
Policy-based Resource Allocation in Hierarchical Virtual Organizations for Global
Grids

Kyong Hoon Kim and Rajkumar Buyya
Grid Computing and Distributed Systems (GRIDS) Laboratory
Department of Computer Science and Software Engineering

The University of Melbourne, Australia
E-mail: {jysh, raj}@csse.unimelb.edu.au

Abstract

In recent years, many studies have been conducted on
Grid computing, in which users and resource providers
organize various Virtual Organizations (VOs) to share
resources and services. A VO organizes other sub-VOs for
the purpose of achieving the VO goal, which forms the
hierarchical VO environment. In this paper, we model and
formalize the resource allocation problem in hierarchical
VOs. Resource providers and VOs agree upon the VO
resource sharing policy, such as resource sharing amount
and resource usage cost for VOs. We provide the resource
allocation scheme of a VO resource broker to minimize the
total cost in order to meet a user’s job deadline. In addition,
we deal with several cost adjustment methods in resource
providers to utilize their resources efficiently in hierarchical
VOs.

1. Introduction

The rapid growth of computer and network technologies
has enabled global computing with plenty of resources
which are heterogeneous and distributed geographically.
The Grid has started from the realization of scientific
computations over geographically distributed systems and
has been an emerging technology in recent years [1, 2].
Many studies on Grid computing have been conducted, such
as resource allocation, resource management, security, and
Web Services [2, 3, 4, 5].

A Virtual Organization (VO) in the Grid is defined as a
set of individuals and institutions forming an ad-hoc
partnership to solve a common problem by sharing
resources [1]. Recent research has focused on VO-based
services, including VO formation, operation, and resource
allocation. Thus, large-scale Grid research projects [6, 7]
provide VO services and organize various VOs to utilize
distributed resources efficiently. In VO-enabled Grid

environments, the VO-wide resource allocation problem
becomes an emerging research topic, which enables a user
to access several resources throughout VOs. Much research
[8, 9, 10] has been done on policy-based resource allocation
in VOs. The resource broker allocates resources to a job
according to VO policy, such as the amount of resource
share.

As the number of VOs increases in the Grid, efficient VO
management is required. The VO organizes its own sub-
VOs for the purpose of achieving the VO goal, which forms
the hierarchical VO environment. This paper deals with
resource allocation problem in hierarchical VOs. Another
important issue in Grid computing is economy-based
resource allocation [11], which minimizes the resource
usage cost of a user. We also include the resource usage cost
in VO policy model.

The main contributions of this paper are as follows: (i) to
model hierarchical VO environments for global Grids and
formalize the resource allocation problem; (ii) to provide a
VO-wide resource allocation scheme to minimize cost in
order to meet a user’s job; and (iii) to propose possible cost
adjustment methods to resource providers in hierarchical
VOs.

The remainder of this paper is organized as follows. In
Section 2, we present related work on VO-wide resource
allocation in the Grid. We define the hierarchical VO system
model and formalize the resource allocation problem in
Section 3. Section 4 discusses the proposed resource
allocation framework including the resource allocation
scheme in the resource broker and the cost adjustment
scheme in the resource site. We show simulation results in
Section 5 and conclude the paper in Section 6.

2. Related Work

Recent large-scale Grid projects include VO facilities to
federate various distributed resources. The OSG (Open
Science Grid) [6] provides a Grid infrastructure for large-

scale science applications and resources sharing throughout
VOs. The EGEE (Enabling Grids for E-SciencE) [7] also
organizes many VOs and shares resources to manage
resources efficiently. As the Grid computing expands world-
wide, the VO facility is required to integrate various
resources. The VOMS (Virtual Organization Membership
Service) [12] is an authentication service supporting VOs in
Globus toolkit. Most of VO services are built based on
VOMS since authentication and authorization is a basic
service for supporting VO. Resource providers want only
authorized VO users to use their resources.

Recent research on Grid computing has focused on the
VO-wide scheduling and resource allocation based on VO
polices. In [8], they introduce a new framework for policy
based scheduling as a part of SPINIX scheduling system.
The scheduling strategy in the framework adjusts resource
usage accounts or request priorities for efficient resource
usage management. Dumitrescu and Foster [9] propose a
usage policy-based scheduling in VOs and evaluate both
aggregate resource utilization and aggregate response time.
The evaluated usage polices are fixed limit, extensible-limit,
and commitment-limit, in which the limit is a fraction of
resource in a resource site provided to a specific VO. The
commitment-limit policy defines two upper limit: an epoch
limit for the average resource utilization limit for a long
time and a burst limit for a short time period limit. They
propose a prototype resource broker GRUBER [13] for
resource usage SLA specification and enforcement in a Grid
environment.

Elmroth and Gardfjall [10] have presented a
decentralized architecture for a Grid-wide fair scheduling
system, where each local scheduler enforces Grid-wide
hierarchical share policies using a global resource usage
data. The policy engine calculates a fairshare priority factor
for a job to support the Grid-wide share policy. Sulistio and
Buyya [14] proposed a time optimization algorithm in
auction-based proportional share systems with multiple VOs,
in which a user broker periodically adjusts a bidding price in
order to meet the deadline and minimize the cost. Norman,
et. al. [15] developed a model of VO management that
operates in complex electronic commerce scenarios. They
suggest how to organize a VO for satisfying a user’s various
service requests. A VO in [15] is defined as a unit of
economic services among users and service providers.

Previous research has investigated various policy
attributes, such as time [8, 9], resource usage [9, 10], share
[10], and cost [14]. Time attribute defines the period of
access of a VO user. Resource usage refers to how much a
VO user can use a resource in terms of the number of
processors [13] or the percentile [9, 10]. Share policy
enforces the sharing of resources between projects, groups,
and users in a VO. The cost policy defines the resource
usage cost for a VO user.

Although the policy models in [8, 10] are based on a VO
hierarchy, they assume that resource providers only define
the resource sharing of root VOs in VO policy trees, which
is called local policy in [10]. All other VOs in policy trees
follow the share specified in the policy tree. However,
resource providers can provide their resource to any VOs in
a VO hierarchy, as well as root VOs. This motivates our
research so that we investigate resource allocation in such a
case.

Another research motivation is the consideration of
resource cost policy in VO-wide resource allocation. In [14],
they define two different static costs for a VO and non-VO
resource usage. However, in an economy-based Grid
environment [11], resource providers adjust their resource
costs dynamically according to their current status, such as
system utilization. Thus, this paper considers the resource
usage cost for a VO and introduces cost adjustment schemes
for an efficient resource use. The resource allocation scheme
also considers the minimization of the total cost for running
a job.

3. Hierarchical Virtual Organizations

3.1. Hierarchical VO Environment

As many VOs are organized in the Grid, it is necessary to
federate VOs or share services between VOs. A VO can also
divide itself into several sub-VOs for the efficient
management. Thus, we define and view a VO as a set of
users, resource providers, and sub-VOs, as in [6]. Sub-VOs
have similar aims as the VO.

Figure 1 shows an example of hierarchical VOs. VO-A
consists of user U1, resource R1, and two sub-VOs (VO-A1
and VO-A2). VO-B is composed of three sub-VOs. A sub-
VO can include other sub-VOs, as in VO-A1. Resource

R5
R6

R4

R2

(40%,10)

U5 U2
U4

U1

U3
U6

U7

U8

VU : User : Resource provider
(share, cost)

: VO

VO−A
VO−B

(25%,15)
(50%,10)

(25%,30) (25%,50) (25%,20)

(70%,10)

(30%,20)

R3

(25%,20)

VO−A1−1
VO−A1−2

VO−A1 VO−A2
VO−B3

VO−B2

VO−B1R1

(50%,15)

Figure 1. An example of hierarchical VOs

providers can share their resources to several VOs. For
example, R3, R4, and R5 in Figure 1 provide their resources
to multiple VOs. Figure 2 shows another way of viewing the
hierarchical VOs in Figure 1.

Members in a VO share resources under the same policy,
such as resource usage. A VO policy in a hierarchical VO
applies to all the users in sub-VOs in the hierarchy. Thus, a
user belongs to multiple VOs and can access the resources
in these VOs. A user runs a job for his or her VO’s goal
which is a part of its ancestor VOs. Therefore, a user can
use the resources of ancestor VOs. For example, user U2 in
Figure 1 can use R4 of VO-A1-1, R2 of VO-A1, and R1 of
VO-A.

3.2. System Model

3.2.1. VO model

The system components in global Grids are users,
resource providers, and VOs. A user is an end-entity who
submits jobs to the Grid and runs the jobs using the
resources in VOs. A resource provider shares its resources
to users in the Grid, especially to users in VOs that each
resource provider has joined in. A VO is an organization of
users, resource providers, and sub-VOs to meet the goal of
the VO. Thus, we define the global Grids as G = (U, R, V),
where U is a set of users, R is a set of resource providers,
and V is a set of VOs in the Grids.

We denote each set of users, resource providers, and sub-
VOs in a VO v as Uv, Rv, and Vv, respectively, so that a VO
v is defined by (Uv, Rv, Vv). Table 1 shows the VO
components of each VO in Figure 1. In hierarchical VOs,
we additionally define the following terminologies. � Parent VO: If a VO v is one of sub-VOs of v’, (v ∈

Vv’), we call v’ a parent VO of v. We denote it as
parent (v). � Ancestor VOs: For a given VO v, all the VOs in the
path from v to the root in its VO tree are called
ancestor VOs of v. We denote it as ancestor (v).

� Root VO: If a VO v has no parent VO, it is called a
root VO. � Leaf VO: If a VO v has no sub-VOs (Vv = ∅), it is
called a leaf VO. � Intermediate VO: If a VO is neither root nor leaf, it is
called an intermediate VO.

Let us examine hierarchical VOs in Figure 1 as an
example. Figure 1 has tow root VOs: VO-A and VO-B, one
intermediate VO: VO-A1, and six leaf VOs: VO-A2, VO-
B1, VO-B2, VO-B3, VO-A1-1, and VO-A1-2. The ancestor
VOs of VO-A1-1 are VO-A1 and VO-A.

3.2.2. Policy model

In this paper, we consider VO polices between resource
providers and their VOs in two aspects: resource share and
resource cost. � Resource share policy: This policy implies how much

of its resource a resource provider shares in a VO.
The current resource share amount is denoted as
share (r, v), where r ∈ Rv. The maximum amount of
resource share amount is denoted as sharemax (r, v). � Resource cost policy: This policy defines a resource
usage cost in a VO user. The current resource usage
cost is denoted as cost (r, v), where r ∈ Rv. The
maximum cost of resource usage is denoted as costmax
(r, v).

The resource share amount indicates the percentile of the
total resource in a resource provider. It has different
meanings according to the resource provider’s sharing
policy. For the space-shared scheduling policy, the share
amount implicitly implies the number processors provided
to VOs. For the time-share policy, it denotes the proportion
in the total processing power of the resource provider shared

VO Components
VO (v)

Users (Uv)
Resource providers

(Rv)
Sub-VOs (Vv)

VO-A {U1} {R1} {VO-A1, VO-A2}

VO-A1 ∅ {R2} {VO-A1-1, VO-A1-2}

VO-A2 {U3} {R3} ∅

VO-A1-1 {U2, U5} {R4} ∅

VO-A1-2 {U4} {R3, R4} ∅

VO-B ∅ ∅ {VO-B1, VO-B2, VO-B3}

VO-B1 {U6} {R3} ∅

VO-B2 {U7} {R5} ∅

VO-B3 {U8} {R6} ∅

Table 1. System components in Figure 1

Figure 2. Container view of VOs in Figure 1

R2

(40%,10)

U1

R4

U5

U2
U4 R3

(25%,30)

R4

(50%,10)

VO−A1−2
U3

R3

R5

U6
(25%,50)

R3

VO−B1

U7
(70%,10)

R5

VO−B2

U8

R6

(30%,20)
VO−B3VO−B

VO−A1
R1

(50%,15)
VO−A

(25%,15)

(25%,20)

VO−A2

VO−A1−1

(25%,20)

to VOs. Our simulations in Section 5 use the time-shared
scheduling policy.

Each resource provider r agrees that users can use the
resource up to the maximum amount of sharemax (r, v) for
the maximum cost of costmax (r, v) for a VO v. For example,
R5 in Figure 1 provides 25% of resource to VO-A2 for the
cost of 20 and 70% to VO-B2 for the cost of 10. Table 2
lists VO policies of resource providers in Figure 1.

The current available resource amount to each VO, share
(r, v), changes dynamically, as VO users run jobs at the
resource. The current resource usage cost is also changed in
the run-time. It is possible to provide dynamic cost
adjustment according to the current resource utilization. We
investigate possible cost adjustment schemes in Section 4.3.

3.2.3. Job model

A job in this paper is considered to be a bag-of-tasks
application [16], which consists of multiple independent
tasks with no communication among each others. In order to
obtain the job’s result, these tasks should be completed. In
addition, we specify the deadline of a job as QoS parameter,
so that the job execution must be finished before the
deadline.

Thus, a user’s job is defined as (p, {l1, l2, …, lp}, d),
where p is the number of sub-tasks, l i is the number of
instructions of the i-th task in Million Instructions (MIs),
and d is the deadline. The execution time of a task of length
l i varies according to the processor performance of the
resource on which the task is run. Since the execution time
is easily obtained from the task length on a resource
provider, we use the task length as a task specification
instead of the execution time. We also assume that the
number of instructions of each task is known in advance.

3.3 Formalizing Resource Allocation
Problem

Users in a VO v use resources in Rv in order to
accomplish the VO purpose. In addition, since users also
belong to their ancestor VOs, they can use resources in the
ancestor VOs of v as well. We define the set of all resources
in the Grid for a user u to access as Ru

G. ∪=
∈

w
vancestorw

v
G
u RRR

)(
U , where u ∈ Uv

Now, we formalize a resource allocation problem in
hierarchical VO environments. The objective of the resource
allocation is to minimize the total resource cost of a user job
in order to meet the job deadline. The VO-wide resource
allocation problem is defined as follows.

Definition 1. (VO-wide Resource Allocation Problem)
For a given job J = (p, {l1, l2, …, lp}, d) of a user u, the
resource allocation problem is defined as mapping of i-th
task of li length to a resource ri ∈ Ru

G as to minimize the

total cost ∑
p

i=1
 cost (ri, vi), subject to the condition that the

total resource usage in ri is up to share (ri, vi) and each task
completes before the deadline d.

4. VO-wide Resource Allocation

4.1. VO-wide Resource Allocation
Framework

The proposed VO-wide resource allocation framework
uses a cooperative VO resource broker system. Each VO
has a resource broker for the VO users and resource
providers. The VO resource broker manages VO policies in
the VO and plays a role in allocating jobs submitted by the
VO users. It also provides VO policy information to other
VO resource brokers. Users and resource providers know
locations or service contact points of their VO resource
brokers. Figure 3 shows system components and illustrates
resource allocation procedures.

(1) Submitting jobs. When a user submits a job, he or she
specifies the VO information as well as the job. The
user attaches the VO attribute policy, such as the
attribute certificate in VOMS [12]. The job with VO
policy is submitted to the VO resource broker (VO-
RB). Then, the VO resource broker checks the
validity of the submitted job with the VO policy
engine.

(2) Gathering resource sharing information. In order to
provide the best resources to the user, the broker
gathers resource sharing information from the

VO policy Resource
provider (r)

VO (v) share cost

R1 VO-A 50% 15

R2 VO-A1 40% 10

R3
VO-A2

VO-A1-2
VO-B

25%
25%
25%

20
30
50

R4
VO-A1-1
VO-A1-2

25%
50%

15
10

R5
VO-A2
VO-B2

25%
70%

20
10

R6 VO-B3 30% 20

Table 2. VO policies in Figure 1

ancestor VOs in the VO policy tree. The user can
access the resources of the ancestor VOs because the
job aims at not only the VO itself but also the
ancestor VOs.

(3) Allocating resources. The VO resource broker
allocates resources to the job based on the resource
sharing information aggregated from other VOs.
Tasks of the job can be divided into several resource
providers according to loads in resource providers.
The task acceptance is accomplished by the local
scheduler in each resource provider.

(4) Updating sharing polices. If each resource provider
receives a job from the broker, it first validates the
job in accordance with the VO policy. For example,
the user’s VO should be one of the resource
provider’s VOs or their child VOs. Then, it schedules
the job with the local scheduler. The resource
provider updates the changed polices to the
corresponding VO resource broker.

4.2. Resource Allocation Scheme

The VO resource broker aims to minimize the total cost
for a user’s job in order to meet the job deadline under VO
resource policies. Figure 4 shows the pseudo resource
allocation algorithm of the VO resource broker.

First, the VO resource broker queries the current
available resources from the ancestor VO resource brokers
in the VO policy tree. It constructs the set of resources, Ru

G,
for the job and sorts the resources in the increasing order of
the cost (line 1 ~ 3).

The allocation scheme is to select the resource with the
minimum cost first. The function Submit in line 7 of Figure
4 sends the job to the selected resource r and returns the
number of tasks allocated to that resource. Each resource
provider has its own local scheduler, so that it schedules
unallocated tasks of the submitted job as long as the used

share amount of the VO does not exceed the total share
allowed to that VO. The local scheduler accepts the sub-
tasks only if it can meet their deadlines.

If all p sub-tasks are successfully allocated, the algorithm
ends and the job is accepted (line 9). However, if there is no
sufficient resource to run the job, it cancels all the
previously allocated sub-tasks and rejects the job (line 11 ~
l3). The user can submit the rejected job later again, or the
resource broker can manage the waiting queue for those
rejected jobs.

4.3. Cost Adjustment Policies

One important issue is how a resource provider adjusts
VO share policy dynamically to utilize the resource
efficiently. The resource provider may increase or decrease
the amount of shared resource according to the system load.
Users can access up to the amount of sharemax (r, v) on the
resource share policy.

In case of the resource cost, a resource provider is in
charge of adjusting the cost up to costmax (r, v). We consider
three cost adjustment schemes for a given maximum cost
policy: Static-Cost, Dynamic-VO-cost, and Dynamic-Load-
Cost.

(i) Static-Cost: It fixes the resource cost as cost (r, v)
between zero and costmax (r, v), regardless of the system
status.

(ii) Dynamic-VO-Cost: This policy changes the current
cost according to the resource usage amount of a VO. Since
share (r, v) is the current available resource amount, the

VO policy
DB

allocator
Resource

VO policy
engine

User

VO−RB VO−RB

User

Resource
Provider

Resource
Provider

VO−resource
policy

scheduler processor

controller
policy

Resource Provider

VO−RB

(3)(1)

(4)

(2)

Figure 3. The VO-wide resource allocation
framework

 Algorithm VO_wide_Resource_Allocation (J, v)
 /* - J = (p, {l1, …, lp}, d) : a job
 - v : the VO
 */
1: Get resource sharing information from ancestor VOs.
2: Construct Ru

G = {r | r ∈ Rv or r ∈ Rancesotr(v) }.
3: Sort Ru

G in the increasing order of cost (r,v).
4: task_index � 0;
5: for k from 1 to |Ru

G| do
6: Get the k-th r in Ru

G.
7: num_alloc � Submit (J, task_index, r);
8: task_index � task_index + num_alloc;
9: if (task_index == p) return admit;
10: endfor
11: for k from 1 to task_index do
12: Cancel the k-th task.
13: return reject;

Figure 4. VO-wide resource allocation scheme

share currently used by the VO v is defined by sharemax (r,
v) – share (r, v). Then, the resource cost for a VO v is
determined by the following:

(iii) Dynamic-Load-Cost: This policy adjusts the current
cost according to the current resource load, as well as the
VO resource usage. If the current total resource load is
denoted as loadr, then the cost of a VO v is defined as:

5. Simulation Results

In this section, we simulate the proposed resource
allocation schemes using the GridSim toolkit [17, 18].
Figure 5 shows the simulated hierarchical VO environment
with five VOs, six resource providers, and one user in each
VO. The resource characteristics of six resource providers
are shown in Table 3. As shown in Figure 5, R1500 and
R1000-1 provide all the resources to VO1 and VO2
respectively. Other resource providers contribute their
resources to their VOs evenly. We assume that each VO
user continuously generates and submits jobs for the VO.

Each user’s jobs are generated by the Poisson
distribution with the inter-arrival time of 5 minutes. The
number of tasks in each job is selected randomly between 2
and 32. Each job length is in the range from 100,000 MIPS
to 1,000,000 MIPS. The deadline is selected from 20 % to
100 % more than the average execution time. The number of
total submitted jobs of each user is 1000.

First, we assume all the resource providers use Dynamic-
VO-Cost as its cost adjustment scheme with the maximum

cost of 10. The resource broker accepts only the jobs that
can meet their deadlines; otherwise, it rejects them.
Although these rejected jobs can be resubmitted later by
users, our simulations do not consider these rejected jobs.
Figure 6 shows the job acceptance rates of each VO user,
which indicate how many jobs are completed before the
deadlines. Since VO3 user can access more resource
including 50% of R1250, 50% of R1000-2, 50% of R750
and shares R1500 through VO1, its job acceptance rate is
the highest. Users VO4 and VO5 also show high job
acceptance rates because they can use resources in ancestor

rload
vrshare

vrsharevrshare
vrcostvrcost ∗

−
∗=

),(

),(),(
),(),(

max

max
max

R1500

R500

U1

U2

U3

U4
U5

R1250

R750

VO4 VO5

VO2

VO1

VO3

R1000−2

R1000−1

100%

100%

50%

50%

50% 50%

50%

50%

50%
50%

Figure 5. The simulated VO environment

),(

),(),(
),(),(

max

max
max vrshare

vrsharevrshare
vrcostvrcost

−
∗=

Resource characteristics
Resource

provider (r) Processor
performance (MIPS)

Number of
processors

R1500 1500 20

R1250 1250 20

R1000-1 1000 20

R1000-2 1000 20

R750 750 20

R500 500 20

Table 3. Resource characteristics

 0

 1

 2

 3

 4

 5

VO5VO4VO3VO2VO1

A
v

er
ag

e
u

n
it

 c
o

st

VO Users

Figure 7. Average unit costs

 0

 20

 40

 60

 80

 100

VO5VO4VO3VO2VO1

A
cc

ep
ta

n
ce

 R
at

e
(%

)

VO Users

Figure 6. Job acceptance rates

VOs, as well as their own VO resources. VO1 user shows
the lowest acceptance rate due to lack of resources. Figure 7
shows the average unit cost for each VO user. The average
cost is in inverse proportion to the job acceptance rate of
Figure 6, since VO users with more resources can select the
lower-cost resources.

Figure 8 shows the average utilization in each resource
provider using Bezier approximation. The number in
parenthesis indicates the average utilization during the
simulations. Since R1500 and R1000-1 are used by various
VO users throughout the hierarchy, their overall utilizations
are high compared to other resources.

Figure 9 (a) and (b) show the utilization by each VO user
in R1500 and R1000-1 respectively. As shown in Figure 9,
resources in a VO are not only dynamically used by the VO
users, but also by sub-VO users. In R1500, VO1 user
occupies about 38% (=24.2%/64.0%) of the average
utilization. VO2 and VO4 users share about 40% of the
resource, while VO3 and VO5 users utilize the remaining
22%. In case of R1000-1, VO2 user occupies 44% of the

resource utilization, while VO4 and VO5 users share the
remaining 56% of the resource.

Next, we change the cost adjustment schemes of resource

providers. The cost adjustment schemes in R1250, R1000-2,
and R750 are kept as Dynamic-VO-Cost, while those in
other resource providers are changed with Static-Cost and
Dynamic-Load-Cost. Table 4 shows the average utilizations
for three cost adjustment schemes of those three resource
providers. In general, when Static-Cost is used, resource
utilization becomes low compared to Dynamic-VO-Cost.
Dynamic-Load-Cost shows more utilization since it adjusts
the current cost according to the system load as well as the
VO usage. When the system load is low, the low cost of the
resource encourages users to use the resource. The
utilization of R1500 with Static-Cost is high because users
have no choice but to use R1500 when the costs of other
resources are high.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000

U
ti

li
za

ti
o
n

Time (sec)

R1500 (64.0%)
R1000-1 (55.7%)

R500 (39.7%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000

U
ti

li
za

ti
o
n

Time (sec)

R1250 (50.6%)
R1000-2 (51.5%)

R750 (41.6%)

Figure 8. Utilizations of resource providers (with Bezier approximation)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000

U
ti

li
za

ti
o

n

Time (sec)

VO5 (8.1%)
VO4 (13.3%)

VO3 (6.3%)
VO2 (12.3%)
VO1 (24.2%)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20000 40000 60000 80000 100000 120000

U
ti

li
za

ti
o

n

Time (sec)

VO5 (13.5%)
VO4 (17.7%)
VO2 (24.5%)

(a) R1500 (b) R1000-1

Figure 9. Utilizations of VO users in resource providers R1500 and R1000-1

6. Conclusions

In this paper, we define and model the hierarchical VO
environment, in which a VO is composed of users, resource
providers, and sub-VOs. Resource providers share their
resources to multiple VOs including sub-VOs. Thus, users
can access the resources in his or her own VO as well as in
the ancestor VOs. In the proposed model, the resource
allocation problem is formalized as mapping bags of tasks
of a user’s job using the user’s accessible resource set in
hierarchical VOs. We also provide a VO-wide resource
allocation framework in resource brokers and suggest
possible cost adjustment methods in resource providers.
Simulation results show VO resources are used based on
VO polices of hierarchical VOs.

Our future work includes the study on over-subscription
problem in which the summation of resource shares to
multiple VOs of a resource provider is more than 100%.
Another issue is to analyze the effect of cost policy on the
resource share. For example, the cost for local VO resources
can be cheaper than other VOs in order to prioritize local
users. We also plan to design and implement the proposed
VO-wide resource framework.

References

[1] I. Foster, C. Kesselman, and S. Tuecke. The anatomy of the

Grid: enabling scalable virtual organizations. International
Journal of Supercomputer Applications, 15(3):200–222, 2001.

[2] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The physiology
of the grid: An open grid services architecture for distributed
systems integration. In Open Grid Service Infrastructure WG,
Global Grid Forum, 2002.

[3] I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of Supercomputer
Applications and High Performance Computing, 11(2):115–
128, 1997.

[4] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid
information services for distributed resource sharing. In
Proceedings of 10th IEEE International Symposium on High-
Performance Distributed Computing (HPDC 10), San
Francisco, USA, Aug. 2001.

[5] L. Pearlman, V. Welch, I. Foster, and C. Kesselman. A
community authorization service for group collaboration. In
Proceedings of IEEE 3rd International Workshop on Policies
for Distributed Systems and Networks, pages 50–59, Monterey,
USA, June 2002.

[6] Open Science Grid project. http://www.opensciencegrid.org.
[7] The Enabling Grids for E-sciencE project. http://www.eu-

egee.org.
[8] J. In, P. Avery, R. Cavanaugh, and S. Ranka. Policy based

scheduling for simple quality of service in Grid computing. In
Proceedings of the 18th Annual International Parallel and
Distributed Processing Symposium (IPDPS), Santa Fe, USA,
April 2004.

[9] C. Dumitrescu and I. Foster. Usage policy-based cpu sharing in
virtual organizations. In Proceedings of the 5th IEEE/ACM
International Workshop on Grid Computing (GRID 2004),
Pittsburgh, USA, November 2004.

[10] E. Elmroth and P. Gardfjall. Design and evaluation of a
decentralized system for Grid-wide fairshare scheduling. In
Proceedings of 1st IEEE Conference on e-Science and Grid
Computing, Melbourne, Australia, December 2005.

[11] D. Abramson, R. Buyya, and J. Giddy. A computational
economy for Grid computing and its implementation in the
Nimrod-G resource broker. Future Generation Computer
Systems Journal, 18(8):1061–1074, 2002.

[12] R. Alfieri, R. Cecchini, V. Ciaschini, L. dell’Agnello, A.,
Frohner, A. Gianoli, K. Lorentey, and F. Spataro. VOMS, an
authorization system for virtual organizations. In Proceedings
of European Access Grids Conference, pages 33–40, 2003.

[13] C. L. Dumitrescu and I. Foster. GRUBER: A Grid resource
usage SLA broker. In Proceedings of the 11th International
European Parallel Computing Conference (EuroPar), Lisbon,
Portugal, 2005.

[14] A. Sulistio and R. Buyya. A time optimization algorithm for
scheduling bag-of-task applications in auction-based
proportional share systems. In Proceedings of the 17th
International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), Rio de Janeiro, Brazil,
October 2005.

[15] T. J. Norman, A. Preece, S. Chalmers, N. R. Jennigs, M. Luck,
V. D. Dang, T. D. Nguyen, V. Deora, J. Shao, W. A. Gray, and
N. J. Fiddian. Agent-based formation of virtual organizations.
Knowledge-Based Systems, 17:103–111, 2004.

[16] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D. Paranhos, E.
Santos-Neto, and R. Medeiros. Grid computing for bag of tasks
applications. In Proceedings of the 3rd IFIP Conference on E-
Commerce, E-Business and E-Government, September 2003.

[17] R. Buyya and M. Murshed. GridSim: a toolkit for the
modeling and simulation of distributed management and
scheduling for Grid computing. Concurrency and
Computation: Practice and Experience, 14(13):1175–1220,
2002.

[18] A. Sulistio, G. Poduvaly, R. Buyya, and C. K. Tham.
Constructing a Grid simulation with differentiated network
service using GridSim. In Proceedings of the 6th International
Conference on Internet Computing (ICOMP'05), Las Vegas,
USA, June 2005.

Average utilization (%) Resource
provider

Static-Cost Dynamic-VO-Cost Dynamic-Load-Cost

R1500 68.1 64.0 66.3

R1000-1 43.0 55.7 56.2

R500 31.6 39.7 40.1

Table 4. Average utilizations w.r.t. cost
adjustment schemes

