecture Notes in Computer Science (LNCS) 1901, Springer-Verlag, Heidelberg, Germany,

2000; 18-29.

[4] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet Another Workflow Language. Technical Report,

Queensland University of Technology, Brisbane, 2002.

[5] W.M.P. van der Aalst and K.M. van Hee, Workflow Management: models, methods, and Systems. MIT Press,

Cambridge, Mass., USA, 2002.

[6] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski and A.P. Barros, Workflow Patterns. URL

http://tmitwww.tm.tue.nl/research/patterns/ [December 2004].

[7] J. H. Abawajy. Fault-Tolerant Scheduling Policy for Grid Computing Systems. In 18th International Parallel

and Distributed Processing Symposium (IPDPS’04), Santa Fe, New Mexico, IEEE Computer Society (CS)

Press, Los Alamitos, CA, USA, April 26-30, 2004; 238-244.

[8] D. Abramson, J. Giddy, and L. Kotler. High Performance Parametric Modeling with Nimrod/G: Killer

Application for the Global Grid? In 14th International Parallel and Distributed Processing Symposium (IPDPS

2000), Cancun, Mexico, IEEE CS Press, Los Alamitos, CA, USA, May 1-5, 2000.

[9] M. Addis, J. Ferris, M. Greenwood, P. Li, D. Marvin, T. Oinn, and A, Wipat. Experiences with e-Science

Workflow Specification and Enactment in Bioinformatics, In UK e-Science All Hands Meeting 2003, IOP

Publishing Ltd, Bristol, UK, 2003; 459-467.

[10] G. Allen, K. Davis, K. N. Dolkas, N. D. Doulamis, T. Goodale, T. Kielmann, A. Merzky, J. Nabrzyski, J.

Pukacki, T. Radke, M. Russell, E. Seidel, J. Shalf, and I. Taylor. Enabling Applications on the Grid – A

GridLab Overview. International Journal of High Performance Computing Applications (JHPCA), Special

Issue on Grid Computing: Infrastructure and Applications, SAGE Publications Inc., London, UK, August 2003.

 28

[11] J. Almond and D. Snelling. Unicore: Secure and Uniform Access to Distributed Resources via the World Wide

Web. White Paper, October 1998, http://www.fz-juelich.de/zam/RD/coop/unicore/whitepaper.ps [December

2004].

[12] I. Altintas, A. Birnbaum, K. Baldridge, W. Sudholt, M. Miller, C. Amoreira, Y. Potier, and B. Ludaescher. A

Framework for the Design and Reuse of Grid Workflows, International Workshop on Scientific Applications on

Grid Computing (SAG'04), LNCS 3458, Springer, 2005.

[13] K. Amin and G. von Laszewski. GridAnt: A Grid Workflow System. Manual, February 2003, http://www-

unix.globus.org/cog/projects/gridant/gridant-manual.pdf [December 2004].

[14] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, J. Klein, F. Leymann, K. Liu, D. Roller, D. Smith, S.

Thatte, I. Trickovic, S. Weerawarana. Business Process Execution Language for Web Services Version 1.1, 05

May 2003, http://www-128.ibm.com/developerworks/library/ws-bpel/ [Feb 2005]

[15] The Apache Ant Project. http://ant.apache.org/ [December 2004].

[16] D. A. Bacigalupo, S. A. Jarvis, L. He, and G. R. Nudd. An Investigation into the application of different

performance techniques to e-Commerce applications. In Workshop on Performance Modelling, Evaluation and

Optimization of Parallel and Distributed Systems, 18th IEEE International Parallel and Distributed Processing

Symposium (IPDPS), Santa Fe, New Mexico, IEEE CS Press, Los Alamitos, CA, USA, April 26-30, 2004.

[17] R. Bastos, D. Dubugras, and A. Ruiz. Extending UML Activity Diagram for Workflow Modeling in Production

Systems. In 35th Annual Hawaii International Conference on System Sciences (HICSS’02), Big Island, Hawaii,

IEEE CS Press, Los Alamitos, CA, USA, January 07 -10, 2002.

[18] F. Berman, A. Chien, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman, J.

Mellor-Crummey, D. Reed, L. Torczon, and R. Wolski. The GrADS Project: Software Support for High-Level

Grid Application Development. International Journal of High Performance Computing Applications(JHPCA),

15(4):327-344, SAGE Publications Inc., London, UK, Winter 2001.

[19] I. Brandic, S. Benkner, G. Engelbrecht, and R. Schmidt, Towards Quality of Service Support for Grid

Workflows, First European Grid Conference (EGC 2005), Amsterdam, The Netherlands, Feb 2005.

[20] T.D.Braun, H. J. Siegel, N. Beck, L. Bölöni, M. Maheswaran, A. I. Reuther, J. P. Robertson, M. D. Theys, and

B. Yao. A Taxonomy for Describing Matching and Scheduling Heuristics for Mixed-Machine Heterogeneous

Computing Systems. In 17th Symposium on Reliable Distributed Systems. West Lafayette, IN. IEEE CS Press,

Los Alamitos, CA, October 1998: 330-335.

[21] R. Buyya, D, Abramson, and J. Giddy. Nimrod/G: An Architecture of a Resource Management and Scheduling

System in a Global Computational Grid, HPC Asia 2000, Beijing, China, IEEE CS Press, Los Alamitos, CA,

USA, May 14-17, 2000; 283-289.

[22] R. Buyya, D. Abramson, and J. Giddy. A Case for Economy Grid Architecture for Service-Oriented Grid

Computing. In 10th IEEE International Heterogeneous Computing Workshop (HCW 2001), San Francisco,

California, USA , IEEE CS Press, Los Alamitos, CA, USA, April 2001.

[23] R. Buyya and S. Venugopal. The Gridbus Toolkit for Service Oriented Grid and Utility Computing: An

Overview and Status Report. In 1st IEEE International Workshop on Grid Economics and Business Models,

GECON 2004, Seoul, Korea, IEEE CS Press, Los Alamitos, CA, USA, April 23, 2004; 19-36.

[24] J. Cao, S. A. Jarvis, S. Saini, D. J. Kerbyson and G. R. Nudd. ARMS: An Agent-based Resource Management

System for Grid Computing. Scientific Programming. Special Issue on Grid Computing, 10(2):135-148, IOS

Press, Amsterdam, Netherlands, 2002.

[25] J. Cao, S. A. Jarvis, S. Saini, G. R. Nudd. GridFlow:Workflow Management for Grid Computing. In 3rd

International Symposium on Cluster Computing and the Grid (CCGrid), Tokyo, Japan, IEEE CS Press, Los

Alamitos, May 12-15, 2003.

[26] J. Cardoso. Stochastic Workflow Reduction Algorithm. Technical Report, LSDIS Lab, Department of

Computer Science University of Georgia, 2002.

[27] J. Cardoso, and A. Sheth. Semantic E-Workflow Composition. Journal of Intelligent Information Systems,

21(3):191-225, Kluwer Academic Publishers, Netherlands, 2003.

[28] J. Cardoso, J. Miller, A. Sheth and J. Arnold. Modeling Quality of Service for Workflows and Web Service

Processes. Web Semantics Journal: Science, Services and Agents on the World Wide Web, 1(3):281-308,

Elsevier Inc, MA, USA, 2004.

[29] T. L. Casavant and J. G. Kuhl. A Taxonomy of Scheduling in General-purpose Distributed Computing Systems,

IEEE Transactins on Software Engineering, 14(2):141-154, IEEE CS Press, Los Alamitos, Feb. 1988.

[30] A. Chervenak, E. Deelman, I. Foster, L. Guy, W. Hoschek, A. Lamnitchi, C. Kesselman, P. Kunst, M. Ripeanu,

B. Schwartzkopf, H. Stockinger, K. Stockinger, and B. Tierney. Giggle : A Framework for Constructing

Scalable Replica Location Services. In Supercomputing (SC2002), Baltimore, USA: IEEE Computer Society,

Washington, DC, USA, November 16-22, 2002.

 29

[31] G. Clemm, J.F. Reschke, E. Sedlar, J. Whitehead. Web Distributed Authoring and Versioning (WebDAV)

Access Control Protocol, the Internet Society, May 2004.

[32] K. Cooper, A. Dasgupata, K. Kennedy, C. Koelbel, A. Mandal, G. Marin, M. Mazina, J. Mellor-Crummey, F.

Berman, H. Casanova, A. Chien, H. Dail, X. Liu, A. Olugbile, O. Sievert, H. Xia, L. Johnsson, B. Liu, M. Patel,

D. Reed, W. Deng, C. Mendes, Z. Shi, A. YarKhan, J. Dongarra. New Grid Scheduling and Rescheduling

Methods in the GrADS Project. NSF Next Generation Software Workshop, International Parallel and

Distributed Processing Symposium, Santa Fe, IEEE CS Press, Los Alamitos, CA, USA, April 2004.

[33] D. Crichton, J. S. Hughes and S. Kelly. A Science Data System Architecture for Information Retrieval. In

Clustering and Information Retrieval, Kluwer Academic Publishers, December 2003.

[34] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid Information Services for Distributed Resource

Sharing. In 10th IEEE International Symposium on High Performance Distributed Computing, San Francisco,

CA, USA: IEEE CS Press, Los Alamitos, CA, USA, 7-9 August 2001.

[35] D. Hollinsworth. The Workflow Reference Model, Workflow Management Coalition, TC00-1003, 1994.

[36] DAGMan Application. http://www.cs.wisc.edu/condor/manual/v6.4/2_11DAGman_Applicaitons.html

[December 2004]

[37] H. J. Dail. A Modular Framework for Adaptive Scheduling in Grid Application Development Environments.

Master’s Thesis, UCSD Technical Report CS2002-0698, University of California at San Diego, March 2002.

[38] H. Dail, H. Casanova, and F. Berman. A Decoupled Scheduling Approach for the GrADS Program

Development Environment. Journal of Parallel Distributed Computing, 63(5):505-524, Elsevier Inc., MA, USA,

2003.

[39] E. Deelman, C. Kesselman, and G. Mehta. Transformation Catalog Design for GriPhyN. Technical Report

GriPhN-2001-17, 2001.

[40] E. Deelman, J. Blythe, Y. Gil, and C. Kesselman. Workflow Management in GriPhyN. The Grid Resource

Management, Kluwer, Netherlands, 2003.

[41] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, K. Vahi. Mapping Abstract Complex Workflows onto

Grid Environments. Journal of Grid Computing, 1:25-39, Kluwer Academic Publishers, Netherlands, 2003.

[42] E. Deelman, J. Blythe, Y. Gil, C. Kesselman, G. Mehta, S. Patil, M. H. Su, K. Vahi, M. Livny. Pegasus:

Mapping Scientific Workflow onto the Grid. Across Grids Conference 2004, Nicosia, Cyprus, 2004.

[43] P. A. Dinda. Online Prediction of the Running Time of Tasks. Cluster Computing, 5(3):225-236, Kluwer

Academic Publishers, Netherlands, 2002.

[44] dom4j. http://www.dom4j.org [December 2004]

[45] M. Dumas and A. H.M. ter Hofstede. UML Activity Diagrams as a Workflow Specification Language. In

UML’2001 Conference, Toronto, Ontario, Canada, Lecture Notes in Computer Science (LNCS), Springer-

Verlag, Heidelberg, Germany, October 1-5, 2001.

[46] R. Eshuis and R. Wieringa. Comparing Petri Net and Activity Diagram Variants for Workflow Modelling – A

Quest for Reactive Petri Nets. Advances in Petri Nets: Petri Net Technology for Communication Based Systems;

Lecture Notes in Computer Science (LNCS), 2472:321-351, Springer- Verlag, Heidelberg, Germany, 2003.

[47] T. Fahringer, S. Pllana, and A. Villazon. AGWL: Abstract Grid Workflow Language, In International

Conference on Computational Science, Programming Paradigms for Grids and Meta-computing Systems.

Krakow, Poland, Springer-Verlag, Heidelberg, Germany, June 2004.

[48] T. Fahringer, S. Pllana, and J. Testori. Teuta: Tool Support for Performance Modeling of Distributed and

Parallel Applications, International Conference on Computational Science, Tools for Program Development

and Analysis in Computational Science, Krakow, Poland, Springer-Verlag, Heidelberg, Germany, June 2004.

[49] T. Fahringer, A. Jugravu, S. Pllana, R. Prodan, C. S. Jr, and H. L. Truong. ASKALON: a tool set for cluster and

Grid computing. Concurrency and Computation: Practice and Experience, 17:143-169, Wiley InterScience,

2005.

[50] D. Fernández-Baca. Allocating Modules to Processors in a Distributed System. IEEE Transactions on Software

Engineering, 15(11): 1427-1436, November 1989.

[51] I. Foster and C. Kesselman (editors). The Grid: Blueprint for a Future Computing Infrastructure, Morgan

Kaufmann Publishers, USA, 1999.

[52] I. Foster, C. Kesselman, S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organizations.

International Journal of Supercomputing Applications, 15 (3), 2001.

[53] I. Foster, J. Vöckler, M. Wilde, Y. Zhao. Chimera: A Virtural Data System for Representing, Querying, and

Automating Data Derivation. In 14th International Conference on Scientific and Statistical Database

Management (SSDBM), Edinburgh, Scotland, UK: IEEE CS Press, Los Alamitos, CA, USA, July 24-26, 2002.

[54] I. Foster, C. Kesselman, J. M. Nick, and S. Tuecke. The Physiology of the Grid, Technical Report, Globus

Project, http://www.globus.org/research/papers/ogsa.pdf [December 2004]

 30

[55] Freefluo Overview. http://freefluo.sourceforge.net/ [December 2004].

[56] D. Gelernter. Generative Communication in Linda, ACM Computing Surveys, 7(1):80-112, 1985.

[57] A. Galstyan, K. Czajkowski, and K. Lerman. Resource Allocation in the Grid Using Reinforcement Learning,

In 3rd International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS’03), New York

City, New York, USA, IEEE CS Press, Los Alamitos, CA, USA, July 19-23, 2004.

[58] A. Geppert, M. Kradolfer, and D. Tombros. Market-based Workflow Management. International Journal of

Cooperative Information Systems, World Scientific Publishing Co., NJ, USA, 1998.

[59] Globus Project. http://www.globus.org [December 2004].

[60] Grid Resource Allocation Agreement Protocol. https://forge.gridforum.org/projects/graap-wg [December 2004].

[61] GriPhyN. http://www.griphyn.org [December 2004].

[62] Z. Guan, F. Hernandez, P. Bangalore, J. Gray, A. Skjellum, V. Velusamy, Y. Liu. Grid-Flow: A Grid-Enabled

Scientific Workflow System with a Petri Net-based Interface. Technical Report, http://

http://www.cis.uab.edu/gray/Pubs/grid-flow.pdf [December 2004].

[63] V. Hamscher, U. Schwiegelshohn, A. Streit, and R. Yahyapour. Evaluation of Job-Scheduling Strategies for

Grid Computing. In 1st IEEE/ACM International Workshop on Grid Computing (Grid 2000), Berlin, Lecture

Notes in Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, 2000; 191-202.

[64] F. Hernández, P. Bangalore, J. Gray, and K. Reilly. A Graphical Modeling Environment for the Generation of

Workflows for the Globus Toolkit. In Workshop on Component Models and Systems for Grid Applications, 18th

Annual ACM International Conference on Supercomputing (ICS 2004), Saint-Malo, France, ACM Press, New

York, NY, USA, June 2004.

[65] A. Hoheisel. User Tools and Languages for Graph-based Grid Workflows. Grid Workflow Workshop, GGF10,

Berlin, Germany, March 9, 2004.

[66] S. Hwang and C. Kesselman. Grid Workflow: A Flexible Failure Handling Framework for the Grid. In 12th

IEEE International Symposium on High Performance Distributed Computing (HPDC’03), Seattle, Washington,

USA., IEEE CS Press, Los Alamitos, CA, USA, June 22 - 24, 2003.

[67] I. Horrocks. DAML+OIL: A Reason-able Web Ontology Language. In International Conference on Extending

Database Technology (EDBT 2002), Lecture Notes in Computer Science (LNCS), 1091:11-28, Springer-

Verlag, Heidelberg, Germany, March 24-28, 2002; 2-13.

[68] S. Jang, X. Wu, V. Taylor, G. Mehta, K. Vahi, E. Deelman. Using Performance Prediction to Allocate Grid

Resources. Technical Report 2004-25, GriPhyN Project, USA.

[69] JDOM. http://www.jdom.org [December 2004]

[70] JXTA Project. http://www.jxta.org [Feb 2005]

[71] P. Kacsuk, G. Dózsa, J. Kovács, R. Lovas, N. Podhorszki, Z. Balaton, G. Gombás. P-GRADE: a Grid

Programming Environment. Journal of Grid Computing, 1(2):171-197, Kluwer Academic Publisher,

Netherlands, 2003.

[72] B. Kao and H. Garcia-Molina. Deadline Assignment in a Distributed Soft Real-Time System. IEEE

Transactions on Parallel and Distributed Systems, 8(12):1268-1274, IEEE CS Press, Los Alamitos, CA, USA

1997.

[73] K. Krauter, R. Buyya, and M. Maheswaran. A Taxonomy and Survey of Grid Resource Management Systems

for Distributed Computing. Software: Practice and Experience, 32(2):135-164, John Wiley & Sons, Inc, NJ,

USA, February 2002.

[74] G. von Laszewski, I. Foster, J. Gawor, and P. Lane. A Java Commodity Grid Kit, Concurrency and

Computation: Practice and Experience, 13(8-9): 643-662, John Wiley & Sons, Ltd, Chichester, UK, 2001.

[75] G. von Laszewski, K. Amin, M. Hategan, N. J. Zaluzec, S. Hampton, and A. Rossi. GridAnt: A Client-

Controllable Grid Workflow System. In 37th Annual Hawaii International Conference on System Sciences

(HICSS'04), Big Island, Hawaii: IEEE CS Press, Los Alamitos, CA, USA, January 5-8, 2004.

[76] G. Von Laszewski. Java CoG Kit Workflow Concepts for Scientific Experiments. Technical Report, Argonne

National Laboratory, Argonne, IL, USA, 2005.

[77] G. von Laszewski, M. Hategan. Java CoG Kit Karajan/GridAnt Workflow Guide. Technical Report, Argonne

National Laboratory, Argonne, IL, USA, 2005.

[78] A. Lerina, C. Aniello, G. Pierpaolo, and V. M. Luisa. FlowManager: A Workflow Management System Based

on Petri Nets. In 26th Annual International Computer Software and Applications Conference, Oxford, England,

IEEE CS Press, Los Alamitos, CA, USA, August 2002;1054-1059.

[79] F. Leymann. Web Services Flow Language (WSFL 1.0), May 2001, http://www-

306.ibm.com/software/solutions/webservices/pdf/WSFL.pdf [December 2004]

[80] D. C. Li and N. Ishii. Scheduling Task Graphs onto Heterogeneous Multiprocessors. TENCON’94, IEEE

 31

Region 10’s Ninth Annual International Conference, Theme: Frontiers of Computer Technology, IEEE CS

Press, Los Alamitos, CA, USA, 1994.

[81] M. Litzkow, M. Livny, and M. Mutka. Condor - A Hunter of Idle Workstations. In 8th International Conference

of Distributed Computing Systems (ICDCS), IEEE CS Press, Los Alamitos, CA, USA, June 1988; 104-111.

[82] X. Liu, J. Liu, J. Eker, and E. A. Lee. Heterogeneous Modeling and Design of Control Systems, Software-

Enabled Control: Information Technology for Dynamical Systems, Tariq Samad and Gary Balas (eds.), Wiley-

IEEE Press, April 2003.

[83] R. Lovas, G. Dózsa, P. Kacsuk, N. Podhorszki, D. Drótos. Workflow Support for Complex Grid Applications:

Integrated and Portal Solutions. In 2nd European Across Grids Conference, Nicosia, Cyprus, 2004.

[84] B. Ludäscher, I. Altintas, and A. Gupta. Compiling Abstract Scientific Workflows into Web Service Workflows.

In 15th International Conference on Scientific and Statistical Database Management, Cambridge, Massachusetts,

USA., IEEE CS Press, Los Alamitos, CA, USA., July 09-11, 2003;241-244

[85] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao. Scientific

Workflow Management and the KEPLER System. Concurrency and Computation: Practice & Experience,

Special Issue on Scientific Workflows, to appear, 2005

[86] A. Luther, R. Buyya, R. Ranjan, and S. Venugopal. Peer-to-Peer Grid Computing and a .NET-based Alchemi

Framework, High Performance Computing: Paradigm and Infrastructure, Laurence Yang and Minyi Guo

(editors), ISBN: 0-471-65471-X, Wiley Press, New Jersey, USA, June 2005.

[87] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen, and R. Freund. Dynamic Matching and Scheduling of a Class

of Independent Tasks onto Heterogeneous Computing Systems. In 8th Heterogeneous Computing Workshop

(HCW’99), Juan, Puerto Rico, IEEE Computer Society, Los Alamitos, April 12, 1999.

[88] A. Mani and A. Nagarajan. Understanding Quality of Service for Web Services. http://www-

106.ibm.com/developerworks/library/ws-quality.html [December 2004]

[89] D.C. Marinescu. A Grid Workflow Management Architecture. GGF White Paper, 2002.

[90] G. Mateescu. Quality of Service on the Grid via Metascheduling with Resource Co-scheduling and Co-

reservation. International Journal of High Performance Computing Applications, 17(3):209-218, SAGE

Publications Inc, London, UK, August 2003.

[91] A. Mayer, S. McGough, N. Furmento, W. Lee, S. Newhouse, and J. Darlington. ICENI Dataflow and Workflow:

Composition and Scheduling in Space and Time. In UK e-Science All Hands Meeting, Nottingham, UK, IOP

Publishing Ltd, Bristol, UK, September 2003; 627-634.

[92] A. Mayer, S. McGough, N. Furmento, W. Lee, M. Gulamali, S. Newhouse, and J. Darlington. Workflow

Expression: Comparison of Spatial and Temporal Approaches. In Workflow in Grid Systems Workshop, GGF-

10, Berlin, March 9, 2004.

[93] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Workflow Enactment in ICENI. In UK e-

Science All Hands Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol, UK, Sep. 2004; 894-900.

[94] S. McGough, L. Young, A. Afzal, S. Newhouse, and J. Darlington. Performance Architecture within ICENI. In

UK e-Science All Hands Meeting, Nottingham, UK, IOP Publishing Ltd, Bristol, UK, Sep. 2004; 906-911.

[95] Message Passing Interface Forum, http://www.mpi-forum.org/ [Feb 2005]

[96] R. A. Moreno. Job Scheduling and Resource Management Techniques in Dynamic Grid Environment. In 1st

European Across Grids Conference, Spain, Lecture Notes in Computer Science (LNCS), Springer-Verlag,

Heidelberg, Germany, February 2003.

[97] T. Murata, Temporal Uncertainty and Fuzzy-Timing High-Level Petri Nets. In Application and Theory of Petri

Nets, Lecture Notes in Computer Science (LNCS), 1091:11-28, Springer-Verlag, Heidelberg, Germany, 1996.

[98] G. R. Nudd, D. J. Kerbyson, E. Papaefstathiou, S.C. Perry, J.S. Harper, and D. V. Wilcox. PACE- A Toolset for

the performance Prediction of Parallel and Distributed Systems. International Journal of High Performance

Computing Applications (JHPCA), Special Issues on Performance Modelling- Part I, 14(3): 228-251, SAGE

Publications Inc., London, UK, 2000.

[99] Object Management Group. Unified Modeling Language (UML), http://www.uml.org/ [Feb 2005]

[100] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver and K. Glover, M.R. Pocock,

A. Wipat, and P. Li. Taverna: a tool for the composition and enactment of bioinformatics workflows.

Bioinformatics, 20(17):3045-3054, Oxford University Press, London, UK, 2004.

[101] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Greenwood, T. Carver, A. Wipat, and P. Li. Taverna, Lessons in

Creating a Workflow Environment for the Life Sciences. GGF10, Berlin, Germany, 2004.

[102] OMG. Unified Modeling Language Version 1.3., July 1999.

[103] C. Patel, K. Supekar, and Y. Lee. A QoS Oriented Framework for Adaptive Management of Web Service based

Workflows. Lecture Notes in Computer Science, 2736:826-835, Springer-Verlag, Heidelberg, Germany, 2003.

[104] C.A. Petri. Kommunikation mit Automaten. PhD Thesis, Institut für instrumentelle Mathematik, Bonn, 1962

 32

[105] S. Pllana, T. Fahringer, J. Testori, S. Benkner, and I. Brandic, Towards an UML Based Graphical

Representation of Grid Workflow Applications. In 2nd European AcrossGrids Conference (AxGrids 2004),

Nicosia, Cyprus, LNCS, Springer-Verlag, Heidelberg, Germany, January 28-30, 2004.

[106] R. Prodan and T. Fahringer. Dynamic Scheduling of Scientific Workflow Applications on the Grid: A Case

Study. In 20th Annual ACM Symposium on Applied Computing (SAC 2005), New Mexico USA, ACM Press,

New York, NY, USA, March 2005.

[107] R. L. Ribler, H. Simitci, and D. A. Reed. The Autopilot Performance-directed Adaptive Control System. Future

Generation Computer Systems, 18(1): 175-187, Elsevier Inc, MA, USA, 2001.

[108] H. G. Rotithor, Taxonomy of Dynamic Task Scheduling Schemes in Distributed Computing Systems, IEE

Proceedings of Computers and Digital Techniques, 141(1):1-10, London, UK, January 1994.

[109] S. Fitzgerald, I. Foster, C. Kesselman, G. Von Laszewski, W. Smith and S. Tuecke. A Directory Service for

Configuring High-Performance Distributed Computations. In 6th IEEE Symposium on High-Performance

Distributed Computing, Portland, OR, IEEE CS Press, Los Alamitos, August 1997; 365-375.

[110] R. Sakellariou and H. Zhao. A Low-Cost Rescheduling Policy for Efficient Mapping of Workflows on Grid

Systems. Scientific Programming, 12(4):253-262, IOS Press, Netherlands, December 2004.

[111] M. Senger, P. Rice, and T. Oinn. Soaplab-a Unified Sesame Door to Analysis Tools. In UK e-Science All Hands

Meeting, September 2003; 509-513.

[112] A. Slominski, D. Gannon, and G. Fox. Introduction to Workflows and Use of Workflows in Grids and Grid

Portals. GGF 9, Chicago, USA, 7 Oct, 2004.

[113] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times Using Historical Information. In

Workshop on Job Scheduling Strategies for Parallel Processing, 12th International Parallel Processing

Symposium & 9th Symposium on Parallel and Distributed Processing (IPPS/SPDP '98), IEEE CS Press, Los

Alamitos, CA, USA., 1998.

[114] S. S. Song and K. Hwang. Security Binding for Trusted Job Outsourcing in Open Computational Grids. IEEE

Transactions on Parallel and Distributed Systems (TPDS), submitted May 2004, revised Dec. 2004.

[115] S. S. Song, Y. K. Kwok, and K. Hwang. Trusted Job Scheduling in Open computational Grids: Security-Driven

heuristics and A Fast Genetic Algorithm. In 19th IEEE International Parallel & Distributed Processing

Symposium (IPDPS-2005), Denver, CO, USA., IEEE Computer Society Press, Los Alamitos, CA, USA., April

4-8, 2005.

[116] D.P. Spooner, J. Cao, J. D. Turner, H. N. Lin Chio Keung, S. A. Jarvis, and G.R. Nudd. Localized Workload

Management Using Performance Prediction and QoS Contracts. In 18th Annual UK Performance Engineering

Workshop, Glasgow, UK, 2002; 69-80.

[117] D.P. Spooner, J. Cao, S. A. Jarvis, L. He, and G. R. Nudd. Performance-aware Workflow Management for Grid

Computing. The Computer Journal, Oxford University Press, London, UK, 2004.

[118] R. D. Stevens, A. J. Robinson, and C. A. Goble. myGrid:Personalized Bioinformatics on the Information Grid.

Bioinformatics, 19(Suppl. 1):i302-i304, Oxford University Press, London, UK, 2003.

[119] A. Sulistio and R. Buyya. A Grid Simulation Infrastructure Supporting Advance Reservation, In 16th

International Conference on Parallel and Distributed Computing and Systems (PDCS 2004), MIT Cambridge,

Boston, USA, ACTA Press, CA, USA, November 9-11, 2004.

[120] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor - A Distributed Job Scheduler. Beowulf Cluster

Computing with Linux, The MIT Press, MA, USA, 2002.

[121] Taverna User Manual. http://taverna.sourceforge.net/manual/docs.word.html [December 2004].

[122] I. Taylor, R. Philp, M.Shields and O.Rana, and B. Schutz. The Consumer Grid. Global Grid Forum (2002).

Toronto, Ontario, Canada, February 17-20, 2002.

[123] I. Taylor, M. Shields, and I. Wang. Resource Management of Triana P2P Services. Grid Resource Management,

Kluwer, Netherlands, June 2003.

[124] D. Thain, T. Tannenbaum, and M. Livny. Condor and the Grid. Grid Computing: Making the Global

Infrastructure a Reality, John Wiley & Sons, NJ, USA, 2003.

[125] S. Thatte. XLANG-Web Services for Business Process Design, Microsoft Corporation, 2001,

http://www.gotdotnet.com/team/xml_wsspecs/xlang-c/default.htm [Feb 2005]

[126] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, C. Kesselman, T. Maguire, T. Sandholm, P. Vanderbilt,

and D. Snelling. Open Grid Services Infrastructure (OGSI) Version 1.0. Global Grid Forum Draft

Recommendation, June 27, 2003.

[127] UDDI Technical White Paper, September 2000, http://www.uddi.org [December 2004].

[128] Unicore Forum. Unicore Plus Final Report: Uniform Interface to Computing Resource. 2003,

http://www.unicore.org/documents/UNICOREPlus-Final-Report.pdf [December 2004].

 33

[129] S. Vadhiyar and J. Dongarra. A Performance Oriented Migration Framework for the Grid. In IEEE Computing

Clusters and the Grid (CCGrid), Tokyo, Japan, IEEE CS Press, Los Alamitos, May 12-15, 2003.

[130] S. Venugopal, R. Buyya, and L. Winton. A Grid Service Broker for Scheduling Distributed Data-Oriented

Applications on Global Grids. In 2nd International Workshop on Middleware for Grid Computing, Middleware

2004, Toronto, Ontario - Canada, ACM Press, New York, NY, USA, October 18, 2004.

[131] H.M.W. Verbeek, A. Hirnschall, and W.M.P. van der Aalst. XRL/Flower: Supporting Inter-Organizational

Workflows Using XML/Petri-nets Technology. In Workshop on Web Services, e-Business, and the Semantic

Web (WES): Foundations, Models, Architecture, Engineering and Applications, The Fourteenth International

Conference on Advanced Information Systems Engineering (CAiSE 2002), Toronto, Ontario, Canada, Lecture

Notes in Computer Science (LNCS), Springer-Verlag, Heidelberg, Germany, May 27-28, 2002; 535-552.

[132] W3C. Extensible Markup Language (XML) 1.0 (Third Edition), http://www.w3.org/TR/REC-xml/ [Feb 2005]

[133] W3C. Web Services, 2002, http://www.w3.org/2002/ws/ [Feb 2005]

[134] W3C. XML Schema, http://www.w3.org/XML/Schema [Feb 2005]

[135] W3C. XML Pipeline Definition Language Version 1.0, http://www.w3.org/TR/2002/NOTE-xml-pipeline-

20020228/ [Feb 2005]

[136] R. Wolski, N. T. Spring, and J. Hayes. The Network Weather Service: A Distributed Resource Performance

Forecasting Service for Metacomputing. Future Generation Computer Systems, 15(5-6):757-768, 1999.

[137] Workflow Management Coalition. http://www.wfmc.org/ [December 2004]

[138] World Wide Web Consortium. Web Services Description Language (WSDL) Version 1.2,

http://www.w3.org/TR/wsdl12 [December 2004]

[139] C. Wroe, R. Stevens, C. Goble, A. Roberts, and M. Greenwood. A Suite of DAML+OIL Ontologies to Describe

Bioinformatics Web Services and Data. International Journal of Cooperative Information Systems, 12(2):197-

224, World Scientific Publishing Co., NJ, USA, 2003.

[140] X. F. Wu, V. Taylor, and R. Stevens. Design and Implementation of Prophesy Automatic Instrumentation and

Data Entry System. In 13th IASTED International Conference on Parallel and Distributed Computing and

Systems (PDCS2001), Anaheim, CA, IASTED Press, Philadelphia, PA, USA, August 2001.

[141] R. Yahyapour, P. Wieder, A. Pugliese, D. Talia, and J. Hahm. Grid Scheduling Use Cases. White Paper, Global

Grid Forum, 19 July, 2004.

[142] L. Young and J. Darlington. Scheduling Componentized Applications on a Computational Grid. MPhil/PhD

Transfer Report, Imperial College London, University of London, UK, 2004.

[143] L. Young, S. McGough, S. Newhouse, and J. Darlington. Scheduling Architecture and Algorithms within the

ICENI Grid Middleware. In UK e-Science All Hands Meeting, IOP Publishing Ltd, Bristol, UK, Nottingham,

UK, Sep. 2003; 5-12.

[144] J. Yu and R. Buyya. A Novel Architecture for Realizing Grid Workflow using Tuple Spaces. In 5th IEEE/ACM

International Workshop on Grid Computing (Grid 2004), Pittsburgh, USA, IEEE CS Press, Los Alamitos, CA,

USA, Nov. 8, 2004.

[145] J. Yu, S. Venugopal, and R. Buyya. A Market-Oriented Grid Directory Service for Publication and Discovery of

Grid Service Providers and their Services. Technical Report, GRIDS-TR-2003-0, Grid Computing and

Distributed Systems (GRIDS) Laboratory, The University of Melbourne, Australia, January 2003.

[146] J. Yu, R. Buyya, and C. K. Tham. QoS-based Scheduling of Workflow Applications on Service Grids.

Technical Report, GRIDS-TR-2005-8, Grid Computing and Distributed Systems Laboratory, University of

Melbourne, Australia, June 9, 2005.

[147] S. Y. Zhao and V. Lo. Result Verification and Trust-based Scheduling in Open Peer-to-Peer Cycle Sharing

Systems. Technical Report, University of Oregon, USA, 2005.

[148] G. Zheng, T. Wilmarth, P. Jagadishprasad, and L. V. Kalé. Simulation-based Performance Prediction for Large

Parallel Machines. International Journal of Parallel Programming, Kluwer Academic Publishers, The

Netherlands, 2005, accepted.

