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Abstract: Grids and peer-to-peer (P2P) networks have 
emerged as popular platforms for the next generation 
parallel and distributed computing. In these 
environments, resources are geographically distributed, 
managed and owned by various organizations with 
different policies, and interconnected by wide-area 
networks or the Internet. This introduces a number of 
resource management and application scheduling 
challenges in the domain of security, resource and policy 
heterogeneity, fault tolerance, dynamic resource 
conditions.. In these dynamic distributed computing 
environments, it is hard and challenging to carry out 
resource management design studies in a repeatable and 
controlled manner as resources and users are 
autonomous and distributed across multiple 
organizations with their own policies. Therefore, 
simulations have emerged the most feasible technique 
for analyzing policies for resource allocation.  

This paper presents emerging trends in distributed 
computing and their promises for revolutionizing the 
computing field, and identifies their distinct 
characteristics and challenges in building them. We 
motivate opportunities for modeling and simulation 
communities and present our discrete-event grid 
simulation toolkit, called GridSim, used by researchers 
world-wide for investigating the design of utility-
oriented computing systems such as Data Centers and 
Grids. We present various case studies on the use of 
GridSim in modeling and simulation of Business Grids, 
parallel applications scheduling, workflow scheduling, 
and service pricing and revenue management. 

1 Introduction 
The proliferation of the Internet, the growing 
popularity of the Web, and the availability of 
powerful computers and high-speed networks as 
low-cost commodity components are changing the 
way we do parallel and distributed computing. 
These technological advances have led to the 
possibility of using networks of computers as a 
single, unified computing resource, known as 
cluster computing [1]. Clusters appear in various 
forms: high-performance clusters, high-availability 
clusters, and high throughput clusters.  In addition, 
computer scientists in the mid-1990s, inspired by 
the electrical power grid’s pervasiveness and 

reliability, began exploring the design and 
development of a new IT (Information 
Technology) infrastructure exhibiting quality of 
seamless access to computing resources distributed 
across different organisations [2]. This led to 
growing interest in coupling geographically 
distributed resources for solving large-scale 
problems, leading to what is popularly called the 
Grid [3] and peer-to-peer (P2P) computing [4] 
networks.  A large number of computing devices 
ranging from high-end computing systems such as 
supercomputers, to specialized systems such as 
visualization devices, storage systems, sensors, 
and scientific instruments, are logically coupled 
together in a Grid (see Figure 1) that serves as a 
Cyberinfrastructure supporting collaborative 
scientific and business applications. 

In the business world, cluster architecture-based 
computing systems, called data centers, offering 
high-performance and reliable hosting services are 
widely used. The low-cost availability of data 
center services has encouraged many businesses to 
outsource their computing needs; thus heralding a 
new utility computing model. 

Utility computing is envisioned to be the next 
generation of IT evolution that depicts how 
computing needs of users can be fulfilled in the 
future IT industry [5]. Its analogy is derived from 
the real world where service providers maintain 
and supply utility services, such as electrical 
power, gas, and water to consumers. Consumers in 
turn pay service providers based on their usage. 
Therefore, the underlying design of utility 
computing is based on a service provisioning 
model, where users pay providers for using 
computing power only when they need to use.  

The emerging cloud computing systems such as 
Amazon EC2 (Elastic Compute Cloud) are the 
recent incarnation of data centers [49]. They have 
high potential for enabling the creation of market-
maker that further virtualizes clouds from different 
providers. Thus bringing buyers and sellers 
together, and realizing virtual Grid computing. 



 2 

  
 

 

����������	
�����������

����������	
����������

����������	
	���

�����
�������
�	���
��	
������������

��������������
��
	�����������

2100210021002100

2100210021002100

������

�������������

����
�
�������
������

���������	
�������

����������

 
Figure 1: Grid as a Cyberinfrastructure for coupling and sharing distributed resources. 

These developments leading to realization of 
the vision of Leonard Kleinrock, one of the chief 
scientists of the original Advanced Research 
Projects Agency Network (ARPANET) project 
which seeded the Internet, who stated in 1969 [6]: 
“As of now, computer networks are still in their 
infancy, but as they grow up and become 
sophisticated, we will probably see the spread of 
‘computer utilities’ which, like present electric and 
telephone utilities, will service individual homes 
and offices across the country.”  

1.1 Potential of Grids as Service and 
Utility-Oriented Computing Systems 

Grid is defined as a type of parallel and distributed 
system that enables the sharing, selection, and 
aggregation of geographically distributed 
"autonomous" resources dynamically at runtime 
depending on their availability, capability, 
performance, cost, and users' quality-of-service 
requirements. Grid computing systems support 
coordinated resource sharing and problem solving 
in dynamic, multi-institutional virtual 
organizations (VOs) [24]. A high level view of a 
global Grid with its key components is shown in 
Figure 2. A Grid user can easily accesses globally 
distributed resources by interacting with a Grid 
resource broker. The user essentially interacts with 
a resource broker that hides the complexities of 
Grid computing [14]. The broker discovers 
resources that the user can access using 
information services, negotiates for access costs 
using trading services, maps tasks to resources 

(scheduling), stages the application and data for 
processing (deployment), starts job execution, and 
finally gathers the results. It is also responsible for 
monitoring and tracking application execution 
progress along with adapting to the changes in 
Grid runtime environment conditions and failures. 

Grids offer a number of benefits such as: 

�  Transparent and on-demand access to 
distributed and heterogeneous resources. 

�  Improved productivity with reduced 
processing time. 

�  Provisioning of extra resources to solve 
problems that were previously unsolvable 
due to the lack of resources. 

�  A more resilient infrastructure with 
autonomic management capabilities [50], 
on-demand aggregation of resources from 
multiple sites to meet unforeseen demand. 

�  Seamless computing power achieved by 
exploiting under-utilized or unused 
resources that are otherwise wasted. 

�  Maximum utilization of computing 
facilities to justify IT capital investments. 

�  Coordinated resource sharing and 
problem solving through VOs that 
facilitates collaboration across physically 
dispersed departments and organisations. 

�  Service Level Agreement (SLA) based 
resource allocation to meet Quality of 
Service (QoS) requirements. 

�  Reduced administration effort with 
integration of resources as compared to 
managing multiple standalone systems. 
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Figure 2: A high level view of a global Grid. 

Service-oriented architecture (SOA) and Web-
services technologies are extensively used in the 
construction of Grid middleware and applications 
[12]. The Grid architecture consists of four key 
layers: fabric, core middleware, user-level 
middleware, and applications [11]. The Grid fabric 
includes computers (low-end and high-end 
computers including clusters), networks, scientific 
instruments, and their resource management 
systems. The core Grid middleware provides 
services that are essential for securely accessing 
remote resources uniformly and transparently. The 
services they provide include security and access 
management, remote job submission, storage, and 
resource information. The user-level middleware 
provides higher-level tools such as resource 
brokers, application development and adaptive 
runtime environment. The Grid applications 
include those constructed using Grid libraries or 
legacy applications that can be Grid-enabled using 
user-level middleware tools. 

A diverse range of applications are explored 
using Grids, some of which include: aircraft 
engine diagnostics, earthquake engineering, virtual 
observatory, bioinformatics, drug discovery, 
digital image analysis, high energy physics, 
astrophysics, and multi-player gaming [3]. Grids 
can be primarily classified into the following 
types, depending on the nature of their applications 
they are driving [30]:  

�  Computational Grid: Aggregates the 
computational power of globally distributed 
computers (e.g. SETI@Home [9]  and 
TeraGrid [42]).  

�  Data Grid: Emphasizes on a global-scale 
management of data to provide data access, 
integration, and processing through 

distributed data repositories (e.g. LHCGrid 
[26]).  

�  Application Service Provisioning (ASP) 
Grid: Focuses on providing access to 
remote applications, modules, and libraries 
hosted on data centers or Computational 
Grids (e.g. NetSolve [34]).  

�  Interaction Grid: Focuses on interaction and 
collaborative visualization between 
participants (e.g. AccessGrid [15]).  

�  Knowledge Grid: Aims towards knowledge 
acquisition, processing, management, and 
provides business analytics services driven 
by integrated data mining services (e.g. 
KnowledgeGrid [20] and EU Data Mining 
Grid [45]).   

�  Utility Grid: Focuses on providing all the 
Grid services including compute power, 
data, and services to end-users as IT utilities 
on a subscription basis and the 
infrastructure necessary for negotiation of 
required QoS, establishment and 
management of contracts, and allocation of 
resources to meet competing demands from 
multiple users and applications (e.g. Utility 
Data Center [25] at enterprise level and 
Gridbus [46] at global level). 

These types of Grids can be logically realized 
as a layer of services with one building on top of 
the other, as shown in Figure 3. A Grid on a higher 
layer utilizes the services of Grids that operate at 
lower layers in the design. For example, a Data 
Grid utilizes the services of Computational Grid 
for data processing, hence builds on it. Moreover, 
lower-layer Grids focus heavily on infrastructural 
aspects, whereas higher-layer ones focus on users 
and QoS delivery.  
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Figure 3: Types of Grids and their focus. 

1.2 Grid Characteristics and Challenges 
The Grid environments comprise heterogeneous 
resources, fabric management systems (single 
system image OS, queuing systems) and policies, 
and applications with varied requirements 
(compute, memory, network intensive). The users: 
producers (also called resource owners) and 
consumers (also called end-users) have different 
goals, objectives, strategies, and demand patterns. 
More importantly both resources and end-users are 
geographically distributed with different time 
zones. In managing such complex Grid 
environments, traditional approaches to resource 
management that attempt to optimize system-wide 
measures of performance cannot be employed. 
This is because traditional approaches use 
centralized policies that need complete state 
information and a common fabric management 
policy, or decentralized consensus based policy. In 
large-scale Grid environments, it is hard to define 
an acceptable system-wide performance matrix 
and common fabric management policy. Apart 
from the centralized approach, two other 
approaches that are used in distributed resource 
management are: hierarchical and decentralized 
scheduling or a combination of them [44]. We note 
that similar heterogeneity and decentralization 
complexities exist in human economies where 
market driven economic models have been used to 
successfully manage them. Therefore, in [16], we 
investigated on the use of economics as a 
metaphor for management of resources in Grid 
computing environments.  

The researchers and students, investigating 
resource management and scheduling for large 
scale distributed computing, need a simple 
framework for deterministic modeling and 
simulation of resources and applications to 

evaluate scheduling strategies. For most 
investigators who do not have access to ready-to-
use special experimental infrastructures such as 
France’s Grid 5000 and Netherlands’s DAS [47], it 
is expensive and time consuming to build them. 
Also, even for those who have access, the testbed 
size is limited to a few resources and domains; and 
testing scheduling algorithms for scalability and 
adaptability, and evaluating scheduler performance 
for various applications and resource scenarios is 
harder to trace. In addition, it is challenging to 
create a repeatable and controlled environment for 
experimentation and evaluation of scheduling 
strategies. This is because resources in Grids such 
as TeraGrid in US are dynamic and span across 
multiple administrative domains, each with their 
own policies, users, and priorities. 

Simulation appears to be one of the most 
feasible technique for analyzing algorithms and 
policies for resource allocation. Simulation works 
well without making the analysis mechanism 
unnecessary complex, by avoiding the overhead of 
co-ordination of real resources. Simulation is also 
effective in working with very large hypothetical 
problems that would otherwise require 
involvement of a large number of active users and 
resources, which is very hard to coordinate and 
build at large-scale research environment for 
investigation purpose. 

To support studies in resource management for 
Grids, we have developed a Java-based simulation 
toolkit, called GridSim [17], for simulating various 
types of Grids. The Grid computing researchers 
and educators also recognized the importance and 
the need for such a toolkit for modeling and 
simulation environments [41]. It should be noted 
that this paper has a major orientation towards 
Grid, however, we believe that our discussion and 
thoughts also apply equally well to P2P systems 
since resource management and scheduling issues 
in both systems are quite similar.  

The GridSim toolkit supports modeling and 
simulation of a wide range of heterogeneous 
resources, such as single or multiprocessors, 
shared and distributed memory machines such as 
workstations and clusters with different 
capabilities and configurations. It can be used for 
modeling and simulation of application scheduling 
on various parallel and distributed computing 
systems such as clusters, Grids, and P2P networks. 
In fact, P2P techniques for resource organization 
and discovery are being used in building Grids. A 
set of characteristics that helps distinguish clusters, 
Grids and P2P systems is listed in Table 1. 
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Table 1: Key Characteristics of Clusters, Grids, and P2P Systems. 

                     Systems 
Characteristics Clusters / Data Centers Grids P2P 

 Population Commodity Computers High-end computers (servers, 
clusters) 

Computers at the edge of 
network (e.g., desktop PCs) 

 Size / Scalability 100s 1000s Millions 

 Ownership Single Multiple Multiple 

 Discovery Membership Services Centralised Indexing  & 
Decentralised Info Services 

Decentralized 

 Service Negotiation Yes Yes, SLA based Lack of enterprise quality 
support 

 User Management Centralised Decentralised and also VO (virtual 
organisation)-based 

Decentralised 

 Resource management Centralized Distributed Distributed 

 Allocation / Scheduling Centralised Decentralised Decentralised  

 Standards /  Inter- 
Operability 

VIA based Web services-based and Open Grid 
Forum efforts 

No standards 

 Single System Image Yes No No 

 Capacity Stable & Guaranteed Varies, but high Varies 

 Throughput Medium High Very High 

 Interconnection Network Dedicated, high-end Mostly public Internet, Some used 
high-end networks   

Public Internet 

 Speed (Latency, 
Bandwidth) 

Low, high High, Low High, Low 

 Application Drivers Science, business, 
enterprise computing, web 
applications, data centers 

e-Science, e-Business, multi-party 
conferencing (e.g., AccessGrid), 
integration of scientific instruments 

Sharing of files (e.g., music 
files), communication (e.g., 
Skype) 

 
The resources in clusters are located in a single 

administrative domain and managed by a single 
entity whereas, in Grid and P2P systems, resources 
are geographically distributed across multiple 
administrative domains with their own 
management policies and goals. Another key 
difference between cluster and Grid/P2P systems 
arises from the way application scheduling is 
performed. The schedulers in cluster systems 
focus on enhancing the overall system 
performance and utility, as they are responsible for 
the whole system. Whereas, schedulers in 
Grid/P2P systems called resource brokers, focus 
on enhancing the performance of a specific 
application in such a way that its end-users’ QoS 
requirements are met. 

2 Grid Simulation Tools 

Simulation has been used extensively for modeling 
and evaluation of real world systems, from 
business process and factory assembly line to 
computer systems design. Accordingly, over the 
years, modeling and simulation has emerged as an 
important discipline and many standard and 
application-specific tools and technologies have 
been built. They include simulation languages 
(e.g., Simscript [18]), simulation environments 
(e.g., Parsec [10]), simulation libraries (e.g., 
SimJava [27]), and application specific simulators 
(e.g., NS-2 network simulator [40]). While there 
exists a large body of knowledge and tools, there 
are very few well-maintained tools available for 
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application scheduling simulation in Grid 
computing environments. However, for simulating 
a Grid, a tool needs to be able to model the 
interactions of resource brokers, resources and the 
network. For these purposes, a Grid simulation 
tool must have at least the following 
functionalities: 

·  Able to model heterogeneous 
computational resources. 

·  Extensible and modifiable so that various 
brokering mechanisms and scheduling 
systems can be implemented and 
analyzed. 

·  Able to store and query information 
regarding to resource properties. This can 
be achieved by using an indexing service. 

·  Able to specify an arbitrary network 
topology in the simulated Grid 
environment. 

Table 2 lists some Grid simulation tools that 
support one or more of these functionalities. 

OptorSim [13] is developed as part of the EU 
DataGrid project. It aims to mimic the structure of 
an EU DataGrid Project and study the 
effectiveness of several Grid replication strategies. 
It is quite a complete package as it incorporates 
few auction protocols and economic models for 
replica optimization. However, it mainly focuses 
more on the issue of data replication and 
optimisation. 

The SimGrid toolkit [32], developed at the 
University of California at San Diego (UCSD),, is 

a C language based toolkit for the simulation of 
application scheduling. It supports modeling of 
resources that are time-shared and the load can be 
injected as constants or from real traces. It is a 
powerful system that allows creation of tasks in 
terms of their execution time and resources with 
respect to a standard machine capability.  

The MicroGrid emulator [36], undertaken at the 
UCSD, is modeled after Globus [23], a software 
toolkit used for building Grid systems. It allows 
execution of applications constructed using the 
Globus toolkit in a controlled virtual Grid resource 
environment. MicroGrid is actually an emulator 
meaning that actual application code is executed 
on the virtual Grid. Thus, the results produced by 
MicroGrid are much closer to the real world as it is 
a real implementation. However, using MicroGrid 
requires knowledge of everything Globus and its 
implementation of the application to study. 

GangSim [22], developed at the University of 
Chicago, is targeted towards a study of usage and 
scheduling policies in a multi-site and multi-VO 
environment. It is able to combine discrete 
simulation techniques and modeling of real Grid 
components in order to achieve scalability to Grids 
of substantial size. 

Finally, GridSim [17][39], development led by 
the University of Melbourne, supports simulation 
of various types of Grids and application models 
scheduling. The following sections explain 
GridSim capabilities, architecture, and its usage by 
the Grids community. 

 
Table 2: Some recent and notable Grid simulators. 

Functionalities GridSim OptorSim SimGrid MicroGrid GangSim 

Resource Extensibility yes no yes yes no 

Data replication  yes yes no no no 

Disk I/O overheads  yes no no yes no 

Complex file filtering or data query yes no no no no 

Scheduling user jobs yes no yes yes yes 

reservation of a resource yes no no no no 

Workload trace-based simulation yes no yes no yes 

Differentiated network QoS yes no no no no 

Generate background network traffic yes yes yes yes no 

Auction Framework yes yes no no no 
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3 GridSim Toolkit 

GridSim is an open-source software platform that 
enables users to model and simulate the 
characteristics of Grid resources and networks 
with different configurations. GridSim is of great 
value to both students and experienced researchers 
who want to study Grids, or test new algorithms 
and strategies in a controlled environment. By 
using GridSim, they are able to perform repeatable 
experiments and studies that are not possible in a 
real dynamic Grid environment. 

Some of GridSim’s features are outlined below: 
�  It allows the modeling of different 

resource characteristics and their failure 
properties; 

�  It enables the simulation of workload 
traces taken from real supercomputers; 

�  It supports reservation-based or auction 
mechanisms for resource allocation; 

�  It allocates incoming jobs based on space- 
or time-shared mode; 

�  It has the ability to schedule compute- 
and/or data-intensive jobs; 

�  It has a background network traffic 
functionality based on a probabilistic 
distribution [39]. This is useful for 
simulating data-intensive jobs over a 
public network where the network is 
congested; 

�  It provides clear and well-defined 
interfaces for implementing different 
resource allocation algorithms; 

�  It allows the modeling of several regional 
Grid Information Service (GIS) 
components. Hence, it is able to simulate 
a VO scenario; 

�  It has a visualisation tool for tracing 
sequences of simulation execution. 

 

   In Grids, resources can be part of one or more 
VOs, as mentioned earlier. The concept of a VO 
allows users and institutions to gain access to their 
accumulated pool of resources to run applications 
from a specific field [24], such as high-energy 
physics or aerospace design. 

With these features, GridSim offers researchers 
the functionality and the flexibility of simulating 
Grids for various types of studies such as Grid 
meta-scheduling [7], workflow scheduling [35], 
and VO-oriented resource allocation [43]. 

3.1 GridSim Architecture 
We designed GridSim as a multi-layer architecture 
for extensibility as shown in Figure 1. This allows 
new components or layers to be added and 
integrated into GridSim easily. In addition, the 
layered GridSim architecture captures the model of 
the Grid computing environment.  GridSim is 
based on SimJava [27], a general purpose discrete-
event simulation package implemented in Java. 
Therefore, the first layer at the bottom of Figure 4 
is managed by SimJava for handling the 
interaction or events among GridSim components. 

All components in GridSim communicate with 
each other through message passing operations 
defined by SimJava. The second layer models the 
core elements of the distributed infrastructure, 
namely Grid resources such as clusters, storage 
repositories and network links. These core 
components are absolutely essential to create 
simulations in GridSim. The third and fourth 
layers are concerned with modeling and simulation 
of services specific to Computational and Data 
Grids [38] respectively. Some of the services 
provide functions common to both types of Grids 
such as information about available resources and 
managing job submission. 

 

Figure 4:  A layered architecture of GridSim and its components. 
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In case of Data Grids, job management also 
incorporates managing data transfers between 
computational and storage resources. Replica 
catalogs, information services for files and data, 
are also specifically implemented for Data Grids. 
The fifth layer contains components that aid users 
in implementing their own schedulers and resource 
brokers so that they can test their own algorithms 
and strategies. The layer above this helps users 
define their own scenarios and configurations for 
validating their algorithms. 

3.2 Extensible Grid Resource 
Framework 

In Grid computing, any hardware or software 
component such as a cluster, a supercomputer or a 
storage repository is called a resource. Computing 
resources allow users to execute the required 
application while storage resources allow the users 
to access datasets and store the results of the 
computation. GridSim provides well-defined 
abstractions for configuring the resource 
management on a resource. Each resource is 
associated with an AllocationPolicy object that 
allocates internal nodes to the user jobs depending 
on the policy. Hence, the GridResource object in 
GridSim only acts as an interface between users 
and the local scheduler, as shown in Figure 5. It is 
up to the scheduler to handle and to process 
submitted jobs. This approach gives the flexibility 
to implement various scheduling algorithms for a 
specific resource-based system. Currently, 
GridSim has TimeShared and SpaceShared objects 
that use Round Robin and First Come First Serve 
(FCFS) approaches respectively, as shown in 
Figure 3. The advantage of this design is that 
adding a new scheduler does not require 
modification of existing resource and/or other 
scheduling classes. Creating a new scheduler is as 
simple as extending the AllocPolicy class or 
ARPolicy class with advance reservation [37], and 
implementing the required abstract methods. For 
an example, ARSimpleSpaceShared is a child of 
ARPolicy class that uses FCFS approach to 
schedule reserved jobs. 

 

Figure 5: A GridSim resource class diagram. 

Figure 6 shows the components of a Grid 

resource in GridSim. A Grid resource is associated 
with one or more Storage objects that can each 
model either a hard disk-based or a tape-based 
storage device.The resource has a ReplicaManager 
which handles incoming requests for datasets 
located on the storage elements. In case a new 
replica is created, it also registers the replica with 
the replica catalog (RC). The replica manager can 
be extended to incorporate different replica 
retention or deletion policies. A LocalRC object 
can be optionally associated with the resource to 
index available files internally, and handle direct 
user queries about local files. However, other 
resources cannot query this RC object. 

 

Figure 6: A Grid resource components in 
GridSim. 

3.3 Extensions to GridSim 

In this section, we highlight some extensions that 
are built on top of GridSim. 

3.3.1 Grid Scheduling SIMulator 

Grid Scheduling SIMulator (GSSIM) [31], created 
by Poznan University of Technology (Poland), is 
designed as a simulation framework which enables 
easy-to-use experimental studies of various 
scheduling algorithms. It is mainly targeting at 
simulating computational Grids by using various 
synthetic or real workloads. 

3.3.2 Grid Network Buffer 

Grid Network Buffer (GNB) [19], developed by 
University of Castilla La Mancha (Spain), is aimed 
at making network QoS as an integral part of job 
scheduling decisions in Grids. Therefore, GNB has 
both a resource scheduler and an admission control 
in its architecture.  

3.3.3 Alea Grid Simulator 
Alea Grid Simulator [29], extended by Masaryk 
University (Czech Republic), is used to design and 
test complex scheduling algorithms for various 
Grid scenarios. Moreover, Alea simulates these 
algorithms in static and/or dynamic environments. 
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3.3.4 Grid Agents Platform 

Grid Agents Platforms (GAP) [33], proposed by 
University of Catania (Italy), is targeted at 
provisioning multimedia contents based on QoS 
requirements in computational Grids. Therefore, 
GAP aims at minimising the network latency when 
transferring multimedia contents to a Grid resource 
for processing. 

3.3.5 Web-based Grid Scheduling Platform 
Web-based Grid Scheduling Platform (WGridSP) 
[28], developed by Andong National University 
(South Korea), is designed to allow users to do 
resource modelling, testing new algorithms and 
performance evaluations using GridSim in a web 
environment. With this approach, WGridSP hides 
some of the technical complexities of GridSim, 
hence, makes things easier for the users.   

3.4 GridSim Usages 
Research students in our GRIDS laboratory are 
themselves heavy users of GridSim and extend it 
whenever necessary for their own research needs. 
They used it for investigating SLA-based resource 
allocation in clusters, coordinated resource 
provisioning in federated grids, workflow and data 
Grid applications scheduling, peering between 
Grids, and power-aware scheduling. In the last 5 

years, GridSim has been continuously extended in 
this manner to include many new capabilities and 
has also received contributions from external 
collaborators—National University of Singapore 
has contributed a QoS-based network module, and 
University of Ljubljana has contributed a DataGrid 
module. Academic and industrial users of GridSim 
include: IBM, Unisys, HP, University of Southern 
California, France Telecom, Indian Institute of 
Technology, and Umea University. Table 3 lists 
some of the prominent users of GridSim. 

4 GridSim Case Studies 
In this section, we present selected case studies 
that demonstrate the usefulness of GridSim for 
simulating variety of systems, applications, and 
scenarios from industrial and academic users. 

4.1 Meta-Scheduler for Business Grids 
IBM India Research Lab has used GridSim to 
simulate a Grid meta-scheduler, called Data 
replication and Execution CO-scheduling (DECO) 
[7]. DECO is responsible for deciding which data 
and jobs to be replicated and to be executed 
respectively. Then, DECO is in charge of 
scheduling data transfers and jobs to selected 
resources according to users' SLA requirements, as 
shown in Figure 7.   

Table 3: Various users of GridSim and their targeted application domain for simulation. 

Application Domain Organisation 

Scientific Workflows  The University of Southern California, USA 

Business Grids  IBM Research Lab 

Grid Resource and Virtual Organisation Umeå University, Sweden 

Network modelling National University of Singapore  

Grid Security Studies France Telecom 

Scheduling Studies University of Malay, Malaysia 

Grid economics Technical University of Catalunya, Spain  

Grid Market Studies Indian Institute of Technology  

Semantic Grid Studies Monash University, Australia 

Utility-based Resource Management The University of Manchester, UK  

DataGrid Simulation The University of Ljubljana, Slovenia 

Data Centre Modelling Unisys, USA 

Hierarchical Scheduling Universidad Complutense de Madrid, Spain 

Multi-Criteria Grid Scheduling Poznan Supercomputing Center, Poland 
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With this approach, the authors claimed that 
DECO delivers improvements in both resource 
revenues and lower jobs' waiting time compare to 
Earliest Fit (EF). EF uses a greedy approach, 
where it assigns jobs to available resources at the 
earliest possible time.  

 

Figure 7: IBM’s DECO architecture [7]. 

4.2 Parallel Applications on CrossGrid 
The University of Santiago (Compostella, Spain) 
has used GridSim to simulate parallel applications 
in a Grid [8]. The authors compared various 
scheduling algorithms, such as FCFS, First Fit, 
EASY Backfilling, and simulated a CrossGrid 
tested in their performance evaluation, as shown in 
Figure 8. With GridSim, the authors can analyse 
the performance of different algorithms using 
parameters from a real Grid testbed. Hence, 
reducing complexities and saving time. 

 

Figure 8: The CrossGrid testbed [21]. 

4.3 Storage-Aware Workflow Scheduling 
The University of Southern California has used 
GridSim to optimise disk usage when scheduling 
large-scale scientific workflows in distributed 
resources, such as Grids [35]. This is because these 
resources have limited storage capacities and are 
shared among other users. In the paper, the authors 
use a Laser Interferometer Gravitational Wave 
Observatory (LIGO) workflow as a case study. 
Then, cleanup nodes are added to this workflow 
structure to remove unwanted files, as shown in 
Figure 9. As a result, the authors claimed that by 
optimising the disk usage through a cleanup 
algorithm, they were able to decrease the storage 
consumption of the workflow application by up to 
57%. This work shows an example that by using 
GridSim, the system administrators can decide 
rapidly whether to upgrade their costly 
infrastructure or improving the performance of 
system software. 

 
Figure 9: Executable workflows with cleanup 

nodes mapped to two resources [35]. 

4.4 Revenue Management for Data 
Centers and Grids 

We have leveraged GridSim’s functionalities to 
investigate the effectiveness of using Revenue 
Management (RM) for determining pricing of 
advance reservations in Grids [48]. The main 
objective of RM is to maximize profits by 
providing the right price for every product to 
different customers, and periodically update the 
prices in response to market demands. Hence, in 
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the model shown in Figure 10, each resource has a 
Revenue Management System (RMS), which is 
responsible for handling future bookings and 
determining their prices based on VOs, demands, 
and time periods (e.g. peak or off-peak). 
Moreover, in the model, each user has a broker 
that is responsible for scheduling jobs based on 
QoS, such as deadline or budget (in G$). The RMS 
is created by extending the GridResource class, 
whereas the RM techniques are implemented by 
extending the ARPolicy class. The broker of a user 
is developed by extending the GridUser class. 

 
Figure 10: An overview of the model, where 

resources are assigned to different VOs. 
For the performance evaluation, we simulated 

the EU DataGrid Testbed 1 [26], as shown in 
Figure 11. In the evaluation, resources are 
partitioned into four VOs based on their location, 
and each of them has different characteristics (e.g. 
number of CPUs and processing powers and 
costs). Moreover, synthetic workloads are used to 
these resources. 

 
Figure 11: The simulated topology of EU 

DataGrid TestBed. 

Figure 12 shows how RAL (R1) and Bologna 
(R10) benefited from using RM techniques as part 
of their system, instead of using a static pricing. 
However, other resources used RM in the first 
place. The result shows that both resources gained 
more than 3,600% in profits by using RM. 

 

 
Figure 12: Total Revenue for RAL (R1) and 

Bologna (R10). 
 

In the evaluation, we segment users into three 
categories: Premium, Business and Budget users, 
based on VOs, time of bookings and set of 
restrictions or QoS requirements. From Figure 13, 
both the Premium and Business users are a major 
source of revenue for a resource. Therefore, in a 
competitive demand and supply market, a resource 
needs to differentiate itself among others to attract 
these users. Moreover, using RM techniques 
ensure that resources are allocated to applications 
that are highly valued by the users. 
 

 
Figure 13: Percentage of income revenue, where 

all resources using RM. 

5 Conclusions and Future Directions 

In this paper we have provided emerging trends in 
parallel and distributed computing with emphasis 



 12 

on Grid Computing. We have presented promises 
of Grid computing and discussed various types of 
Grids and their challenges. These systems enable 
the sharing of geographically distributed, 
autonomous resources owned by different 
organisations to support collaborative science and 
business applications. Designing and evaluating 
Grid resource managements policies that (a) 
allocate resources to competing user applications 
to meet their quality of service requirements and 
(b) provide mechanisms for service providers to 
profit from sharing their capabilities with external 
users is a challenging task. Although several Grid 
infrastructures such as TeraGrid in US and Garuda 
in India have been setup, it is difficult to carry out 
repeatable and controlled experiments on them for 
evaluating resource management policies as they 
are shared and no single user has full control over 
all the resources. In addition, special experimental 
infrastructures such as Grid 5000 [47] in France 
exist, but they are very expensive (financially) to 
setup and maintain. Hence, simulations appear to 
be one of the most feasible techniques for 
analyzing algorithms and policies for resource 
allocation. 

We have discussed various Grid simulations 
tools available with specially emphasis on 
GridSim, which is used by academic and industrial 
researchers and developers world-wide. We then 
discussed architectural elements of GridSim and 
its extensible features as demonstrated by various 
new tools developed around it. We illustrated the 
potential of GridSim for modeling and simulation 
through selected case studies drawn from 
industrial and academic users. IBM Research Lab 
has used GridSim for simulating Business Grids, 
University of Santiago (Spain) for parallel 
applications scheduling on European CrossGrid, 
University of Southern California for Gravitational 
Wave workflow application scheduling, and our 
own usage for pricing of reservations and revenue 
management in Data Centers. 

In addition to service and utility-oriented Grids, 
other emerging parallel and distributed computing 
paradigms such as cloud computing offer several 
challenges and opportunities for modeling and 
simulation communities. They include (a) SLA-
based monitoring and resource allocation 
techniques in VMs (virtual machines) and clouds, 
(b) negotiation protocols and polices for resource 
reservations, (c) economy models for service 
pricing and revenue management, (d) policies for 
power-aware “green” computing, (e) strategies for 
federation of services of clouds and Data Centers 
from different vendors, (f) coordinated resource 

provisioning in VO-based Grids, (g) mechanisms 
and algorithms for autonomic management of 
distributed systems, and (h) policies for peering 
among different types of Grids [51].  

Software Availability 

The GridSim toolkit software with source code can 
be downloaded from the project website: 

http://www.gridbus.org/gridsim/ 
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