
 1

A Grid Service Broker for Scheduling Distributed
Data-Oriented Applications on Global Grids

Srikumar Venugopal, Rajkumar Buyya

GRIDS Laboratory and NICTA Victoria Laboratory
Dept. of Computer Science and Software Engineering

The University of Melbourne, Australia
{srikumar,raj}@cs.mu.oz.au

Lyle Winton
Experimental Particle Physics Group

School of Physics
The University of Melbourne, Australia

winton@ph.unimelb.edu.au

ABSTRACT
Large communities of researchers distributed around the world are
engaged in analyzing huge collections of data generated by
scientific instruments and replicated on distributed resources. In
such an environment, scientists need to have the ability to carry
out their studies by transparently accessing distributed data and
computational resources. In this paper, we propose and develop a
Grid broker that mediates access to distributed resources by (a)
discovering suitable data sources for a given analysis scenario, (b)
suitable computational resources, (c) optimally mapping analysis
jobs to resources, (d) deploying and monitoring job execution on
selected resources, (e) accessing data from local or remote data
source during job execution and (f) collating and presenting
results. The broker supports a declarative and dynamic parametric
programming model for creating grid applications. We have used
this model in grid-enabling a high energy physics analysis
application (Belle Analysis Software Framework) on a grid testbed
having resources distributed across Australia.

1. INTRODUCTION
The next generation of scientific experiments and studies,
popularly called as e-Science [14], will be carried out by
communities of researchers from different organizations that span
national and international boundaries. Some well-known scientific
experiments of this nature include the CERN-led ATLAS and
CMS experiments and the KEK-led Belle experiment. These
experiments involve geographically distributed and heterogeneous
resources such as computational resources, scientific instruments,
databases and applications.

Grid computing [11] enables aggregation and sharing of these
resources through by bringing together communities with common
objectives and creating virtual organizations [12]. Data Grids [9]
have evolved to tackle the twin challenges of large datasets and
multiple data repositories at distributed locations in data-intensive
computing environments [16]. However, the harnessing the power
of grids remains to be a challenging problem for users due to the
complexity involved in the creation and composition of
applications and their deployment on distributed resources.

Resource brokers hide the complexity of grids by transforming
user requirements into a set of jobs that are scheduled on the
appropriate resources, managing them and collecting results when
they are finished. A resource broker in a data grid must have the
capability to locate and retrieve the required data from multiple
data sources and to redirect the output to storage where it can be
retrieved by processes downstream. It must also have the ability to
select the best data repositories from multiple sites based on
availability of files and quality of data transfer. In this paper, one
such broker called the Gridbus Broker providing services relevant
to data-intensive environments is presented. Its application to the
high-energy physics domain is discussed by illustrating its use
within the Belle Analysis Data Grid and the results of experiments
that have been conducted on it are presented.

2. RELATED WORK
While the scheduling of independent jobs on distributed
heterogeneous resources is a well-studied problem [15], the
discussion here is restricted to those efforts which deal with Grids.

The Gridbus broker extends the Nimrod-G [1] computational Grid
resource broker model to distributed data-oriented grids. Nimrod-
G specializes in parameter-sweep computation and its model has
been proven successful for several applications [4][18]. However,
the scheduling approach within Nimrod-G aims at optimizing
user-supplied parameters such as deadline and budget [5] for
computational jobs only. It has no functions for accessing remote
data repositories and for optimizing on data transfer. The Gridbus
broker also extends Nimrod-G’s parametric modeling language by
supporting dynamic parameters, i.e. parameters whose values are
determined at runtime.

Like Nimrod-G, the AppLeS PST [7] [8] supports deployment
of parameter-sweep applications on computational grids, but its
adaptive scheduling algorithm emphasizes on data-reuse. The
users can identify common data files required by all jobs and the
scheduling algorithm replicates these data files from the user node
to computational nodes. It tries to re-use the replicated data to
minimize the data transmission when multiple jobs are assigned to
the same resource. However, multiple repositories of data are not
considered within this system and therefore, this scheduling
algorithm is not applicable to Data Grids.

Ranganathan and Foster [17] have conducted simulation
studies for various scheduling scenarios within a data grid. Their
work recommends decoupling of data replication from
computation while scheduling jobs on the Grid. It concludes that it
is best to schedule jobs to computational resources that are closest
to the data required for that job, but the scheduling and simulation
studies are restricted to homogeneous nodes with a simplified
First-In-First-Out (FIFO) strategy within local schedulers.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
2nd International Workshop on Middleware in Grid Computing,
October 18, 2004, Toronto, Ontario, Canada.
Copyright 2004 ACM 1-58113-950-0/00/0004…$5.00.

 2

Similar to [17], our work focuses on a resource scheduling
strategy within a Data Grid but we concentrate on adaptive
scheduling algorithms and brokering for heterogeneous resources
that are shared by multiple user jobs. In addition, the scheduling
strategy has been implemented within the Gridbus broker and its
feasibility to support the deployment of distributed data-intensive
applications (e.g. KEK Belle high-energy physics experiment data
analysis) within a real Grid testbed (e.g., Australian Belle Analysis
Data Grid) has been evaluated.

3. ARCHITECTURE
3.1 Data Grid Overview and Brokering
A data-intensive computing environment can be perceived as a
real-world economic system wherein there are producers and
consumers of data. Producers are entities which generate the data
and control its distribution via mirroring at various replica
locations around the globe. Information about the data replicas is
assumed to be available through a data catalogue mechanism such
as the Globus Replica Catalog [19]. The consumers in this system
would be the users who may need to investigate specific datasets
out of a set of hundreds and thousands. A sample scenario for
such a data-intensive computing environment and the role of the
broker in it is discussed in [6].

3.2 Gridbus Data Grid Service Broker
The architecture of the Gridbus broker is shown in Figure 1. The
inputs to the broker are the tasks and the associated parameters
with their values. These can be specified within a “plan” file that
specifies the tasks and the types of the parameters and their values
for these tasks.

A task is a sequence of commands that describe the user’s
requirements. For example, the user may specify an application to
be executed at the remote site, an input file to be copied over
before execution and the results to be returned back. A task
encapsulates this information within its description. A task is
accompanied by parameters which can either be static or dynamic.
A static parameter is a variable whose domain is well-defined
either as a range of values, as a single static value or as one among
a set of values. A dynamic parameter has either an undefined or an
unbounded domain whose definition or boundary conditions
respectively, have to be established at runtime. As an example, in
the current implementation, a parameter type has been defined
which describes a set of files over which the application has to be
executed. This set can be described as a wildcard search within a
physical or a logical directory, to be resolved at runtime, thus
creating a dynamic parameter.

The task requirements drive the discovery of resources such as
computational nodes and data resources. The resource discovery
module gathers information from remote information services
such as the Grid Index Information Service (GIIS) [10] for
availability of compute resources. Optionally, the list of available
compute resources can be provided by the user to the broker. The
broker also interacts with the information service on each
computational node to obtain its properties. Data files can be
organised as Logical File Names (LFNs) within a virtual directory
structure using a Replica/Data Service Catalog. Each LFN maps to
one or many Physical File Names (PFNs) somewhere on the Grid,
usually specified via URLs. The broker will resolve the LFNs to
the appropriate physical file location(s) by querying the catalog.

 The task description, i.e. the task along with its associated
parameters, is resolved or “decomposed” into jobs. A job is an
instantiation of the task with a unique combination of parameter
values. It is also the unit of work that is sent to a Grid node. The
set of jobs along with the set of service nodes are an input to the
scheduler. For jobs requiring remote data, the scheduler interacts
with a network monitoring service to obtain the information about
current available bandwidth between the data sources and the
compute resources. In the current implementation, the Network
Weather Service (NWS) [21] has been used to obtain this
information. The scheduling algorithm is described in more detail
in the next section.

Figure 1: Gridbus broker architecture.

The jobs are dispatched to the remote node through the
Actuator component. The Actuator submits the job to the remote
node using the functionality provided by the middleware running
on it. The Actuator has been designed to operate with different
Grid middleware frameworks and toolkits such as Globus 2.4 [13].
The task commands are encapsulated within an Agent which is
dispatched to and executed on the remote machine. If a data file
has been associated with the job and a suitable data host identified
for that file, then the Agent obtains the file through a remote data
transfer from the data host. Additionally, it may require some
configuration or input parameter files that it obtains from the
broker through a mechanism such as a GASS [2] (Globus Access
to Secondary Storage) Server. These files are assumed to be small
and in tens or hundreds of kilobytes which impact the overall
execution time of a job negligibly whereas the data files are in the
range of megabytes or larger. On the completion of execution, the
Agent returns any results to the broker and provides debugging
information. The Monitoring component keeps track of job status
– whether the jobs are queued, executing, finished successfully or
failed. The Bookkeeper keeps a persistent record of job and
resource states throughout the entire execution.

The design and implementation of the broker could not be
described here due to paucity of space. The interested reader can
refer to the related technical report [20] for details.

Parameters
and Task

Jobs

Grid
Scheduler

Service node list

Service nodes

Application & Data
Parameterization

Static or Dynamic
Parameter Resolver

Data
Service
Catalogue

Broker User Interface

Resource
Catalogue

Resource
DiscoveryTask & data

requirements

Job schedule

Grid
Information
Service

Actuator & MonitorGASS
Server

Agent
Remote
Data Host

Broker Node

Grid Node

Local
File

Local
Data

Result
File

Job status
feedback

Gridbus Broker

User
process

Bookkeeper Network
Information
Service

Parameters
and Task

Jobs

Grid
Scheduler

Service node list

Service nodes

Application & Data
Parameterization

Static or Dynamic
Parameter Resolver

Data
Service
Catalogue

Broker User Interface

Resource
Catalogue

Resource
DiscoveryTask & data

requirements

Job schedule

Grid
Information
Service

Actuator & MonitorGASS
Server

Agent
Remote
Data Host

Broker Node

Grid Node

Local
File

Local
Data

Result
File

Job status
feedback

Gridbus Broker

User
process

Bookkeeper Network
Information
Service

 3

3.3 Scheduling
The scheduler within the broker looks at a data grid from the point
of view of the data. It perceives a data-intensive computing
environment as a collection on data hosts, or resources hosting the
data, surrounded by compute nodes. Some of the data resources
may have computation facilities too, in which case there is
assumed to be nearly infinite bandwidth between the data host and
the compute resource at the same site. The scheduling heuristic is
listed in Figure 2.

The scheduler minimizes the amount of data transfer involved
while executing a job by dispatching jobs to compute servers
which are close to the source of data. A naïve way of achieving
this would be to run the jobs only on those machines that contain
their data. But, the data hosts may not have the best computational
resources. Hence, the scheduler selects an appropriate compute
resource to execute a job based on factors such as capability and
performance of the resource, bandwidth available from the
compute resource to the data host that contains the data file
required for the job and the cost of data transfer. A detailed
analysis and performance evaluation of this scheduling algorithm
is out of scope of this paper. However, an evaluation using a high
energy physics analysis application within a Data Grid
environment is presented in the next section.

4. EXPERIMENTAL EVALUATION
High-Energy Physics (HEP) Experiments are large and technically
sophisticated and necessarily involve international collaboration
between many institutes over very long time scales. Computing

resource requirements for HEP are increasing exponentially
because of advancements in particle accelerators and increasing
size of collaborations. Therefore, data grids are important to
ensure continued availability of computational and data resources
in experimental high energy physics. A survey of the data grid
efforts in this domain is presented in [3].

The Belle experiment, built and operated by a collaboration of 400
researchers across 50 institutes from 10 countries, provides the
state-of-the-art instruments to explore the effects of Charge-Parity
(CP) violation within B-mesons produced at the the KEKB
accelerator at the Japanese High Energy Accelerator Research
Organization (KEK) in Tsukuba. The current experiment and
simulation data set is increasing rapidly and has begun to pose
problems for the processing and access of data at geographically
remote institutions, such as those within Australia. Hence, it is
important for Data Grid techniques to be applied in this
experiment [21].

4.1 The Testbed
The Belle Analysis Data Grid (BADG) testbed has been set up in
Australia in collaboration with IBM. The location, configuration
and capabilities of the testbed resources are shown in Figure 3.
Each of the nodes have 4 CPUs (2 Intel Xeons), except for the PC
in the School of Physics, University of Melbourne which has only
one. However, two of these resources (Adelaide and Sydney) were
effectively functioning as single processor machines as the
Symmetric Multi-Processing (SMP) Linux kernel was not running
on them. All the nodes in this testbed were running Globus 2.4.2

Initialisation

1. Identify characteristics, configuration, capability, and suitability of compute resources using the Grid
information services (GIS).

2. From the task definition, obtain the data query parameters (if present), such as the logical file name
a. Resolve the data query parameter to obtain the list of Logical Data Files (LDFs) from the Data Catalog
b. For each LDF, get the data sources or Data Hosts that store that file by querying the Data Catalog.

Scheduling Loop

Repeat while there exist unprocessed jobs. [This step is triggered for each scheduling event. The event period is a
function of job processing time, rescheduling overhead, resource share variation, etc.]:
1. For each compute resource, predict and establish the job consumption rate or the available resource share

through the measure and extrapolation strategy taking into account the time taken to process previous jobs.
Use this estimate along with its current commitment to determine expected job completion time.

2. If any of the compute resource has jobs that are yet to be dispatched for execution and there is variation in
resource availability in the Grid, then move such jobs to the Unassigned-Jobs-List.

3. Repeat until all unassigned jobs are scheduled or all compute resources have reached their maximum job
limit.
a. Select the next job from the Unassigned-Jobs-List.
b. Identify all Data Hosts that contain the LDF associated with the job.
c. Create a Data-ComputeResource-List for the selected job:
d. For each data host, identify a compute resource that can complete the job earliest given its current

commitment, job completion rate, and data transfer time using current available bandwidth estimates.
e. Select a data host and compute resource pair with the earliest job completion time from the Data-

ComputeResource-List.
f. If there exists such a resource pair, then assign the job to the compute resource and remove it from the

Unassigned-Jobs-List.
End of scheduling loop.

Figure 2: Adaptive scheduling algorithm for Data Grid.

 4

and NWS sensors and except for the Adelaide node, are connected
via GrangeNet, a Gigabit wide-area network within Australia. The
broker was deployed on the Melbourne Computer Science
machine and broker agents were dispatched at runtime to the other
resources for executing jobs and initiating data transfers.

Figure 3: Australian Belle Analysis Data Grid testbed.

Data that was produced on one site in BADG had to be shared
with the other sites. For this purpose, a Data Catalog was set up
for BADG using the Globus Replica Catalog (RC) mechanism.
The primary application for the Belle experiment is the Belle
Analysis Software Framework (BASF). This application is used
for simulation, filtering of events, and analysis. It is also a legacy
application that consists of about a Gigabyte of code. Therefore,
this application was installed on all the resources beforehand.

4.2 Application Parameterisation and
Experimental Setup
The experiment consists of 2 parts, both of which involve
execution over the Grid using the Gridbus broker. In the first part,
100,000 events of the “decay chain” of particles, B0->D*+D*-Ks
as shown in Figure 4, are simulated via distributed generation and
this data is entered into the replica catalog. In the analysis part, the
replica catalog is queried for the generated data and this is

analysed over the Belle Data Grid to generate histograms. Here
only the results of the analysis are discussed as it involved
accessing remote data.

A plan file for the composing analysis of Belle data as a
parameter sweep application is shown in Figure 5. The plan file
follows Nimrod-G’s declarative parametric programming language
which has been extended in this work by introducing a new type
of parameter called “Gridfile”. This dynamic parameter describes
a logical file location, either a directory or a collection of files and
the broker resolves it to the actual file names and their physical
locations. The plan file also instructs copying of user defined
analysis modules and configuration files to the remote sites before
any execution is started. The main task involves executing a user-
defined shell script at the remote site which has 2 input
parameters: the full network path to the data file and the name of
the job itself. The shell script invokes BASF at the remote site to
conduct the analysis over the data file and produce histograms.
The histograms are then copied over to the broker host machine.

Figure 4: The B0->D*+D*-Ks decay chain.

The Logical file name in this particular experiment resolved to
100 data files. Therefore, the experiment set consisted of 100 jobs,
each dealing with the analysis of one data file using BASF. Each
of these input data files was 30 MB in size. The entire data set was
equally distributed among the five data hosts i.e. each of them has
20 data files each. The data was also not replicated between the
resources, therefore, the dataset on each resource remained unique
to it. The histograms generated were 968 KB in size.

For monitoring the bandwidth between the resources, an NWS
sensor was started on each of the resources which reports to the
NWS name server located in Melbourne. An NWS activity for

Grid
Service
Broker

Replica
Catalog

AARNET

NWS
NameServerVirtual

Organization

Analysis R equest

Analysis R esults

Certificate
Authority

NWS
Sensor

GridFT PGRIS

Globus
Gatekeeper

Dual Intel Xeon 2.8 Ghz,
 2 GB R AM

NWS
Sensor

GridFT PGRIS

Globus
Gatekeeper

Dual Intel Xeon 2.8 Ghz,
 2 GB RAM

NWS
Sensor

GridFT PGRIS

Globus
Gatekeeper

Dual Intel Xeon 2.8 Ghz,
 2 GB RAM

GRIDS L ab,
Univers ity of Melbourne

Dept. of Phys ics ,
Univers ity of Sydney

ANU, Canberra

Dept. of Computer Science,
University of Adelaide

NWS
Sensor

GridFT PGRIS

Globus
Gatekeeper

 Intel Pentium 2.0 Ghz,
 512 MB RAM

Dept. of Phys ics ,
University of Melbourne

NWS
Sensor

GridF T PGRIS

Globus
Gatekeeper

Dual Intel Xeon 2.8 Ghz,
 2 GB RAM

parameter INFILE Gridfile lfn:/users/winton/fsimddks/fsimdata*.mdst;
task nodestart

copy ddks_ana.so node:ddks_ana.so
copy libanalyser.so node:libanalyser.so
copy libbase_analyser.so node:libbase_analyser.so
copy libreconstructor.so node:libreconstructor.so
copy libtools.so node:libtools.so
copy event.conf node:event.conf
copy recon.conf node:recon.conf
copy particle.conf node:particle.conf

endtask
task main

node:execute ./runme.ddksana $INFILE $jobname
copy node:runme.log runme.log.$jobname
copy node:ddks-$jobname.hbook ddks-$jobname.hbook

endtask

New parameter type defined to describe an input data file

Logical file name pointing to the location in the replica catalog

parameter INFILE Gridfile lfn:/users/winton/fsimddks/fsimdata*.mdst;
task nodestart

copy ddks_ana.so node:ddks_ana.so
copy libanalyser.so node:libanalyser.so
copy libbase_analyser.so node:libbase_analyser.so
copy libreconstructor.so node:libreconstructor.so
copy libtools.so node:libtools.so
copy event.conf node:event.conf
copy recon.conf node:recon.conf
copy particle.conf node:particle.conf

endtask
task main

node:execute ./runme.ddksana $INFILE $jobname
copy node:runme.log runme.log.$jobname
copy node:ddks-$jobname.hbook ddks-$jobname.hbook

endtask

New parameter type defined to describe an input data file

Logical file name pointing to the location in the replica catalog

Figure 5: Plan file for Data Analysis

 5

monitoring bandwidth was defined at the name server within
which a clique containing all the resources on the testbed was
created. Members of the clique conduct experiments one at a time
to determine network conditions between them. Querying the
name server at any point provided the bandwidth and latency
between any 2 members of the clique.

4.3 Results of Evaluation
Three scheduling scenarios were evaluated: (1) scheduling with
computation limited to only those resources with data, (2)
scheduling without considering location of data, and (3) our
adaptive scheduling (shown in) that optimizes computation based
on the location of data. The experiments were carried out on April
19th, 2004 between 18:00 and 23:00 AEST. At that time, the
Globus gatekeeper service on the Adelaide machine was down and
so, it could not be used as a computational resource. However, it
was possible to obtain data from it through GridFTP. Hence, jobs
that depended on data hosted on the Adelaide server were able to
be executed on other machines in the second and third strategies.
A graph depicting the comparison of the total time taken for each
strategy to execute all the jobs is shown in Figure 6 and another
comparing resource performance for different scheduling
strategies is shown in Figure 7.

In the first strategy (scheduling limited to resources with the
data for the job), jobs were executed only on those resources
which hosted the data files related to those jobs. No data transfers
were involved in this scenario. As is displayed in the graph in
Figure 7, all of the resources except the one in Adelaide were able
to execute 20 jobs each. The jobs that were scheduled on that
resource failed, as its computational service was unavailable.
Hence, Figure 6 shows the total time taken for only 80 successful
jobs out of 100. However, this time also includes the time taken
by the scheduler to analyse the remaining 20 jobs as failed. In this
setup, the related data was exclusively located on that resource and
hence, these jobs were not reassigned to other compute resources.
Thus, a major limitation of this scheduling strategy was exposed.

In the second strategy (scheduling without any data
optimization), the jobs were executed on those nodes that have the
most available computational resources. That is, there was no
optimization based on location of data within this policy. The
Adelaide server was considered a failed resource and was not
given any jobs. However, the jobs that utilized data files hosted on
this machine were able to be executed on other resources. This
strategy involves the maximum amount of data transfer which
makes it unsuitable for applications involving large data transfers
and utilising resources connected by slow networks.

The last evaluation (scheduling with data optimization) was
carried out by scheduling jobs to the compute resources that
satisfied the algorithm given in Section 3.3. In this case, as there
were no multiple data hosts for the same data, the policy was
reduced to dispatching jobs to the best available compute resource
that had the best available bandwidth to the host for the related
data. It can be seen from Figure 7 that most of the jobs that
accessed data present on the Adelaide resource were scheduled on
the Melbourne Physics and CS resources because the latter had
consistently higher available bandwidth to the former. This is
shown in the plot of the available bandwidth from the University
of Adelaide to other resources within the testbed measured during
the execution, given in Figure 8. The NWS name server was
polled every scheduling interval for the bandwidth measurements.

As can be seen from Figure 6, this strategy took the least time of
all three.

64

66

68

70

72

74

76

78

80

82

84

Scheduling limited to
Resources with Data

(only 80 jobs)

Scheduling without
any Data optimization

Scheduling with Data
optimization

T
im

e
(in

 M
in

s.
)

Figure 6: Total time taken for each scheduling strategy.

0

5

10

15

20

25

30

35

Melbourne
Physics

Melbourne
CS

ANU
Canberra

 Sydney
Physics

Compute Resources

N
o

. o
f

Jo
b

s
C

o
m

p
le

te
d

Scheduling limited to Resources with Data
Scheduling without regard to Location of Data
Adaptive Scheduling with regard to Data Location

Figure 7: Comparison of resource performance under different
scheduling strategies.

0

0.5

1

1.5

2

2.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86

Time (in min)

A
va

ila
b

le
 b

an
d

w
id

th
 (

in
 M

b
p

s)

Melbourne Physics Melbourne CS

ANU Canberra Sydney Physics

Figure 8: Available bandwidth from University of Adelaide
to other resources in the testbed.

5. SUMMARY AND CONCLUSION
We have presented a grid broker for executing distributed data-
oriented jobs on a grid. The broker discovers computational and
data resources, schedules jobs based on optimization of data
transfer and returns results back to the user. We have applied this
broker to a data-intensive environment, which is the analysis of
the Belle high-energy physics experiment data and have presented

 6

the results of our evaluation with different scheduling strategies.
The proposed scheduling strategy took into consideration the
network conditions and has produced the best possible outcome
by executing the jobs within the least amount of time.

We plan to conduct further evaluations with larger file sizes
and multiple repositories for the same datasets. This will ensure
that the data transfer time becomes more significant while making
scheduling decisions and that the scheduler will be able to choose
between different data hosts.

ACKNOWLEDGEMENTS
This work is partially supported by Australian Research Council
Discovery Project. We thank members of GRIDS Lab for their
contribution towards the implementation.

REFERENCES
[1] D. Abramson, J. Giddy, and L. Kotler, High Performance

Parametric Modeling with Nimrod/G: Killer Application for
the Global Grid?, Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS 2000), May
1-5, 2000, Cancun, Mexico, IEEE CS Press, USA, 2000.

[2] J. Bester, I. Foster, C. Kesselman, J. Tedesco, S. Tuecke,
GASS: A Data Movement and Access Service for Wide Area
Computing Systems, Proceedings of the Sixth Workshop on
Input/Output in Parallel and Distributed Systems, Atlanta,
GA, May 1999. ACM Press.

[3] J. Bunn and H. Newman, Data-intensive grids for high-
energy physics, In Grid Computing: Making the Global
Infrastructure a Reality, F. Berman, G. Fox, and T. Hey, Eds.
John Wiley & Sons, Inc., New York, 2003.

[4] R. Buyya, K. Branson, J. Giddy, and D. Abramson, The
Virtual Laboratory: Enabling Molecular Modeling for Drug
Design on the World Wide Grid, Concurrency and
Computation: Practice and Experience, Volume 15, Issue 1,
Pages: 1-25, Wiley Press, USA, January 2003

[5] R. Buyya, D. Abramson, and J. Giddy, An Economy Driven
Resource Management Architecture for Global
Computational Power Grids, Proceedings of the 2000
International Conference on Parallel and Distributed
Processing Techniques and Applications , June 26-29, 2000,
Las Vegas, USA, CSREA Press, USA, 2000.

[6] R. Buyya and S. Venugopal, The Gridbus Toolkit for Service
Oriented Grid and Utility Computing: An Overview and
Status Report, Proceedings of the First IEEE International
Workshop on Grid Economics and Business Models
(GECON 2004), April 23, 2004, Seoul, IEEE Press, USA

[7] H. Casanova, G. Obertelli, F. Berman, and R. Wolski, The
AppLeS Parameter Sweep Template: User-Level Middleware
for the Grid, Proceedings of the IEEE SC 2000, International
Conference Networking and Computing, Nov. 2000, Dallas,
Texas, IEEE CS Press, USA.

[8] H. Casanova, A. Legrand, D. Zagorodnov, and F. Berman,
Heuristics for scheduling parameter sweep applications in
grid environments, Proceedings of the 9th Heterogeneous
Computing Workshop, 2000. (HCW 2000), Cancun, Mexico.
IEEE CS Press, USA.

[9] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S.
Tuecke, The data grid: Towards an architecture for the

distributed management and analysis of large scientific
datasets, Journal of Network and Computer Applications,
vol. 23, no. 3, pp. 187–200, 2000.

[10] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman,
Grid Information Services for Distributed Resource Sharing,
Proceedings of 10th IEEE International Symposium on High
Performance Distributed Computing (HPDC-10), IEEE CS
Press, USA, 2001.

[11] I. Foster and C. Kesselman (editors), The Grid: Blueprint for
a Future Computing Infrastructure, Morgan Kaufmann
Publishers, USA, 1999.

[12] I. Foster, C. Kesselman, and S. Tuecke, The anatomy of the
grid: Enabling scalable virtual organizations, International
Journal of High Performance Computing Applications, vol.
15, pp. 200-222, Sage Publishers, London, UK, 2001.

[13] I. Foster and C. Kesselman, “Globus: A Metacomputing
Infrastructure Toolkit”, International Journal of
Supercomputer Applications, 11(2): 115-128, 1997.

[14] T. Hey and A. E. Trefethen, The UK e-Science Core
Programme and the Grid, Future Generation Computer
Systems, Volume 18, Issue 8, October 2002, Pages 1017-
1031.

[15] M. Maheswaran, S. Ali, H. J. Siegel, D. Hensgen and R. F.
Freund, Dynamic Mapping of a Class of Independent Tasks
onto Heterogeneous Computing Systems, Journal of Parallel
and Distributed Computing, Volume 59, Issue 2, November
1999, Pages 107-131

[16] R. Moore, C. Baru, R. Marciano, A. Rajasekar, and M.Wan,
The Grid: Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1998, ch.5,”Data Intensive Computing”.

[17] K. Ranganathan and I. Foster, Decoupling Computation and
Data Scheduling in Distributed Data-Intensive Applications,
Proceedings of 11th IEEE International Symposium on High
Performance Distributed Computing (HPDC-11), Edinburgh,
Scotland, July 2002, IEEE CS Press, USA.

[18] W. Sudholt, K. Baldridge, D. Abramson, C. Enticott, and S.
Garic, Parameter Scan of an Effective Group Difference
Pseudopotential Using Grid Computing, New Generation
Computing, Volume 22 , Pages:125-135, 2004.

[19] S. Vazhkudai, S. Tuecke, I. Foster, Replica Selection in the
Globus Data Grid, Proceedings of the First IEEE/ACM
International Conference on Cluster Computing and the Grid
(CCGRID 2001), pp. 106-113, IEEE CS Press, May 2001.

[20] S. Venugopal, R. Buyya and L. Winton, A Grid Service
Broker for Scheduling Distributed Data-Oriented
Applications on Global Grids, Technical Report, GRIDS-TR-
2004-1, Grid Computing and Distributed Systems
Laboratory, University of Melbourne, Australia, February
2004.

[21] Lyle Winton, Data Grids and High Energy Physics: A
Melbourne Perspective, Space Science Reviews, 107 (1-2):
523-540, Kluwer Academic Publishers, Netherlands, 2003

[22] R. Wolski, N. Spring, and J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing”, Journal of Future Generation
Computing Systems,Volume 15, Numbers 5-6, pp. 757-768.

