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Abstract

Simulation studies of Grid scheduling strategies require
representative workloads to produce dependable results.
Real production Grid workloads have shown diverse correla-
tion structures and scaling behavior, which are different than
the characteristics of the available supercomputer workloads
and cannot be captured by Poisson or simple distribution-
based models. We present models that are able to reproduce
various correlation structures, including pseudo-periodicity
and long range dependence. By conducting model-driven
simulation, we quantitatively evaluate the performance im-
pacts of workload correlations in Grid scheduling. The re-
sults indicate that autocorrelations in workloads result in
worse system performance, both at the local and the Grid
level. It is shown that realistic workload modeling is not
only possible, but also necessary to enable dependable Grid
scheduling studies.

1 Introduction

Grid computing is rapidly evolving as the next-generation
platform for system-level sciences and beyond. In such
a dynamic and heterogeneous environment, good schedul-
ing mechanisms are needed to deliver nontrivial quality-of-
service. Understanding the workload characteristics is cru-
cial because not only workload is an indispensable part in
scheduling evaluation but also a deep understanding will give
us hints on how to improve the scheduling heuristics.

A study of workload dynamics on clusters and Grids has
been conducted in [12]. It is shown that workload character-
istics on clusters and Grids, particularly in data-intensive en-
vironments, are significantly different than those on conven-
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tional supercomputers. Job arrivals show a variety of corre-
lation structures, including short range dependence, pseudo-
periodicity, and long range dependence. “Bag-of-tasks” be-
havior with a strong degree of temporal locality is observed,
which leads to the long autocorrelation lags in workload at-
tributes such as run time. Simple models such as Poisson
or distribution-based methods are not able to capture the
second-order properties such as autocorrelation.

In this paper we present an overview of workload mod-
els developed for Grid environments that are able to repro-
duce the correlation structures as in the real traces. To show
that the models are not only possible but also practical, we
conduct model-driven simulations of Grid scheduling strate-
gies. Experiments are designed to quantify the performance
impacts of workload correlations in Grid scheduling. The
impacts, as we will show later, are very large. Long range
dependence results in big performance degradation, which
effects should be taken into consideration in the scheduling
evaluation studies.

The rest of the paper is organized as follows. Section 2
provides a overview of some of the representative research
in Grid scheduling. The focuses are on how workloads are
treated and what is the simulation environment. Section 3
discusses the workload models developed for capturing the
statistical properties of real Grid traces, including short range
dependence, pseudo-periodicity and long range dependence.
A comprehensive model is obtained by combining job arrival
process and series of job attributes such as run time. Sec-
tion 4 describes the simulation setup. We build the simula-
tion environment based on GridSim and develop two cases
for performance evaluation studies, namely Grid resource
case and Grid broker case. Section 5 presents the experi-
mental results for the two cases, namely, the performance
impacts of autocorrelations on one FCFS queue with multi-
ple servers, and on a Grid broker and multiple clusters with
background workload. Section 6 comes to the conclusion
that autocorrelations cause performance degradation in both
cases and future work on how to improve scheduling are dis-



Research Paper Scheduling Simulator Grid Workload Background Workload
Buyya’05 Deadline/Budget GridSim Bulk of 200 jobs None
Dumitrescu’06 uSLA allocation GangSim 500 jobs with fixed intervals None
Ranganathan’02 Data and Computation ChicSim 6000 jobs in sequence None
Venugopal’06 Set coverage with data GridSim Bulk of 1000 jobs Gaussian system load
Casanova’00 Max-min, Sufferage, etc Simgrid NWS traces, Random None
Song’05 Min-min with trust Custom NAS, PSA traces Poisson arrivals
Bucur’03 Co-allocation CSIM18 DAS traces None
Ranjan’06 SLA cooperative GridSim Parallel workload traces None
He’05 DAG-mapping Custom Random workflows Poisson/Exponential
Ramakrishnan’07 Data-intensive workflows GridSim LIGO workflows None

Table 1. Summary of representative scheduling research in Grid environments. The papers are named
after the first authors and the years of publication.

cussed.

2 Evaluation of Scheduling Algorithms

Efficient and effective scheduling at a meta-level is very
important in a Grid computing environment. In order to de-
velop and evaluate new Grid scheduling algorithms, two fun-
damental issues have to be addressed for performance eval-
uation studies. On one hand, representative workload traces
are needed to produce dependable results. On the other hand,
a good testing environment should be set up, most commonly
through simulations. In this section we review some of the
current research in Grid scheduling, with a special emphasis
on the mentioned two issues.

Table 1 shows a summary of representative scheduling
studies in Grid environments. Since the clusters/resources
participating in a Grid typically have their own local activ-
ities, the workloads are further categorized into Grid-level
jobs (Grid workload) and locally generated jobs (background
workload). Due to the lack of traces at the Grid level, simpli-
fied assumptions on workloads are commonly made in many
scheduling studies. In [4] and [21] bulk sizes of 200 to 1000
jobs are used to evaluate the proposed “off-line” schedul-
ing algorithms. For “on-line” mode of scheduling, jobs ei-
ther arrive in fixed intervals [6], or strictly in sequence [16].
More realistic treatments include the use of real workload
traces. In [5] traces obtained from Network Weather Service
(NWS) are used to study a set of heuristics for parameter
sweep applications, including max-min, min-min, Sufferage,
and XSufferage. In [20] there are two specific traces un-
der study: one is obtained from iPSC/860 parallel workload
at NAS, the other consists of parameter sweep applications
(PSA). In [2] traces from a multi-cluster environment (DAS)
are utilized in the study of processor co-allocation strategies.
In [17] workloads on parallel supercomputers available at the
Parallel Workload Archive1 are used in evaluating a SLA-

1www.cs.huji.ac.il/labs/parallel/workload/.

based cooperative superscheduling algorithm. Work in [7]
and [15] focus on workflow scheduling, in which workflows
are randomly generated or based on real traces. Trace-based
simulations have the advantages of being easy-to-use, and the
results obtained are reproducible and comparable. However,
it is not as flexible as models in case that many traces have
to be generated to enable a Grid scheduling study. The traces
available from parallel workloads can also have significantly
different characteristics compared to Grid workloads, which
has been empirically proved [12]. Such differences, in turn,
may lead to considerably different performance evaluation
results.

Background workload is another important issue to be
addressed in a heterogeneous and non-dedicated Grid envi-
ronment. Many previous work do not include background
load information because traces or characterization are not
widely available concerning the background workloads on
clusters. Some research employs models to generate local
jobs as background. In [21] the local system load is modeled
as a Gaussian distribution with predefined mean and vari-
ance. In [20] and [7] background job arrivals are modeled as
a Poisson process and run times are drawn from an exponen-
tial distribution in [7]. Although such models are simple to
use and analytically tractable, it might not reflect the real job
characteristics at the cluster level.

The third problem is how to set up a simulation envi-
ronment for performance evaluation. As we can see in Ta-
ble 1, GridSim is a popular choice to build Grid simula-
tions [4, 21, 17, 15, 19]. Other simulators developed spe-
cially for Grids include Simgrid [5], GangSim [6] and Chic-
Sim [16]. Some researchers build their own version of sim-
ulators to meet their research goals [7, 20]. Commercially
available product is also employed in conducting simula-
tions [2]. Although many simplifications and assumptions
are made in the simulations compared to real Grid environ-
ments, simulations are commonly considered a flexible and
tractable way of evaluating different Grid scheduling algo-



rithms as well as other design issues.
The main focus of this paper is on the workload traces.

Although far from an exhaustive list of Grid scheduling liter-
ature, we can see that a large number of research work such
as the ones shown in Table 1 either use traces not typically
from real production Grids, or use simple workload models
(Poisson, fixed-interval arrivals, or Gaussian system load).
These traces or models, however, exhibit significantly differ-
ent characteristics than the traces on production Grids. As
has been studied and reported in [12], pseudo-periodicity,
long range dependence (LRD), and “bag-of-tasks” behav-
ior with strong temporal locality are the main properties that
characterize production Grid workloads. Therefore, it is im-
portant that representative models be developed to capture
the salient properties of Grid workloads. In the following
sections we present an overview of the recent work on work-
load modeling for clusters and Grids. Moreover, by using
the developed models we conduct model-driven simulation
of Grid scheduling strategies and quantify the performance
impacts of various correlation structures in workloads.

3 Workload Modeling in Grids

Based on workload traces from a large production Grid
and several participating clusters2, we developed models that
are able to reproduce the statistical properties of traces at
different levels. The following presentations are based on
research in [8, 9, 10, 11] and discuss job arrivals and job at-
tributes, respectively.

3.1 Job Arrivals

Job arrivals can be described as a point process and
two representations are commonly used, namely, interarrival
time process and count/rate process. The count process is
formed by dividing the time axis into equally spaced con-
tiguous intervals and counts the number of events within each
interval. Forming the sequence of counts generally loses in-
formation but it allows the correlation in the counts be readily
associated with that in the point process [13]. The rate pro-
cess is basically the sequence of counts normalized by the
count interval.

In the following discussions, doubly stochastic models
are the so-called “full” models because they fit the interar-
rivals. Models for pseudo-periodicity and long range depen-
dence operate on the count processes, by which the correla-
tion structures can be reliably revealed. Algorithms are also
proposed to convert rates back to interarrivals. Another ad-
vantage of modeling the count process lies on its additive
nature: models for different VOs can be added together to
generate an aggregated trace in which the VO labels are pre-

2Grid Workload Archive. http://gwa.ewi.tudelft.nl/.

served. This is useful for evaluating scheduling strategies in
which policies are based largely on VOs.

3.1.1 Doubly Stochastic Models

Homogeneous Poisson processes are well-known “zero-
memory” models, whose interarrivals and counts are inde-
pendently and identically distributed (I.I.D.) random vari-
ables. A generalization of the Poisson process is the so-
called doubly stochastic Poisson process (DSPP). Its rate
µ(t) is modulated by a positive-valued continuous-time
stochastic process rather than a fixed constant. The result-
ing process is thus doubly random: one source of random-
ness arises from the stochastic rate µ(t) while another comes
from the intrinsic Poisson events. A Markov modulated Pois-
son process (MMPP) is a DSPP whose rate is controlled by
a finite state continuous-time Markov chain. MMPP mod-
els have several attractive properties, such as being able to
capture correlations between interarrival times while still re-
maining analytically tractable. MMPPs are suitable to gener-
ate processes that are short or middle range dependent [10].

3.1.2 Pseudo-Periodicity

Pseudo-Periodicity is considered as one basic pattern that
originates from automated submission schemes, which is
present in large-scale data-intensive environments. Our
approach for modeling the pseudo-periodic pattern is in-
spired and adapted from a signal decomposition methodol-
ogy called matching pursuit. It is a greedy, iterative algo-
rithm which searches a family of candidate functions (also
called “atoms”) for the element that best matches the sig-
nal and subtracts this function to form a residual signal to
be approximated in the next iteration. Sinusoidal and har-
monic models are used for fitting the job arrival count pro-
cesses, whose parameters are estimated via matching pursuit.
Matching pursuit is also shown to be able to extract patterns
from signals and makes it possible to model patterns indi-
vidually. For example, some long range dependent processes
could be mixed with certain high-frequency periodic compo-
nents. Matching pursuit is able to separate these two patterns
so that suitable models can be applied individually. We re-
fer to [9] for details about the matching pursuit approach in
modeling pseudo-periodic job arrivals.

3.1.3 Long Range Dependence

A process X(t) is said to be long range dependent (LRD) if
either its autocorrelation function (ACF) or power spectrum
satisfies the following conditions:

R(k) ∼ crk
α−1, k → ∞, or S(f) ∼ cff−α, f → 0. (1)

The autocorrelation function R(k) decays so slowly that∑∞
k=−∞ R(k) = ∞ and S(0) = ∞. LRD is one class of



the general scaling process [1]. Job arrival processes exhibit
long range dependence at many levels, including VO, cluster,
and the Grid [12]. LRD is closely related to temporal bursti-
ness, in which jobs tend to arrive within bursty periods. This
is in accordance with the “bag-of-tasks” arrival behavior in
data-intensive Grid environments. We apply the multifractal
wavelet model (MWM) [18] to fit the count/rate processes
because it provides a coherent wavelet framework for anal-
ysis and synthesis of the scaling behavior. It is shown that
second order properties such as the autocorrelation function
(ACF) and the scaling behavior can be well reconstructed by
MWM [8].

3.2 Job Attributes

For data-intensive workloads running on production clus-
ters and Grids, it has been pointed out that strong tempo-
ral locality and “bag-of-tasks” behavior lead to long corre-
lation lags in job attributes such as run time and memory
consumption [12]. We have proposed a model for workload
attributes that can capture not only the marginal distribution
but also the second order statistics such as the autocorrela-
tion function (ACF) [11]. This is fulfilled by a two-stage
approach: Firstly, a mixture of Gaussians model is used to
fit the probability density function (PDF), whose parameters
are estimated via a framework called model based clustering
(MBC). The MBC framework can further cluster the data ac-
cording to the Gaussian components, which plays an impor-
tant role in creating correlations in the next stage. Secondly,
a novel localized sampling algorithm is proposed to gener-
ate correlations in the synthetic data series. It is discovered
that the number of repetitions of cluster labels obtained via
MBC empirically follow a Zipf-like (power law) distribution.
Sampling repeatedly from a certain cluster according to the
Zipf law is able to create correlations in the series. Further-
more, a cluster permutation procedure is introduced so that
the autocorrelations in the synthetic data can be controlled to
match those in the real trace via a single parameter. Exper-
imental results have shown that the proposed model can fit
the marginal distribution well at the same time match the au-
tocorrelation function of the original trace [11]. This model
is referred as MBC-LSP in the context of this paper.

3.3 A Comprehensive Model

Although correlations and the scaling behavior can be
reliably revealed using the count/rate process, it is neces-
sary to generate a point process in the form of interarrival
times so that a full description can be obtained. A so-called
controlled-variability integrate-and-fire (CV-InF) algorithm
can be used for such conversion [8]. Since the rates are ad-
ditive, it is possible to add up several rate processes with dif-
ferent patterns to form an aggregated process, and convert
it into interarrivals. By combining job arrival process and

View Mean CV Distribution ACF
local 0.04/s 9.9 Long tail SRD

RAL05 grid 0.02/s 2.1 Short tail MRD
all 0.06/s 6.3 Long tail SRD
local 0.002/s 8.7 Long tail P.P.

NIK05 grid 0.005/s 4.1 Long tail MRD
all 0.006/s 4.4 Long tail MRD

LPC05 all 0.01/s 2.2 Short tail LRD

Table 2. Statistics for job rate processes on
clusters (s - seconds, P.P. - Pseudo Periodic).

View Mean CV Distribution ACF
local 10401 1.9 Long tail LRD

RAL05 grid 13973 1.7 Long tail LRD
all 11727 1.9 Long tail LRD
local 14584 1.9 Long tail MRD

NIK05 grid 16934 1.9 Long tail LRD
all 16336 1.9 Long tail LRD

LPC05 all 4585 3.7 Long tail LRD

Table 3. Statistics for job run times on clusters
(the unit of run time is seconds).

series of job attributes such as run time, we obtain a compre-
hensive model for independent tasks in data-intensive Grids.
Parallelism is not taken into account here because there are
not enough parallel jobs available for study in the production
Grid traces, which mostly consist of sequential jobs such as
those from high energy physics and biomedical sciences.

Our goal is to demonstrate the feasibility and advantages
of using workload models to drive simulations. The example
is to investigate the performance impacts of workload cor-
relations in Grid scheduling. For this purpose we generate
synthetic traces with different correlation structures. Job ar-
rival processes can be not dependent (NoD), short range de-
pendent (SRD), and long range dependent (LRD), which can
be modeled by a Poisson process, a 2-state Markov modu-
lated Poisson process (MMPP2), and a multifractal wavelet
model with CV-InF conversion (MWM). Job run times have
the same three correlation structures and they can be mod-
eled by MBC-LSP with different permutation window sizes.
Experimental results of using these models to generate Grid-
level and background workloads are presented in Section 5.

4 Grid Simulation

We build the simulation environment based on Grid-
Sim [3]. GridSim provides a discrete-event framework for
simulating core Grid entities such as jobs, resources, and in-
formation services. For the performance evaluation of Grid
scheduling under correlated workloads we implement two



Site Location Cluster OS #CPUs Downscale SpecINT2k BG workload
CERN-PROD CERN, Switzerland Sci. Linux 3 3534 354 970 0.05/s
FZK-LCG2 FZK, Germany Sci. Linux 3 2662 266 1289 0.04/s
USCMS-FNAL FNAL, USA Sci. Linux 4 1925 193 1600 0.033/s
UKI-QMUL QMUL, UK Sci. Linux 4 1644 164 1381 0.033/s
IN2P3-CC IN2P3, France Sci. Linux 3 1454 145 892 0.025/s
SARA-LISA SARA, Netherlands Debian 3 1352 135 1636 0.025/s
RAL-LCG2 RAL, UK Sci. Linux 3 1266 127 1000 0.02/s
INFN-T1 INFN, Italy Sci. Linux 3 1238 124 747 0.02/s

Top 8 out of 237 sites in total (0.034%), 15075 out of 36126 CPUs in total (41.7%).

Table 4. Characteristics of the largest eight clusters in the LCG Grid (data obtained in April, 2007) and
corresponding parameters used in the simulation. BG workload shows the local job arrival rate on the
cluster. Run times of the local jobs are scaled to obtain different utilizations.

case studies, which are elaborated in the following sections.

4.1 Grid Resource Case

The first case is a computing cluster with one FCFS
queue. The simulated cluster is space-shared and has 100
CPUs. In order to understand what are the workload charac-
teristics we analyze the traces on three representative data-
intensive clusters3. For RAL05 and NIK05 we are able to
roughly distinguish the Grid jobs and the locally generated
jobs. By examining the “user name” field in the traces, jobs
from “pool account” (usually a VO name plus a unique num-
ber) are considered Grid jobs while jobs from a “real” user
name are seen as local jobs. As is shown in Table 2, different
clusters have different job arrival rates and autocorrelation
structures. The arrival ratio and patterns of local jobs ver-
sus Grid jobs are also highly diversified. The job run times,
on the other hand, have relatively smaller variances and are
almost all long range dependent. These statistics give us a
good reference on how to adjust the model parameters for
synthetic workload generation.

4.2 Grid Broker Case

The second case naturally extends to the Grid level. In
our environment we simulate 8 space-shared clusters whose
properties resemble those of the eight largest clusters in the
LHC production Grid (LCG)4. These properties are shown
in Table 4. Each cluster has its own local background work-
load, in which the job arrival rate scale with the capacity of
the resource. The chosen algorithm for the Grid broker case

3RAL05, NIK05, and LPC05 are traces collected from clusters in high
energy physics institutes in UK, Netherlands, and France, respectively. See
descriptions in [12] about resource details.

4LCG is a data storage and computing infrastructure for the high energy
physics community that will use the Large Hadron Collider (LHC) at CERN.
http://lcg.web.cern.ch/LCG/.

Model Parameters
Poisson µ = 10
MMPP2 σ1 = 0.04, σ2 = 0.01,

λ1 = 8.0, λ2 = 1.0
MWM p = [3.3, 5.3, 6.6, 7.5, 6.7, 7.1, 4.8,

3.0, 2.2, 1.4], µc = 0.28, σc = 0.33
MBC-LSP α = 1.79, N = 1262, W = 1, 500

Table 5. Model parameters used in the experi-
mental study. MWM parameters are fitted us-
ing biomed, LPC05. MBC-LSP parameters are
fitted for hep1, RAL05 (parameters for Gaussian
mixtures are not shown).

is called MCT (Minimum Completion Time) [14]. MCT as-
signs each incoming job to the cluster with the minimum ex-
pected completion time for that job. Clusters are assumed to
be FCFS-based so the minimum completion time can be es-
timated by simulating FCFS scheduling for the local queue.
The estimated minimum completion times are published to
the Information Service and can be used by the broker for
making a scheduling decision. The job flow at the Grid level
is sent to the broker and has an average arrival rate of 0.1/sec-
onds. The workload models generate synthetic traces with
different structures and are stored in text files. GridSim reads
the workloads from the files and carries out the simulation.

5 Experimental Studies

In previous sections we discussed the workload models
and the simulation environment setup. In this section we
present the evaluation results that quantify the performance
impacts of workload correlations in Grid scheduling. Table 5
shows the model parameters used to generate synthetic work-
load traces. For the interpretation of these parameters we re-
fer to the corresponding papers. In terms of parameter space,
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Figure 1. Synthetic workload traces with different correlation structures. For job arrival rate processes,
NoD - a Poisson process, SRD - a MMPP2 process, LRD - a MWM process with CV-InF conversion. For
job run times, NoD - MBC with random sampling, SRD - MBC with localized sampling (W = 1), LRD -
MBC with localized sampling (W = 500).
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Figure 2. Performance impacts of autocorrelations on a cluster with one FCFS queue. Workload struc-
ture is denoted as “arrival” “run time”.

the tradeoff is that we need more complex models to generate
processes with longer range dependence. Different correla-
tion structures and associated models are shown in Figure 1.
For all generated processes the means and standard devia-
tions remain unchanged, only the dependencies in the series
are different. This is the basis of the comparison studies pre-
sented as follows.

1. What are the performance impacts of autocorrelations
on one FCFS queue with multiple servers?

We study the Grid resource case first. Performance is
measured by the average job slowdown5 as a function of sys-

5Slowdown is defined as the average job response time (run time plus
queue wait time) divided by the average job run time.

tem utilization6, which is shown in Figure 2. We can see that
the impacts of autocorrelations is very large: the bigger the
ACF, the worse the performance. Similar results have been
reported in a clustered web server environment [22]. The
cause of such performance degradation is the high degree
of temporal burstiness in a LRD process. Bursty arrivals,
which is the opposite of smoothness (e.g. Poisson), result in
a long queue of waiting jobs. Consequently it leads to much
longer queueing delays (bigger slowdown for jobs) and over-
all lower system utilization.

2. What are the performance impacts of autocorrela-
tions on a Grid broker and multiple clusters with background
workload?

6Utilization means the average system utilization and it is calculated as
the proportion of system’s resources which are busy.
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Figure 3. Performance impacts of autocorrelations in Grid scheduling. Workload structure is denoted
as “Grid arrival”“Grid run time” “local arrival”“local run time” “scheduling algorithm”. Run time scal-
ing ratio is defined as the job MIPS rating versus resource MIPS rating.

In the Grid broker case, at the cluster level the resource
generates its own local background workload. At the Grid
level one stream of jobs flows into the broker. Therefore
there are two levels of freedom in combining the autocor-
relation structures, with each level having two attributes -
job arrival and job run time. In this case the performance is
measured by the average job slowdown for Grid-level jobs
as a function of the run time scaling ratio on resources. The
run time scaling ratio is the job MIPS rating versus resource
MIPS rating and a higher ratio indicates a larger average run
time. By varying the run time scaling ratio we get the results
as shown in Figure 3. Firstly we investigate the impacts of
Grid-level autocorrelations by setting the local background
workloads to be not dependent (Figure 3 left). Although not
as big as in the Grid resource case, performance degrada-
tion is observed for larger autocorrelations in the lower range
of the scaling ratios. Secondly we study the implications of
different autocorrelation structures in the local background
workloads (Figure 3 middle). Interestingly we can see that
Grid-level jobs actually perform better when the background
workloads have stronger autocorrelations. This is explained
by the lower system utilization resulted by the stronger tem-
poral locality in more autocorrelated processes at the clus-
ter level. If we set the local background workloads to be
long range dependent and vary the correlation structures at
the Grid level, we can see the big performance degradation
by long autocorrelations. By combining these effects we
can conclude that autocorrelations in the workloads result in
worse system performance, both at the local and the Grid
level.

6 Conclusions

In this paper we propose the use of workload models to
drive simulations of Grid scheduling strategies. Real produc-
tion Grid workloads have shown rich correlation and scal-
ing behavior, which are different than conventional paral-

lel workloads and cannot be captured using simple models
like Poisson or distribution-based methods. The introduced
models are able to reproduce a variety of correlation struc-
tures, including pseudo-periodicity, short range dependence
(SRD), and long range dependence (LRD), for job arrivals
and job attributes such as run time. The practical use of these
models are also demonstrated by the simulation studies. By
using the synthetic traces we are able to quantify the per-
formance impacts of workload correlations in Grid schedul-
ing. The results indicate that autocorrelations in workload
attributes can cause performance degradation, in many sit-
uations this effect is huge. We can see that the develop-
ment of good workload models are not only possible, but also
necessary for dependable performance evaluation studies of
scheduling strategies.

Further research includes how to improve scheduling un-
der autocorrelations. In a two-level Grid scheduling sce-
nario, long range dependence is not necessarily a bad situ-
ation. For instance, Figure 3 (middle) shows that better per-
formance is obtained for Grid-level jobs under LRD back-
ground workloads on clusters. Temporal burstiness, the op-
posite of smoothness, implies that the system have more idle
periods or “holes” in the time line. This provides opportu-
nities for the broker to do some smart load balancing at the
Grid level. For supporting scheduling studies we have made
the workload models publicly available7. We believe that re-
alistic workload models play an important role in future Grid
scheduling studies.
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