
 1

Service and Utility Oriented Distributed Computing Systems: Challenges and
Opportunities for Modeling and Simulation Communities

Rajkumar Buyya and Anthony Sulistio

Gri d Computing and Distributed Systems (GRIDS) Laboratory

Department of Computer Science and Software Engineering
The University of Melbourne, Australia

Email: {raj, anthony}@csse.unimelb.edu.au

Abstract: Grids and peer-to-peer (P2P) networks have
emerged as popular platforms for the next generation
parallel and distributed computing. In these
environments, resources are geographically distributed,
managed and owned by various organizations with
different policies, and interconnected by wide-area
networks or the Internet. This introduces a number of
resource management and application scheduling
challenges in the domain of security, resource and policy
heterogeneity, fault tolerance, dynamic resource
conditions.. In these dynamic distributed computing
environments, it is hard and challenging to carry out
resource management design studies in a repeatable and
controlled manner as resources and users are
autonomous and distributed across multiple
organizations with their own policies. Therefore,
simulations have emerged the most feasible technique
for analyzing policies for resource allocation.

This paper presents emerging trends in distributed
computing and their promises for revolutionizing the
computing field, and identifies their distinct
characteristics and challenges in building them. We
motivate opportunities for modeling and simulation
communities and present our discrete-event grid
simulation toolkit, called GridSim, used by researchers
world-wide for investigating the design of utility-
oriented computing systems such as Data Centers and
Grids. We present various case studies on the use of
GridSim in modeling and simulation of Business Grids,
parallel applications scheduling, workflow scheduling,
and service pricing and revenue management.

1 Introduction
The proliferation of the Internet, the growing
popularity of the Web, and the availability of
powerful computers and high-speed networks as
low-cost commodity components are changing the
way we do parallel and distributed computing.
These technological advances have led to the
possibility of using networks of computers as a
single, unified computing resource, known as
cluster computing [1]. Clusters appear in various
forms: high-performance clusters, high-availability
clusters, and high throughput clusters. In addition,
computer scientists in the mid-1990s, inspired by
the electrical power grid’s pervasiveness and

reliability, began exploring the design and
development of a new IT (Information
Technology) infrastructure exhibiting quality of
seamless access to computing resources distributed
across different organisations [2]. This led to
growing interest in coupling geographically
distributed resources for solving large-scale
problems, leading to what is popularly called the
Grid [3] and peer-to-peer (P2P) computing [4]
networks. A large number of computing devices
ranging from high-end computing systems such as
supercomputers, to specialized systems such as
visualization devices, storage systems, sensors,
and scientific instruments, are logically coupled
together in a Grid (see Figure 1) that serves as a
Cyberinfrastructure supporting collaborative
scientific and business applications.

In the business world, cluster architecture-based
computing systems, called data centers, offering
high-performance and reliable hosting services are
widely used. The low-cost availability of data
center services has encouraged many businesses to
outsource their computing needs; thus heralding a
new utility computing model.

Utility computing is envisioned to be the next
generation of IT evolution that depicts how
computing needs of users can be fulfilled in the
future IT industry [5]. Its analogy is derived from
the real world where service providers maintain
and supply utility services, such as electrical
power, gas, and water to consumers. Consumers in
turn pay service providers based on their usage.
Therefore, the underlying design of utility
computing is based on a service provisioning
model, where users pay providers for using
computing power only when they need to use.

The emerging cloud computing systems such as
Amazon EC2 (Elastic Compute Cloud) are the
recent incarnation of data centers [49]. They have
high potential for enabling the creation of market-
maker that further virtualizes clouds from different
providers. Thus bringing buyers and sellers
together, and realizing virtual Grid computing.

 2

����������	
�����������

����������	
����������

����������	
	���

�����
�������
�	���
��	
������������

��������������
��
	�����������

2100210021002100

2100210021002100

������

�������������

����
�
�������
������

���������	
�������

����������

Figure 1: Grid as a Cyberinfrastructure for coupling and sharing distributed resources.

These developments leading to realization of
the vision of Leonard Kleinrock, one of the chief
scientists of the original Advanced Research
Projects Agency Network (ARPANET) project
which seeded the Internet, who stated in 1969 [6]:
“As of now, computer networks are still in their
infancy, but as they grow up and become
sophisticated, we will probably see the spread of
‘computer utilities’ which, like present electric and
telephone utilities, will service individual homes
and offices across the country.”

1.1 Potential of Grids as Service and
Utility-Oriented Computing Systems

Grid is defined as a type of parallel and distributed
system that enables the sharing, selection, and
aggregation of geographically distributed
"autonomous" resources dynamically at runtime
depending on their availability, capability,
performance, cost, and users' quality-of-service
requirements. Grid computing systems support
coordinated resource sharing and problem solving
in dynamic, multi-institutional virtual
organizations (VOs) [24]. A high level view of a
global Grid with its key components is shown in
Figure 2. A Grid user can easily accesses globally
distributed resources by interacting with a Grid
resource broker. The user essentially interacts with
a resource broker that hides the complexities of
Grid computing [14]. The broker discovers
resources that the user can access using
information services, negotiates for access costs
using trading services, maps tasks to resources

(scheduling), stages the application and data for
processing (deployment), starts job execution, and
finally gathers the results. It is also responsible for
monitoring and tracking application execution
progress along with adapting to the changes in
Grid runtime environment conditions and failures.

Grids offer a number of benefits such as:

� Transparent and on-demand access to
distributed and heterogeneous resources.

� Improved productivity with reduced
processing time.

� Provisioning of extra resources to solve
problems that were previously unsolvable
due to the lack of resources.

� A more resilient infrastructure with
autonomic management capabilities [50],
on-demand aggregation of resources from
multiple sites to meet unforeseen demand.

� Seamless computing power achieved by
exploiting under-utilized or unused
resources that are otherwise wasted.

� Maximum utilization of computing
facilities to justify IT capital investments.

� Coordinated resource sharing and
problem solving through VOs that
facilitates collaboration across physically
dispersed departments and organisations.

� Service Level Agreement (SLA) based
resource allocation to meet Quality of
Service (QoS) requirements.

� Reduced administration effort with
integration of resources as compared to
managing multiple standalone systems.

 3

Grid Resource Broker

Resource Broker

Application

Grid Information Service

Grid Resource Broker

databaseR2 R3

RN

R1

R4

R5

R6

Grid Information Service

Grid Resource Broker

Resource Broker

Application

Grid Information Service

Grid Resource Broker

databasedatabaseR2 R3

RN

R1

R4

R5

R6

Grid Information Service

Figure 2: A high level view of a global Grid.

Service-oriented architecture (SOA) and Web-
services technologies are extensively used in the
construction of Grid middleware and applications
[12]. The Grid architecture consists of four key
layers: fabric, core middleware, user-level
middleware, and applications [11]. The Grid fabric
includes computers (low-end and high-end
computers including clusters), networks, scientific
instruments, and their resource management
systems. The core Grid middleware provides
services that are essential for securely accessing
remote resources uniformly and transparently. The
services they provide include security and access
management, remote job submission, storage, and
resource information. The user-level middleware
provides higher-level tools such as resource
brokers, application development and adaptive
runtime environment. The Grid applications
include those constructed using Grid libraries or
legacy applications that can be Grid-enabled using
user-level middleware tools.

A diverse range of applications are explored
using Grids, some of which include: aircraft
engine diagnostics, earthquake engineering, virtual
observatory, bioinformatics, drug discovery,
digital image analysis, high energy physics,
astrophysics, and multi-player gaming [3]. Grids
can be primarily classified into the following
types, depending on the nature of their applications
they are driving [30]:

� Computational Grid: Aggregates the
computational power of globally distributed
computers (e.g. SETI@Home [9] and
TeraGrid [42]).

� Data Grid: Emphasizes on a global-scale
management of data to provide data access,
integration, and processing through

distributed data repositories (e.g. LHCGrid
[26]).

� Application Service Provisioning (ASP)
Grid: Focuses on providing access to
remote applications, modules, and libraries
hosted on data centers or Computational
Grids (e.g. NetSolve [34]).

� Interaction Grid: Focuses on interaction and
collaborative visualization between
participants (e.g. AccessGrid [15]).

� Knowledge Grid: Aims towards knowledge
acquisition, processing, management, and
provides business analytics services driven
by integrated data mining services (e.g.
KnowledgeGrid [20] and EU Data Mining
Grid [45]).

� Utility Grid: Focuses on providing all the
Grid services including compute power,
data, and services to end-users as IT utilities
on a subscription basis and the
infrastructure necessary for negotiation of
required QoS, establishment and
management of contracts, and allocation of
resources to meet competing demands from
multiple users and applications (e.g. Utility
Data Center [25] at enterprise level and
Gridbus [46] at global level).

These types of Grids can be logically realized
as a layer of services with one building on top of
the other, as shown in Figure 3. A Grid on a higher
layer utilizes the services of Grids that operate at
lower layers in the design. For example, a Data
Grid utilizes the services of Computational Grid
for data processing, hence builds on it. Moreover,
lower-layer Grids focus heavily on infrastructural
aspects, whereas higher-layer ones focus on users
and QoS delivery.

 4

�������������
 ��	

����
 ��	

!��
 ��	

"���������
 ��	

#��$��	��
 ��	

%�����&
 ��	

����	
�������

�
�
�

Figure 3: Types of Grids and their focus.

1.2 Grid Characteristics and Challenges
The Grid environments comprise heterogeneous
resources, fabric management systems (single
system image OS, queuing systems) and policies,
and applications with varied requirements
(compute, memory, network intensive). The users:
producers (also called resource owners) and
consumers (also called end-users) have different
goals, objectives, strategies, and demand patterns.
More importantly both resources and end-users are
geographically distributed with different time
zones. In managing such complex Grid
environments, traditional approaches to resource
management that attempt to optimize system-wide
measures of performance cannot be employed.
This is because traditional approaches use
centralized policies that need complete state
information and a common fabric management
policy, or decentralized consensus based policy. In
large-scale Grid environments, it is hard to define
an acceptable system-wide performance matrix
and common fabric management policy. Apart
from the centralized approach, two other
approaches that are used in distributed resource
management are: hierarchical and decentralized
scheduling or a combination of them [44]. We note
that similar heterogeneity and decentralization
complexities exist in human economies where
market driven economic models have been used to
successfully manage them. Therefore, in [16], we
investigated on the use of economics as a
metaphor for management of resources in Grid
computing environments.

The researchers and students, investigating
resource management and scheduling for large
scale distributed computing, need a simple
framework for deterministic modeling and
simulation of resources and applications to

evaluate scheduling strategies. For most
investigators who do not have access to ready-to-
use special experimental infrastructures such as
France’s Grid 5000 and Netherlands’s DAS [47], it
is expensive and time consuming to build them.
Also, even for those who have access, the testbed
size is limited to a few resources and domains; and
testing scheduling algorithms for scalability and
adaptability, and evaluating scheduler performance
for various applications and resource scenarios is
harder to trace. In addition, it is challenging to
create a repeatable and controlled environment for
experimentation and evaluation of scheduling
strategies. This is because resources in Grids such
as TeraGrid in US are dynamic and span across
multiple administrative domains, each with their
own policies, users, and priorities.

Simulation appears to be one of the most
feasible technique for analyzing algorithms and
policies for resource allocation. Simulation works
well without making the analysis mechanism
unnecessary complex, by avoiding the overhead of
co-ordination of real resources. Simulation is also
effective in working with very large hypothetical
problems that would otherwise require
involvement of a large number of active users and
resources, which is very hard to coordinate and
build at large-scale research environment for
investigation purpose.

To support studies in resource management for
Grids, we have developed a Java-based simulation
toolkit, called GridSim [17], for simulating various
types of Grids. The Grid computing researchers
and educators also recognized the importance and
the need for such a toolkit for modeling and
simulation environments [41]. It should be noted
that this paper has a major orientation towards
Grid, however, we believe that our discussion and
thoughts also apply equally well to P2P systems
since resource management and scheduling issues
in both systems are quite similar.

The GridSim toolkit supports modeling and
simulation of a wide range of heterogeneous
resources, such as single or multiprocessors,
shared and distributed memory machines such as
workstations and clusters with different
capabilities and configurations. It can be used for
modeling and simulation of application scheduling
on various parallel and distributed computing
systems such as clusters, Grids, and P2P networks.
In fact, P2P techniques for resource organization
and discovery are being used in building Grids. A
set of characteristics that helps distinguish clusters,
Grids and P2P systems is listed in Table 1.

 5

Table 1: Key Characteristics of Clusters, Grids, and P2P Systems.

 Systems
Characteristics Clusters / Data Centers Grids P2P

 Population Commodity Computers High-end computers (servers,
clusters)

Computers at the edge of
network (e.g., desktop PCs)

 Size / Scalability 100s 1000s Millions

 Ownership Single Multiple Multiple

 Discovery Membership Services Centralised Indexing &
Decentralised Info Services

Decentralized

 Service Negotiation Yes Yes, SLA based Lack of enterprise quality
support

 User Management Centralised Decentralised and also VO (virtual
organisation)-based

Decentralised

 Resource management Centralized Distributed Distributed

 Allocation / Scheduling Centralised Decentralised Decentralised

 Standards / Inter-
Operability

VIA based Web services-based and Open Grid
Forum efforts

No standards

 Single System Image Yes No No

 Capacity Stable & Guaranteed Varies, but high Varies

 Throughput Medium High Very High

 Interconnection Network Dedicated, high-end Mostly public Internet, Some used
high-end networks

Public Internet

 Speed (Latency,
Bandwidth)

Low, high High, Low High, Low

 Application Drivers Science, business,
enterprise computing, web
applications, data centers

e-Science, e-Business, multi-party
conferencing (e.g., AccessGrid),
integration of scientific instruments

Sharing of files (e.g., music
files), communication (e.g.,
Skype)

The resources in clusters are located in a single

administrative domain and managed by a single
entity whereas, in Grid and P2P systems, resources
are geographically distributed across multiple
administrative domains with their own
management policies and goals. Another key
difference between cluster and Grid/P2P systems
arises from the way application scheduling is
performed. The schedulers in cluster systems
focus on enhancing the overall system
performance and utility, as they are responsible for
the whole system. Whereas, schedulers in
Grid/P2P systems called resource brokers, focus
on enhancing the performance of a specific
application in such a way that its end-users’ QoS
requirements are met.

2 Grid Simulation Tools

Simulation has been used extensively for modeling
and evaluation of real world systems, from
business process and factory assembly line to
computer systems design. Accordingly, over the
years, modeling and simulation has emerged as an
important discipline and many standard and
application-specific tools and technologies have
been built. They include simulation languages
(e.g., Simscript [18]), simulation environments
(e.g., Parsec [10]), simulation libraries (e.g.,
SimJava [27]), and application specific simulators
(e.g., NS-2 network simulator [40]). While there
exists a large body of knowledge and tools, there
are very few well-maintained tools available for

 6

application scheduling simulation in Grid
computing environments. However, for simulating
a Grid, a tool needs to be able to model the
interactions of resource brokers, resources and the
network. For these purposes, a Grid simulation
tool must have at least the following
functionalities:

· Able to model heterogeneous
computational resources.

· Extensible and modifiable so that various
brokering mechanisms and scheduling
systems can be implemented and
analyzed.

· Able to store and query information
regarding to resource properties. This can
be achieved by using an indexing service.

· Able to specify an arbitrary network
topology in the simulated Grid
environment.

Table 2 lists some Grid simulation tools that
support one or more of these functionalities.

OptorSim [13] is developed as part of the EU
DataGrid project. It aims to mimic the structure of
an EU DataGrid Project and study the
effectiveness of several Grid replication strategies.
It is quite a complete package as it incorporates
few auction protocols and economic models for
replica optimization. However, it mainly focuses
more on the issue of data replication and
optimisation.

The SimGrid toolkit [32], developed at the
University of California at San Diego (UCSD),, is

a C language based toolkit for the simulation of
application scheduling. It supports modeling of
resources that are time-shared and the load can be
injected as constants or from real traces. It is a
powerful system that allows creation of tasks in
terms of their execution time and resources with
respect to a standard machine capability.

The MicroGrid emulator [36], undertaken at the
UCSD, is modeled after Globus [23], a software
toolkit used for building Grid systems. It allows
execution of applications constructed using the
Globus toolkit in a controlled virtual Grid resource
environment. MicroGrid is actually an emulator
meaning that actual application code is executed
on the virtual Grid. Thus, the results produced by
MicroGrid are much closer to the real world as it is
a real implementation. However, using MicroGrid
requires knowledge of everything Globus and its
implementation of the application to study.

GangSim [22], developed at the University of
Chicago, is targeted towards a study of usage and
scheduling policies in a multi-site and multi-VO
environment. It is able to combine discrete
simulation techniques and modeling of real Grid
components in order to achieve scalability to Grids
of substantial size.

Finally, GridSim [17][39], development led by
the University of Melbourne, supports simulation
of various types of Grids and application models
scheduling. The following sections explain
GridSim capabilities, architecture, and its usage by
the Grids community.

Table 2: Some recent and notable Grid simulators.

Functionalities GridSim OptorSim SimGrid MicroGrid GangSim

Resource Extensibility yes no yes yes no

Data replication yes yes no no no

Disk I/O overheads yes no no yes no

Complex file filtering or data query yes no no no no

Scheduling user jobs yes no yes yes yes

reservation of a resource yes no no no no

Workload trace-based simulation yes no yes no yes

Differentiated network QoS yes no no no no

Generate background network traffic yes yes yes yes no

Auction Framework yes yes no no no

 7

3 GridSim Toolkit

GridSim is an open-source software platform that
enables users to model and simulate the
characteristics of Grid resources and networks
with different configurations. GridSim is of great
value to both students and experienced researchers
who want to study Grids, or test new algorithms
and strategies in a controlled environment. By
using GridSim, they are able to perform repeatable
experiments and studies that are not possible in a
real dynamic Grid environment.

Some of GridSim’s features are outlined below:
� It allows the modeling of different

resource characteristics and their failure
properties;

� It enables the simulation of workload
traces taken from real supercomputers;

� It supports reservation-based or auction
mechanisms for resource allocation;

� It allocates incoming jobs based on space-
or time-shared mode;

� It has the ability to schedule compute-
and/or data-intensive jobs;

� It has a background network traffic
functionality based on a probabilistic
distribution [39]. This is useful for
simulating data-intensive jobs over a
public network where the network is
congested;

� It provides clear and well-defined
interfaces for implementing different
resource allocation algorithms;

� It allows the modeling of several regional
Grid Information Service (GIS)
components. Hence, it is able to simulate
a VO scenario;

� It has a visualisation tool for tracing
sequences of simulation execution.

 In Grids, resources can be part of one or more
VOs, as mentioned earlier. The concept of a VO
allows users and institutions to gain access to their
accumulated pool of resources to run applications
from a specific field [24], such as high-energy
physics or aerospace design.

With these features, GridSim offers researchers
the functionality and the flexibility of simulating
Grids for various types of studies such as Grid
meta-scheduling [7], workflow scheduling [35],
and VO-oriented resource allocation [43].

3.1 GridSim Architecture
We designed GridSim as a multi-layer architecture
for extensibility as shown in Figure 1. This allows
new components or layers to be added and
integrated into GridSim easily. In addition, the
layered GridSim architecture captures the model of
the Grid computing environment. GridSim is
based on SimJava [27], a general purpose discrete-
event simulation package implemented in Java.
Therefore, the first layer at the bottom of Figure 4
is managed by SimJava for handling the
interaction or events among GridSim components.

All components in GridSim communicate with
each other through message passing operations
defined by SimJava. The second layer models the
core elements of the distributed infrastructure,
namely Grid resources such as clusters, storage
repositories and network links. These core
components are absolutely essential to create
simulations in GridSim. The third and fourth
layers are concerned with modeling and simulation
of services specific to Computational and Data
Grids [38] respectively. Some of the services
provide functions common to both types of Grids
such as information about available resources and
managing job submission.

Figure 4: A layered architecture of GridSim and its components.

 8

In case of Data Grids, job management also
incorporates managing data transfers between
computational and storage resources. Replica
catalogs, information services for files and data,
are also specifically implemented for Data Grids.
The fifth layer contains components that aid users
in implementing their own schedulers and resource
brokers so that they can test their own algorithms
and strategies. The layer above this helps users
define their own scenarios and configurations for
validating their algorithms.

3.2 Extensible Grid Resource
Framework

In Grid computing, any hardware or software
component such as a cluster, a supercomputer or a
storage repository is called a resource. Computing
resources allow users to execute the required
application while storage resources allow the users
to access datasets and store the results of the
computation. GridSim provides well-defined
abstractions for configuring the resource
management on a resource. Each resource is
associated with an AllocationPolicy object that
allocates internal nodes to the user jobs depending
on the policy. Hence, the GridResource object in
GridSim only acts as an interface between users
and the local scheduler, as shown in Figure 5. It is
up to the scheduler to handle and to process
submitted jobs. This approach gives the flexibility
to implement various scheduling algorithms for a
specific resource-based system. Currently,
GridSim has TimeShared and SpaceShared objects
that use Round Robin and First Come First Serve
(FCFS) approaches respectively, as shown in
Figure 3. The advantage of this design is that
adding a new scheduler does not require
modification of existing resource and/or other
scheduling classes. Creating a new scheduler is as
simple as extending the AllocPolicy class or
ARPolicy class with advance reservation [37], and
implementing the required abstract methods. For
an example, ARSimpleSpaceShared is a child of
ARPolicy class that uses FCFS approach to
schedule reserved jobs.

Figure 5: A GridSim resource class diagram.

Figure 6 shows the components of a Grid

resource in GridSim. A Grid resource is associated
with one or more Storage objects that can each
model either a hard disk-based or a tape-based
storage device.The resource has a ReplicaManager
which handles incoming requests for datasets
located on the storage elements. In case a new
replica is created, it also registers the replica with
the replica catalog (RC). The replica manager can
be extended to incorporate different replica
retention or deletion policies. A LocalRC object
can be optionally associated with the resource to
index available files internally, and handle direct
user queries about local files. However, other
resources cannot query this RC object.

Figure 6: A Grid resource components in
GridSim.

3.3 Extensions to GridSim

In this section, we highlight some extensions that
are built on top of GridSim.

3.3.1 Grid Scheduling SIMulator

Grid Scheduling SIMulator (GSSIM) [31], created
by Poznan University of Technology (Poland), is
designed as a simulation framework which enables
easy-to-use experimental studies of various
scheduling algorithms. It is mainly targeting at
simulating computational Grids by using various
synthetic or real workloads.

3.3.2 Grid Network Buffer

Grid Network Buffer (GNB) [19], developed by
University of Castilla La Mancha (Spain), is aimed
at making network QoS as an integral part of job
scheduling decisions in Grids. Therefore, GNB has
both a resource scheduler and an admission control
in its architecture.

3.3.3 Alea Grid Simulator
Alea Grid Simulator [29], extended by Masaryk
University (Czech Republic), is used to design and
test complex scheduling algorithms for various
Grid scenarios. Moreover, Alea simulates these
algorithms in static and/or dynamic environments.

 9

3.3.4 Grid Agents Platform

Grid Agents Platforms (GAP) [33], proposed by
University of Catania (Italy), is targeted at
provisioning multimedia contents based on QoS
requirements in computational Grids. Therefore,
GAP aims at minimising the network latency when
transferring multimedia contents to a Grid resource
for processing.

3.3.5 Web-based Grid Scheduling Platform
Web-based Grid Scheduling Platform (WGridSP)
[28], developed by Andong National University
(South Korea), is designed to allow users to do
resource modelling, testing new algorithms and
performance evaluations using GridSim in a web
environment. With this approach, WGridSP hides
some of the technical complexities of GridSim,
hence, makes things easier for the users.

3.4 GridSim Usages
Research students in our GRIDS laboratory are
themselves heavy users of GridSim and extend it
whenever necessary for their own research needs.
They used it for investigating SLA-based resource
allocation in clusters, coordinated resource
provisioning in federated grids, workflow and data
Grid applications scheduling, peering between
Grids, and power-aware scheduling. In the last 5

years, GridSim has been continuously extended in
this manner to include many new capabilities and
has also received contributions from external
collaborators—National University of Singapore
has contributed a QoS-based network module, and
University of Ljubljana has contributed a DataGrid
module. Academic and industrial users of GridSim
include: IBM, Unisys, HP, University of Southern
California, France Telecom, Indian Institute of
Technology, and Umea University. Table 3 lists
some of the prominent users of GridSim.

4 GridSim Case Studies
In this section, we present selected case studies
that demonstrate the usefulness of GridSim for
simulating variety of systems, applications, and
scenarios from industrial and academic users.

4.1 Meta-Scheduler for Business Grids
IBM India Research Lab has used GridSim to
simulate a Grid meta-scheduler, called Data
replication and Execution CO-scheduling (DECO)
[7]. DECO is responsible for deciding which data
and jobs to be replicated and to be executed
respectively. Then, DECO is in charge of
scheduling data transfers and jobs to selected
resources according to users' SLA requirements, as
shown in Figure 7.

Table 3: Various users of GridSim and their targeted application domain for simulation.

Application Domain Organisation

Scientific Workflows The University of Southern California, USA

Business Grids IBM Research Lab

Grid Resource and Virtual Organisation Umeå University, Sweden

Network modelling National University of Singapore

Grid Security Studies France Telecom

Scheduling Studies University of Malay, Malaysia

Grid economics Technical University of Catalunya, Spain

Grid Market Studies Indian Institute of Technology

Semantic Grid Studies Monash University, Australia

Utility-based Resource Management The University of Manchester, UK

DataGrid Simulation The University of Ljubljana, Slovenia

Data Centre Modelling Unisys, USA

Hierarchical Scheduling Universidad Complutense de Madrid, Spain

Multi-Criteria Grid Scheduling Poznan Supercomputing Center, Poland

 10

With this approach, the authors claimed that
DECO delivers improvements in both resource
revenues and lower jobs' waiting time compare to
Earliest Fit (EF). EF uses a greedy approach,
where it assigns jobs to available resources at the
earliest possible time.

Figure 7: IBM’s DECO architecture [7].

4.2 Parallel Applications on CrossGrid
The University of Santiago (Compostella, Spain)
has used GridSim to simulate parallel applications
in a Grid [8]. The authors compared various
scheduling algorithms, such as FCFS, First Fit,
EASY Backfilling, and simulated a CrossGrid
tested in their performance evaluation, as shown in
Figure 8. With GridSim, the authors can analyse
the performance of different algorithms using
parameters from a real Grid testbed. Hence,
reducing complexities and saving time.

Figure 8: The CrossGrid testbed [21].

4.3 Storage-Aware Workflow Scheduling
The University of Southern California has used
GridSim to optimise disk usage when scheduling
large-scale scientific workflows in distributed
resources, such as Grids [35]. This is because these
resources have limited storage capacities and are
shared among other users. In the paper, the authors
use a Laser Interferometer Gravitational Wave
Observatory (LIGO) workflow as a case study.
Then, cleanup nodes are added to this workflow
structure to remove unwanted files, as shown in
Figure 9. As a result, the authors claimed that by
optimising the disk usage through a cleanup
algorithm, they were able to decrease the storage
consumption of the workflow application by up to
57%. This work shows an example that by using
GridSim, the system administrators can decide
rapidly whether to upgrade their costly
infrastructure or improving the performance of
system software.

Figure 9: Executable workflows with cleanup

nodes mapped to two resources [35].

4.4 Revenue Management for Data
Centers and Grids

We have leveraged GridSim’s functionalities to
investigate the effectiveness of using Revenue
Management (RM) for determining pricing of
advance reservations in Grids [48]. The main
objective of RM is to maximize profits by
providing the right price for every product to
different customers, and periodically update the
prices in response to market demands. Hence, in

 11

the model shown in Figure 10, each resource has a
Revenue Management System (RMS), which is
responsible for handling future bookings and
determining their prices based on VOs, demands,
and time periods (e.g. peak or off-peak).
Moreover, in the model, each user has a broker
that is responsible for scheduling jobs based on
QoS, such as deadline or budget (in G$). The RMS
is created by extending the GridResource class,
whereas the RM techniques are implemented by
extending the ARPolicy class. The broker of a user
is developed by extending the GridUser class.

Figure 10: An overview of the model, where

resources are assigned to different VOs.
For the performance evaluation, we simulated

the EU DataGrid Testbed 1 [26], as shown in
Figure 11. In the evaluation, resources are
partitioned into four VOs based on their location,
and each of them has different characteristics (e.g.
number of CPUs and processing powers and
costs). Moreover, synthetic workloads are used to
these resources.

Figure 11: The simulated topology of EU

DataGrid TestBed.

Figure 12 shows how RAL (R1) and Bologna
(R10) benefited from using RM techniques as part
of their system, instead of using a static pricing.
However, other resources used RM in the first
place. The result shows that both resources gained
more than 3,600% in profits by using RM.

Figure 12: Total Revenue for RAL (R1) and

Bologna (R10).

In the evaluation, we segment users into three
categories: Premium, Business and Budget users,
based on VOs, time of bookings and set of
restrictions or QoS requirements. From Figure 13,
both the Premium and Business users are a major
source of revenue for a resource. Therefore, in a
competitive demand and supply market, a resource
needs to differentiate itself among others to attract
these users. Moreover, using RM techniques
ensure that resources are allocated to applications
that are highly valued by the users.

Figure 13: Percentage of income revenue, where

all resources using RM.

5 Conclusions and Future Directions

In this paper we have provided emerging trends in
parallel and distributed computing with emphasis

 12

on Grid Computing. We have presented promises
of Grid computing and discussed various types of
Grids and their challenges. These systems enable
the sharing of geographically distributed,
autonomous resources owned by different
organisations to support collaborative science and
business applications. Designing and evaluating
Grid resource managements policies that (a)
allocate resources to competing user applications
to meet their quality of service requirements and
(b) provide mechanisms for service providers to
profit from sharing their capabilities with external
users is a challenging task. Although several Grid
infrastructures such as TeraGrid in US and Garuda
in India have been setup, it is difficult to carry out
repeatable and controlled experiments on them for
evaluating resource management policies as they
are shared and no single user has full control over
all the resources. In addition, special experimental
infrastructures such as Grid 5000 [47] in France
exist, but they are very expensive (financially) to
setup and maintain. Hence, simulations appear to
be one of the most feasible techniques for
analyzing algorithms and policies for resource
allocation.

We have discussed various Grid simulations
tools available with specially emphasis on
GridSim, which is used by academic and industrial
researchers and developers world-wide. We then
discussed architectural elements of GridSim and
its extensible features as demonstrated by various
new tools developed around it. We illustrated the
potential of GridSim for modeling and simulation
through selected case studies drawn from
industrial and academic users. IBM Research Lab
has used GridSim for simulating Business Grids,
University of Santiago (Spain) for parallel
applications scheduling on European CrossGrid,
University of Southern California for Gravitational
Wave workflow application scheduling, and our
own usage for pricing of reservations and revenue
management in Data Centers.

In addition to service and utility-oriented Grids,
other emerging parallel and distributed computing
paradigms such as cloud computing offer several
challenges and opportunities for modeling and
simulation communities. They include (a) SLA-
based monitoring and resource allocation
techniques in VMs (virtual machines) and clouds,
(b) negotiation protocols and polices for resource
reservations, (c) economy models for service
pricing and revenue management, (d) policies for
power-aware “green” computing, (e) strategies for
federation of services of clouds and Data Centers
from different vendors, (f) coordinated resource

provisioning in VO-based Grids, (g) mechanisms
and algorithms for autonomic management of
distributed systems, and (h) policies for peering
among different types of Grids [51].

Software Availability

The GridSim toolkit software with source code can
be downloaded from the project website:

http://www.gridbus.org/gridsim/

Acknowledgements
We would like to thank all contributors to
GridSim. They include Manzur Murshed, Gokul
Poduval, Chen-Khong Tham, Marcos Dias de
Assuncao, Uros Cibej, Borut Robic, Agustin
Caminero, Blanca Caminero, Carmen Carrion, Hui
Li, and James Broberg. We thank users of GridSim
especially case studies reported in Section 4. We
also thank Mustafizur Rahman for proof reading
the paper.

This work is partially supported by the
Australian Research Council and the Department
of Innovation, Industry, Science and Research
under Discovery Project and International Science
Linkage Program grants respectively.

References
[1] G. F. Pfister. In Search of Clusters. Second Edition,

Prentice Hall, 1998.

[2] M. Chetty and R. Buyya. Weaving Computational
Grids: How Analogous Are They with Electrical
Grids?. Computing in Science and Engineering,
4(4): 61-71, 2002.

[3] I. Foster and C. Kesselman (editors). The Grid 2:
Blueprint for a New Computing Infrastructure,
Morgan Kaufmann, USA, 2003.

[4] A. Oram (editor), Peer-to-Peer: Harnessing the
Power of Disruptive Technologies, O’Reilly Press,
USA, 2001.

[5] M. Rappa, “The utility business model and the
future of computing services,” IBM Systems
Journal, vol. 43, no. 1, pp. 32-42, 2004.

[6] L. Kleinrock. A vision for the Internet. ST Journal
of Research, 2(1):4-5, November 2005.

[7] V. Agarwal, G. Dasgupta, K. Dasgupta, A. Purohit,
and B. Viswanathan. DECO: Data replication and
Execution CO-scheduling for Utility Grids.
Proceedings of International Conference on
Service Oriented Computing, Chicago, USA, Dec.
4-7 2006.

[8] J. L. Albin, J. A. Lorenzo, J. C. Cabaleiro, T. F.
Pena and F. F. Rivera. Simulation of Parallel
Applications in GridSim. Proceedings of the 1st
Iberian Grid Infrastructure Conference, Santiago
de Compostela, Spain, May 14-16, 2007.

 13

[9] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky,
and D. Werthimer. SETI@home: an experiment in
public-resource computing. Communications of the
ACM, 45(11):56-61, ACM Press, 2002.

[10] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X.
Zeng, J. Martin, B. Park, and H. Song. Parsec: a
parallel simulation environment for complex
systems. IEEE Computer, 31(10):77-85, October
1998.

[11] M. Baker, R. Buyya, and D. Laforenza. Grids and
Grid Technologies for Wide-Area Distributed
Computing. Software: Practice and Experience,
32(15), pp.1437-1466, Wiley Press, USA,
December 2002.

[12] I. Foster, C. Kesselman, J. Nick, S. Tuecke. Grid
Services for Distributed System Integration.
Computer, 35(6), 2002.

[13] W. H. Bell, D. G. Cameron, L. Capozza, A. P.
Millar, K. Stockinger, and F. Zini. Simulation of
dynamic grid replication strategies in OptorSim.
Proceedings of the 3rd International Workshop on
Grid Computing, Baltimore, USA, Nov. 2002.

[14] R. Buyya, D. Abramson, and J. Giddy. Nimrod/G:
An Architecture for a Resource Management and
Scheduling System in a Global Computational
Grid. Proceedings of the 4th International
Conference and Exhibition on High Performance
Computing in Asia-Pacific Region, Beijing, China,
May 14-17, 2000.

[15] L. Childers, T. Disz, R. Olson, M. E. Papka, R.
Stevens, and T. Udeshi. Access Grid: Immersive
Group-to-Group Collaborative Visualization.
Proceedings of the 4th International Immersive
Projection Technology Workshop, Ames, IA, USA,
June 19-20, 2000.

[16] R. Buyya, D. Abramson, and S. Venugopal. The
Grid Economy. In Proceedings of the IEEE,
93(3):698-714, March 2005.

[17] R. Buyya and M. Murshed. GridSim: A Toolkit for
the Modeling and Simulation of Distributed
Resource Management and Scheduling for Grid
Computing. Concurrency & Computation: Practice
& Experience, 14:1175-1220, Nov-Dec 2002.

[18] CACI Products Company. Simscript: a simulation
language for building large-scale, complex
simulation models. http://www.simscript.com,
February 2008.

[19] A. Caminero, B. Caminero and C. Carrion.
Designing an Entity to Provide Network QoS in a
Grid System. Proceedings of the 1st Iberian Grid
Infrastructure Conference, Santiago de
Compostela, Spain, May 14-16, 2007.

[20] M. Cannataro and D. Talia. The Knowledge Grid.
Communications of the ACM, 46(1):89-93, 2003.

[21] M. Bubak, M. Malawski, and K. Zajac. The
CrossGrid Architecture: Applications, Tools, and
Grid Services. Grid Computing: First European
Across Grids Conference (Santiago de Compostela,
Spain), LNCS 2970, Springer, Germany, 2004.

[22] C. Dumitrescu and I. Foster. GangSim: A
Simulator for Grid Scheduling Studies.
Proceedings of the 5th International Symposium on
Cluster Computing and the Grid, Cardiff, UK, May
9-12, 2005.

[23] I. Foster and C. Kesselman, Globus: A
Metacomputing Infrastructure Toolkit,
International Journal of Supercomputer
Applications, 11(2): 115-128, Sage Publications,
USA, 1997.

[24] I. Foster, C. Kesselman, and S. Tuecke. The
Anatomy of the Grid: Enabling Scalable Virtual
Organizations. Journal of High Performance
Computing Applications, 15(3):200-222, 2001.

[25] S. Graupner, J. Pruyne, and S. Singhal. Making the
Utility Data Center a Power Station for the
Enterprise Grid. HP Labs Technical Report, HPL-
2003-53, Palo Alto, USA, 2003.

[26] W. Hoschek, J. Jaen-Martinez, A. Samar, H.
Stockinger, and K. Stockinger. Data Management
in an International Data Grid Project. Proceedings
of the 1st International Workshop on Grid
Computing, Bangalore, India, 2000.

[27] F. Howell and R. McNab. SimJava: A Discrete
Event Simulation Package For Java With
Applications In Computer Systems Modelling.
Proceedings of the 1st International Conference on
Web-based Modelling and Simulation, San Diego,
CA, January 1998.

[28] O. Kang and S. Kang. Web-based Dynamic
Scheduling Platform for Grid Computing.
International Journal of Computer Science and
Network Security, 6(5B): 67-75, May 2006.

[29] D. Klusacek, L. Matyska, and H. Rudova. Alea -
Grid Scheduling Simulation Environment.
Workshop on Scheduling for Parallel Computing.
Proceedings of the 7th International Conference on
Parallel Processing and Applied Mathematics,
Poland, Sep. 9-12, 2007.

[30] K. Krauter, R. Buyya, and M. Maheswaran. A
taxonomy and survey of grid resource management
systems for distributed computing. Software:
Practice and Experience, 32(2):135-164, February
2002.

[31] K. Kurowski, J. Nabrzyski, A. Oleksiak and J.
Weglarz, Grid Scheduling Simulations with
GSSIM, 3rd Workshop on Scheduling and
Resource Management for Parallel and Distributed
Systems, Proceedings of the 13th International
Conference on Parallel and Distributed Systems,
Hsinchu, Taiwan, Dec. 5-7, 2007.

[32] H. Casanova, Simgrid: A Toolkit for the
Simulation of Application Scheduling, Proceedings
of the First IEEE/ACM International Symposium
on Cluster Computing and the Grid, Brisbane,
Australia, May 15-18, 2001.

[33] F. Messina, G. Novelli, G. Pappalardo, C. Santoro,
and E. Tramontana. A QoS-Aware Architecture for
Multimedia Content Provisioning in a Grid

 14

Environment. Proceedings of the 7th Workshop
from Objects to Agents, Catania, Italy, September
26-27, 2006.

[34] K. Seymour, A. YarKhan, S. Agrawal, and J.
Dongarra, NetSolve: Grid Enabling Scientific
Computing Environments, Grid Computing and
New Frontiers of High Performance Processing,
Grandinetti, L. eds. Elsevier, Advances in Parallel
Computing, 14, 2005.

[35] A. Ramakrishnan, G. Singh, H. Zhao, E. Deelman,
R. Sakellariou, K. Vahi, K. Blackburn, D. Meyers,
and M. Samidi. Scheduling data-intensive
workflows onto storage-constrained distributed
resources. Proceedings of the International
Symposium on Cluster Computing and the Grid,
Rio, Brazil, May 14-17, 2007.

[36] H. Song, X. Liu, D. Jakobsen, R. Bhagwan, X.
Zhang, K. Taura, and A. Chien, The MicroGrid: A
Scientific Tool for Modeling Computational Grids,
Proceedings of IEEE Supercomputing (SC 2000)
Conference, Dallas, USA, Nov. 4-10, 2000.

[37] A. Sulistio, R. Buyya. A Grid simulation
infrastructure supporting advance reservation.
Proceedings of the 16th International Conference
on Parallel and Distributed Computing and
Systems, Cambridge, USA, November 9–11, 2004.

[38] A. Sulistio, U.Cibej, S. Venugopal, B. Robic and R.
Buyya. A Toolkit for Modelling and Simulating
Data Grids: An Extension to GridSim.
Concurrency & Computation: Practice and
Experience, Wiley Press, New York, USA, 2008.

[39] A. Sulistio, G. Poduval, R. Buyya, and C.-K.
Tham. On incorporating differentiated levels of
network service into GridSim. Future Generation
Computer Systems, 23(4):606. 615, May 2007.

[40] Ns-2 network simulator.
http://www.isi.edu/nsnam/ns, February 2008.

[41] J. B. Weissman, Grids in the Classroom, IEEE
Concurrency, Volume 8, No. 3, July 2000, pp. 6-9.

[42] V. Welch, I. Foster, T. Scavo, F. Siebenlist, C.
Catlett, J. Gemmill, and D. Skow. Scaling teragrid
access: A testbed for identity management and
attribute-based authorization. TeraGrid 2007
Conference, Madison, WI, USA, June 4-6, 2007.

[43] E. Elmroth and P. Gardfjall. Design and evaluation
of a decentralized system for grid-wide fairshare
scheduling. Proceedings of the 1st International
Conference on e-Science and Grid Computing,
Melbourne, Australia, December 2005.

[44] R. Buyya, D. Abramson, and J. Giddy. An
Economy Driven Resource Management
Architecture for Global Computational Power
Grids. Proceedings of the International Conference
on Parallel and Distributed Processing Techniques
and Applications, Las Vegas, USA, June 2000.

[45] EU Data Mining Grid,
http://www.datamininggrid.org, February 2008.

[46] R. Buyya and S. Venugopal. The Gridbus Toolkit
for Service Oriented Grid and Utility Computing:
An Overview and Status Report. Proceedings of the
1st International Workshop on Grid Economics and
Business Models, Seoul, Korea, April 23, 2004.

[47] F. Cappello and H. Bal. Toward an International
Computer Science Grid. Proceedings of the 7th
IEEE International Symposium on Cluster
Computing and the Grid, Rio, Brazil, May 14-17,
2007.

[48] A. Sulistio, K. H. Kim and R. Buyya. Using
Revenue Management to Determine Pricing of
Reservations. Proceedings of the 3rd International
Conference on e-Science and Grid Computing,
Bangalore, India, Dec. 10-13, 2007.

[49] Amazon, “Amazon EC2, Amazon Elastic Compute
Cloud, Virtual Grid Computing”,
http://aws.amazon.com/ec2, February 2008.

[50] H. Liu, V. Bhat, M. Parashar and S. Klasky, An
Autonomic Service Architecture for Self-Managing
Grid Applications, Proceedings of the 6th
IEEE/ACM International Workshop on Grid
Computing, Seattle, WA, USA, November 2005.

[51] M. Dias de Assunção, R. Buyya and S. Venugopal.
InterGrid: A Case for Internetworking Islands of
Grids. Concurrency and Computation: Practice
and Experience, ISSN: 1532-0626, Wiley Press,
New York, USA, 2008.

