CloudSim: A Novel Framework for Modeling and Simulaion of Cloud Computing
Infrastructures and Services

Rodrigo N. Calheird¥’, Rajiv Ranjah, César A. F. De Roeand Rajkumar Buyya

'Grid Computing andistributedSystems (GRIDS) Laboratory
Department of Computer Science and Software Engimge
The University of Melbourne, Australia

“Pontifical Catholic University of Rio Grande do Sul
Porto Alegre, Brazil
{rodrigoc, rranjan, raj}@csse.unimelb.edu.au, cempse@pucrs.br

Abstract dream of computing as a utility, has the potential

Cloud computing focuses on delivery of reliablecuse, ~ transform a large part of the IT industry, makingtsare
fault-tolerant, sustainable, and scalable infrastiures for ~ €ven more attractive as a service”.

hosting Internet-based application services. These Clouds [10] aim to power the next generation data
applications have different composition, configisat Centers by architecting them as a network of virtua
and deployment requirements. Quantifying the services (hardware, database, user-interface, capipln
performance of scheduling and allocation policy an logic) so that users are able to access and deploy
Cloud infrastructure (hardware, software, servicesy applications from anywhere in the world on demand a
different application and service models under imgy Competitive costs depending on users QoS (Quality o
load, energy performance (power consumption, heatService) requirements [1]. Developers with innoweati
dissipation), and system size is an extremely ehgihg ideas for new Internet services are no longer requio
problem to tackle. To simplify this process, irsthaper we ~ Make large capital outlays in the hardware andwso#
propose CloudSim: a new generalized and extensibleinfrastructures to deploy their services or hungrease to
simulation framework that enables seamless modgllin ©Operate it [11]. It offers significant benefit t& tompanies
simulation, and experimentation of emerging Cloud by freeing them from the low level task of setting basic
Computing infrastructures and management servichs hardware (SerVerS) and software infrastructures thod

simulation framework has the following novel featur(i) ~ €nabling more focus on innovation and creationusiess
support for modelling and instantiation of largeate values. N _
Cloud computing infrastructure, including data oenston Some of the traditional and emerging Cloud-based

a single physical computing node and java virtual applications include social networking, web hosting
machine; (i) a self-contained platform for modetfidata ~ content delivery, and real time instrumented data
centers, service brokers, scheduling, and allocetio Processing. Each of these application types hderelift
policies; (iii) availability of virtualization engie, which ~ composition, configuration, and deployment requiats.
aids in creation and management of multiple, indefemt, ~ Quantifying the performance of scheduling and aitimm
and co-hosted virtualized services on a data centete; ~ Policy on Cloud infrastructures (hardware, software
and (iv) flexibility to switch between space-shamuil services) for different application and service eledinder
time-shared allocation of processing cores to wfized varying load, energy performance (power consumption

services. heat dissipation), and system size is an extremely
challenging problem to tackle. The use of real tests
1. Introduction such as Amazon EC2, limits the experiments to tia¢esof

the testbed, and makes the reproduction of resits
deextremely difficult undertaking, as the conditions

software (application) as services, which are ma o2 .
available as subscription-based services in a paypa-go prevailing in the Internet-based environments aggohd
the control of the tester.

model to consumers. These services in industry are S S . .
An alternative is the utilization of simulatis tools that

respectively referred to as Infrastructure as aviSer L : .
(laas), Platform as a Service (PaaS), and Softeara open the possibility of evaluating the hypothesi®mpto

Service (SaaS). In a Feb 2009 Berkeley Report [Rddf. softh(;j\re developme;nt ir?f_an”en_/ironrrrent Wherefon(;el C‘;
Patterson et. al. stated “Cloud computing, the Joalgl reproduce tests. Specifically in the case o ou

Cloud computing delivers infrastructure, platformnd

computing, where access to the infrastructure mcur which are typically installed with hundreds to teands of
payments in real currency, simulation-based apfwmc servers [9]. The layered architecture of a typiCtdud-
offer significant benefits, as it allows Cloud ausers to based data center is shown in Figure 1. At the $oVesyers
test their services in repeatable and controllable there exist massive physical resources (storagerseand
environment free of cost, and to tune the perfomean application servers) that power the data centefhese
bottlenecks before deploying on real Clouds. At the servers are transparently managed by the highezl lev
provider side, simulation environments allow evéihra of virtualization [8] services and toolkits that all@aring of
different kinds of resource leasing scenarios unvdeying their capacity among virtual instances of servdilsese
load and pricing distributions. Such studies caoaild the virtual instances are isolated from each otherchvlaiid in
providers in optimizing the resource access co#t feicus achieving fault tolerant behavior and isolated sé&gu
on improving profits. In the absence of such siriofa context.
platforms, Cloud customers and providers have g re
either on theoretical and imprecise evaluationsprotry- doud [M : _i‘/ =
Applications N

je =%

and-error approaches that lead to inefficient servi

. Social networking Workflow Data prng
performance and revenue generation. J
Considering that none of the current distributestey Virtea! Vinual Machine Management
simulators [4][7][9] offer the environment that cdre Machines L Wt L
directly used by the Cloud computing community this Windows Macwith Mono _ Linuxwith Morio
paper, we propose CloudSim: a new, generalized, and Virtual Machine Monitor

extensible simulation framework that enables sessnle gt
modeling, simulation, and experimentation of emmygi

Cloud computing infrastructures and applicatiornviees.

By using CloudSim, researchers and industry-based ?;\f‘ei
developers can focus on specific system desigressthat

they want to investigate, without getting concermdxbut

the low level details related to Cloud-based irtfratures

and services. Figure 1. Typical data center.

CloudSim offers the following novel features: (i)] o]
support for modeling and simulation of large so@leud Emerging Cloud applications such as Social
computing infrastructure, including data centersagingle ~ networking, gaming portals, business applicatimosjtent
physical computing node: and (i) a self-contaipéatform delivery, and scu?ntn‘lc workflows operate at thighest
for modeling data centers, service brokers, scliegluand ~ layer of the architecture. Actual usage patternsnahy
allocations policies. Among the unique features of réal-world applications vary with time, most of tiee in
CloudSim, there are: (i) availability of virtualimn ~ Unpredictable ways. These applications have diftere
engine, which aids in creation and management dtipte; Quality of Service (QoS) requirements dependingime
independent, and co-hosted virtualized services atata criticality and users’ interaction patterns (onlwféline).
center node; .and (ii) flexibility t_o switch betwegpace— Simulation
shared and time-shared allocation of processingsctw
virtualized services. These compelling features of In the past decade, Grids [5] have evolved as the
CloudSim would speed up the development of new infrastructure for delivering high-performance seevfor
algorithms, methods, and protocols in Cloud conmgyti compute and data-intensive scientific applicatiofi®
hence contributing towards quicker evolution of the support research and development of new Grid

paradigm. components, policies, and middleware; several Grid
simulators, such as GridSim [9], SimGrid [7], and

2. Related Works GangSim [4] have been proposed. SimGrid is a gener

Cloud computing framework for simulation of distributed applicat®rnin

Cloud computing can be defined as “a type of paraihd Grid platforms. GangSim is a Grid simulation tool#iat
distributed system consisting of a collection ofein ~ Provides support for modeling of Grid-based virtual

connected and virtualized computers that are dycaliyi organisations and resources. On the other handSt@miis
provisioned and presented as one or more unified®" event-driven simulation toolkit for heterogenedgrid
computing resources based on service-level agmsme Tesources. It supports modeling of grid entitiesers,
established through negotiation between the serviceMachines, and network, including network traffic.

provider and consumers” [1]. Some examples of eimgrg Although the aforementioned toolkits are capabfe

Cloud computing infrastructures are Microsoft Az{i2é, modeling and simulating the Grid application bebasi

Amazon EC2, Google App Engine, and Aneka [3]. (execution, scheduling, allocation, and monitoririg) a
The computing power in a Cloud computing distributed environment consisting of multiple Grid

environments is supplied by a collection of datatees, ~ °rganisations, none of these are able to suppat th

infrastructure and application-level requirementssiiag such as provisioning of hosts to VMs based on user
from Cloud computing paradigm. In particular, thes requests, managing application execution, and dimam
very little or no support in existing Grid simulati toolkits monitoring are handled by this layer. A Cloud pom®ri
for modeling of on-demand virtualization enabledagrce who wants to study the efficacy of different pdigiin
and application management. Further, Clouds pronttise allocating its hosts, would need to implement hiategies
deliver services on subscription-basis in a payeasgo at this layer by programmatically extending theec®tM
model to Cloud customers. Hence, Cloud infrastmgctu provisioning functionality. There is a clear disfiion at
modeling and simulation toolkits must provide sugpgor this layer on how a host is allocated to differemnpeting
economic entities such as Cloud brokers and CloudVMs in the Cloud. A Cloud host can be concurrently
exchange for enabling real-time trading of services shared among a number of VMs that execute apmitsti
between customers and providers. Among the clyrent based on user-defined QoS specifications.
available simulators discussed in this paper, @igSim User code
offers support for economic-driven resource managgm Simulation Cloud [User plication
and application scheduling simulation. Speccaton | scanat | Requisnents S Raiaion
Another aspect related to Clouds that should be| S°"gang (User or Datacenter Broker | ‘
considered is that research and development in dClou
computing systems, applications and services arthen

i i i User
infancy stage. There are a number of importantesshat Interface

CloudSim

need detailed investigation along the Cloud sofewstack. Structures

Topics of interest to Cloud developers include ecoic s W
lachine o

strategies for provisioning of virtualized resowcéo Services

incoming user's requests, scheduling of application Cloud VM CPU | [Memory | | Storage | Bandwidth
_ : a ! —— _ ! —
resources discovery, inter-cloud negotiations, and| Services FrovEonn Wicin o on’

federation of clouds and so on. To support and lacte Cloud

. Host Datacenter
the research related to Cloud computing systems, Resources p
applications and services it is important thatteeessary [GridSim

software tools are designed and developed to aid Data Sets Replica Replica
; Grid og
researchers and developers. e Information| - e Job |-Manager
Services Service Resource || Description| —workicad
i . Resarvation Allocation races
3. CloudSim Architecture
Figure 2 shows the layered implementation of the E|em%?,r§ Resource LQ;,':'[Z‘{,, Network

CloudSim software framework and architectural 5
components. At the lowest layer is the SimJavareisc mg;::te_

. . . . Events Simulati i
event simulation engine [6] that implements the ecor S ot e EE?:& flon] ... Timing
functionalities required for higher-level simutaii

frameworks such as queuing and processing of events Figure 2. Layered CloudSim architecture.
creation of system components (services, host, daiter,
broker, virtual machines), communication between The top-most layer in the simulation stack is theet)
components, and management of the simulation clock code that exposes configuration related functitiealifor
Next follows the libraries implementing the GridSim posts (number of machines, their specification sman),
toolkit [9] that support high level software comgaoits for applications (number of tasks and their requiresjent
modeling multiple Grid infrastructures, includingtworks VMs, number of users and their application typesg a
and associated traffic profiles, and fundamentaldGr p oker scheduling policies. A Cloud applicatioveleper
components such as the resources, data sets, @0rklo can generate a mix of user request distributiopglication
traces, and information services. configurations, and Cloud availability scenarios this
The CloudSim is implemented at the next level by layer and perform robust tests based on the cuSioud
programmatically extending the core functionalities configurations already supported within the CloudSi
exposed by the GridSim layer. CloudSim providesehov ~ As Cloud computing is a rapidly evolving reséasacea,
support for modeling and simulation of virtualizEtbud- there is a severe lack of defined standards, taold
based data center environments such as dedicatethethods that can efficiently tackle the infrastanet and
management interfaces for VMs, memory, storage, andapplication level complexities. Hence in the neaturfe
bandwidth. CloudSim layer manages the instantiatiod there would be a number of research efforts both in
execution of core entities (VMs, hosts, data center academia and industry towards defining core algors,
application) during the simulation period. This dayis policies, application benchmarking based on exenuti
capable of concurrently instantiating and transpiéye contexts. By extending the basic functionalitidsady
managing a large scale Cloud infrastructure cangisif exposed by CloudSim, researchers would be able to
thousands of system components. The fundamenta#sss perform tests based on specific scenarios and

configurations, hence allowing the development ebtbh that may compromise the validity of the simulatioave
practices in all the critical aspects related tooudl been already detected and fixed. By reusing theag |
Computing. validated frameworks, we were able to focus onicetiit

aspects of the system that are relevant to Cloutpating,
cores A vml vim?2 while taking advantage of the reliability of compoits that
2 | R -~ ~~~" are not directly related to Clouds.

t4 t
1 e = L (- 3.1. Modeling the Cloud

tl t3 t5 t7 The core hardware infrastructure services relateithe:
Clouds are modeled in the simulator by a Datacenter
(a) component for handling service requests. Theseestgu
are application elements sandboxed within VMs, Wwhic
coresA vml vm?2 need to be allocated a share of processing power on
e Datacenter’s host components. By VM processing, we
i t8 mean set of operations related to VM life cycle:
1t 8 e provisioning of a host to a VM, VM creation, VM
3 Eg destruction, and VM migration.
A Datacenter is composed by a set of hosts, wtich i
(b) responsible for managing VMs during their life @l
Host is a component that represents a physical ctngp
coresA node in a Cloud: it is assigned a pre-configureztessing
2 e (expressed in million of instructions per secondPS,
:g :i e per CPU core), memory, storage, and a schedulitigypo
1 e T v for allocating processing cores to virtual machin€ke
t1 3 vml Host component implements interfaces that support
time’ modeling and simulation of both single-core andtivadre
(c) nodes.
coresA Allocation of application-specific VMs to Hosts ia
oF - Cloud-based data center is the responsibility ef\tirtual
It - A vmZ Machine Provisioner component (refer to Figure M)is
1+ ~ .l component exposes a number of custom methods for
researchers, which aids in implementation of new VM
> provisioning policies based on optimization goalsef
(d) centric, system centric). The default policy impéted by
the VM Provisioner is a straightforward policy that
allocates a VM to the Host in First-Come-First-erv
(FCFS) basis. The system parameters such as theeagq
number of processing cores, memory and storage as
requested by the Cloud user form the basis for such
mappings. Other complicated policies can be writtgithe
researchers based on the infrastructure and afpiplica
demands.
For each Host component, the allocation of pssicg
cores to VMs is done based on a host allocatiore Th
policy takes into account how many processing caiés

N

Figure 3. Effects of different scheduling policies
in the task execution: (a) Space-shared for VMs
and tasks, (b) Space-shared for VMs and time-
shared for tasks, (c) Space-shared for VMs, time-
shared for tasks, and (d) Space-shared for VMs
and tasks.

One of the design decisions that we had to makthas
CloudSim was being developed was whether to extelysi

reuse existing simulation libraries and framewaoosksot. be delegated to each VM, and how much of the peings
We decided to take advantage of already implemented .,rers capacity will effectively be attributed far given
tested, and validated libraries such as GridSim andy,, So, it is possible to assign specific CPU cotes

SimJava to handle low-level requirements of thetesys specific VMs (a space-shared policy) or to dynathica

For example, by using SimJava, we avoided yigyinyte the capacity of a core among VMs (tirhersd
reimplementation of event handling and messageingass policy), and to assign cores to VMs on demand, cor t
among components; this saved us a lot of time ftwaoce specify other policies.

engineering and testing. Similarly, the use of @r&Sim Each Host component instantiates a VM scheduler

framework allowed us to reuse its implementation of .,mnonent that implements the space-shared or time-
networking, information ~ services, files, users, and gnared policies for allocating cores to VMs. Claystem
resources. Since SimJava and GridSim have beeryeyelopers and researchers can extend the VM sifedu

ext.enswely utilized in conducting cutting edgee@zh in component for experimenting with more custom alffioca
Grid resource management by several researchegs, bu

policies. Next, the finer level details relatedth® time-
shared and space-shared policies are described.

3.2. Modeling the VM allocation

One of the key aspects that make a Cloud computing

infrastructure different from a Grid computing ibet

massive deployment of virtualization technologiasd a
tools. Hence, as compared to Grids, we have ind3@n

extra layer (the virtualization) that acts as aecexion and

hosting environment for Cloud-based applicatiowises.

Hence, traditional application mapping models that

assign individual application elements to computiogles
do not accurately represent the computational attsdn

which is commonly associated with the Clouds. For

example, consider a physical data center host lilaat
single processing core, and there is a requirenoént
concurrently instantiating two VMs on that core.eBv
though in practice there is isolation between bgav
(application execution context) of both VMs, thecamt of
resources available to each VM is constrained bytttal
processing power of the host. This critical faataust be
considered during the allocation process, to acoéstion
of a VM that demands more processing power thaotiee

affecting the completion time of task units thatdhehe
queue.

In Figure 3(c), a time-shared scheduling is Use&/Ms,
and a space-shared one is used for task unithidrcase,
each VM receives a time slice of each processing, @nd
then slices are distributed to task units on spseeed
basis. As the core is shared, the amount of prowgss
power available to the VM is comparatively les$ert the
aforementioned scenarios. As task unit assignment i
space-shared, hence only one task can be allotatsath
core, while others are queued in for future consitien.

Finally, in Figure 3(d) a time-shared allocatisrapplied
for both VMs and task units. Hence, the procespioger
is concurrently shared by the VMs and the sharesach

VM are concurrently divided among the task unisgrsed

to each VM. In this case, there are no queues reftire

virtual machines or for task units.

3.3. Modeling the Cloud market

Support for services that act as a market makeblieiga
capability sharing across Cloud service providersl a
customer through its match making services iscaiitto
Cloud computing. Further, these services need

available in the host, and must be considered durin mechanisms to determine service costs and pricing

application execution, as task units in each vinmachine
shares time slices of the same processing core.

To allow simulation of different policies unddifferent
levels of performance isolation, CloudSim supportd
scheduling at two levels: First, at the host learedl second,
at the VM level. At the first level, it is possible specify
how much of the overall processing power of eaate ¢o
a host will be assigned to each VM. At the nexelethe
VMs assign specific amount of the available proicess
power to the individual task units that are hosaéthin its
execution engine.

At each level, CloudSim implements the time-sdaand
space-shared resource allocation policies.
illustrate the difference between these policied #reir
effect on the application performance, in Figun@e8show
a simple scheduling scenario. In the figure, a haist two
CPU cores receives request for hosting two VMs, eaxch
one requiring two cores and running four taskssunit, t2,
t3 and t4 to be run in VM1, while t5, t6, t7, at@dto be
run in VM2.

Figure 3(a) presents a space-shared policydtr WMs
and task units: as each VM requires two cores, only
VM can run at a given instance of time. Therefdr2
can only be assigned the core once VM1 finishes
execution of task units. The same happens for fasksed
within the VM: as each task unit demands only ooregc
two of them run simultaneously, and the other twe a
queued until the completion of the earlier tasksuni

In Figure 3(b), space-shared policy is usedaftrcating
VMs, but a time-shared policy is used for allocgtin
individual task units within VM. So during a VM dfime,
all the tasks assigned to it dynamically contextawuntil
their completion. This allocation policy enable® ttask
units to be scheduled at an earlier time, but Baanitly

theproviders

policies. Modeling of costs and pricing policies as
important aspect to be considered when designiGtpad
simulator. To allow the modeling of the Cloud marKeur
market-related properties are associated to a ckiter:
cost per processing, cost per unit of memory, pestunit
of storage, and cost per unit of used bandwidttst @er
memory and storage incur during virtual machineatoa.
Cost per bandwidth incurs during data transfer.id@ss
costs for use of memory, storage, and bandwidthpther
cost is associated to use of processing resourtesited
from the GridSim model, this cost is associatech tite
execution of user task units. So, if VMs were adalbut

To iette no task units were executed on them, only the cobts

memory and storage will incur. This behavior may, o
course, be changed by users.

4. Design and Implementation of CloudSim
The Class design diagram for the simulator is degdiin
Figure 4. In this section, we provide finer deta@lated to
the fundamental classes of CloudSim, which aredimgl
blocks of the simulator.

Datacenter. This class models the core infrastructure
level services (hardware, software) offered by uese
in a Cloud computing environment. It
encapsulates a set of compute hosts (blade setliats)an
be either homogeneous or heterogeneous as regattusrt
resource configurations (memory, cores, capacityd a
storage). Furthermore, every Datacenter component
instantiates a generalized resource provisionimgpament
that implements a set of policies for allocatingdbaidth,
memory, and storage devices.

DatacenterBroker. This class models a broker, which
is responsible for mediating between users andicgerv

Figure 4. CloudSim class design diagram.
providers depending on users’ QoS requirements andneeds to be undertaken for successfully hosting the
deploys service tasks across Clouds. The brokérgaon application.
behalf of users identifies suitable Cloud serviceviglers

through the_ Cloud - Information _Serwce (CIS) and the provisioning policy of bandwidth to VMs thatear
negotiates with them for an allocation of resourtest deployed on a Host component. The function of this

meets QoS needs of users. 'I_'he researchers an(]'nS)./StE“component is to undertake the allocation of network
developers must extend this class for conducting

. :) - Jbandwidths to set of competing VMs deployed actbss
experiments W!th their custom developed application data center. Cloud system developers and researchar
placement policies. extend this class with their own policies (priofiQoS) to

SANStorage.This class models a storage area network reflect the needs of their applications.
that is commonly available to Cloud-based dataessrfor
storing large chunks of data. SANStorage implements
simple interface that can be used to simulate goand
retrieval of any amount of data, at any time subjeche
availability of network bandwidth. Accessing filés a
SAN at run time incurs additional delays for tashitu
execution, due to time elapsed for transferringrédwiired
data files through the data center internal network

BWHProvisioner. This is an abstract class that models

MemoryProvisioner. This is an abstract class that
represents the provisioning policy for allocatingmory to
VMs. This component models policies for allocating
physical memory spaces to the competing VMs. The
execution and deployment of VM on a host is feasdiily
if the MemoryProvisioner component determines that
host has the amount of free memory, which is regde®or
the new VM deployment.

VirtualMachine. This class models an instance of a
VM, whose management during its life cycle is the
responsibility of the Host component. As discussedier,

a host can simultaneously instantiate multiple Vil
allocate cores based on predefined processor gharin
policies (space-shared, time-shared). Every VM camept
has access to a component that stores the chéstacter
related to a VM, such as memory, processor, storagg
the VM’s internal scheduling policy, which is extsd
from the abstract component called VMScheduling.

VMProvisioner. This abstract class represents the
provisioning policy that a VM Monitor utilizes for
allocating VMs to Hosts. The chief functionality tie
VMProvisioner is to select available host in a degater,
which meets the memory, storage, and availability
requirement for a VM deployment. The default
SimpleVMProvisioner implementation provided witheth
CloudSim package allocates VMs to the first avddab
Host that meets the aforementioned requirementstsHo
are considered for mapping in a sequential ordewever,

Cloudlet. This class models the Cloud-based more complicated policies can be easily implemented
application services (content delivery, social roating, within this component for achieving optimized aldions,
business workflow), which are commonly deployedha for example, selection of hosts based on theiritphtib
data centers. CloudSim represents the complexitarof meet QO0S requirements such as response time, budget
application in terms of its computational requirerse
Every application component has a pre-assigneduitgin
length (inherited from GridSim’s Gridlet componeat)d
amount of data transfer (both pre and post fetchiees)

VMMAllocationPolicy. This is an abstract class
implemented by a Host component that models thieipsl
(space-shared, time-shared) required for allocating
processing power to VMs. The functionalities ofsthlass

can easily be overridden to accommodate applicationDatacenter after each event processing step. It thee

specific processor sharing policies.

4.1. Entities and threading

As the CloudSim programmatically builds upon the
SimJava discrete event simulation engine, it presethe
SimJava’s threading model for creation of simulatio
entities. A programming component is referred toaas
entity if it directly extends the core Sim_Entitgraponent
of SimJava, which implements the Runnable interface
Every entity is capable of sending and receivingsages

through the SimJava’'s shared event queue. The gessa infrastructure

propagation (sending and receiving) occurs througlut
and output ports that SimJava associates with eatity in
the simulation system. Since, threads incur aflob@mory
and processor context switching overhead; havitarge
number of threads/entities in a simulation envirentrcan
be performance bottleneck due to limited scalahilito
counter this behavior, CloudSim minimizes the nurrdfe
entities in the system by implementing only the ecor

completed tasks waiting in the queue, then they are
removed from it and sent back to the user.

4.2. Communication among Entities

Figure 5 depicts the flow of communication amongeco
CloudSim entities. In the beginning of the simwatieach
Datacenter entity registers itself with the CIS ol
Information Service) Registry. CIS provides datablevel
match-making services for mapping user requests to
suitable Cloud providers. Brokers acting on bebélisers
consult the CIS service about the list of Cloud® wiffer
services matching user's application
requirements. In case the match occurs the brodglogs
the application with the Cloud that was suggestedhe
CIs.

components (Users and Datacenters) as the inherited

members of SimJava entities. This design decis®n i
significant as it helps CloudSim in modeling a heddrge

scale simulation environment on a computing machine

(desktops, laptops) with moderate processing capaci
Other key CloudSim components such as VMs,
provisioning policies, hosts are instantiated andalone
objects, which are lightweight and do not compede f
processing power.

Hence, regardless of the number of hosts inmalated
data center, the runtime environment (java virtaathine)
needs to manage only three threads (User, Dataceamigt
Broker). As the processing of task units is handbgd
respective VMs, therefore their (task) progress tnhes
updated and monitored after every simulation sfEp.
handle this, an internal event is generated reggrtle
expected completion time of a task unit to inforhe t
Datacenter entity about the future completion esehhus,
at each simulation step, each Datacenter invokesthod
called updateVMsProcessing() for every host insystem,
to update processing of tasks running within thesviVihe
argument of this method is the current simulatioretand
the return type is the next expected completiore toh a
task running in one of the VMs on a particular hdste
least time among all the finish times returned huy hosts
is noted for the next internal event.

At the host level, invocation of updateVMsPraieg()
triggers an updateGridletsProcessing() method, twhic
directs every VM to update its tasks unit statusigf,
suspended, executing) with the Datacenter entityis T
method implements the similar logic as described
previously for updateVMsProcessing() but at the \vel.
Once this method is called, VMs return the nexteexpd
completion time of the task units currently manadmsd
them. The least completion time among all the aatexb
values is send to the Datacenter entity. As a tesul
completion times are kept in a queue that is qdebg

Figure 5. Simulation data flow.

The communication flow described so far reldateshe
basic flow in a simulated experiment. Some varretiin
this flow are possible depending on policies. Bamaple,
messages from Brokers to Datacenters may require a
confirmation, from the part of the Datacenter, abthe
execution of the action, or the maximum number bfsva
user can create may be negotiated before VM creatio

5. Tests and Evaluation

In this section, we present tests and evaluatiat e
undertook in order to quantify the efficiency ofoGHSim

in modeling and simulating Cloud computing envir@mn
The tests were conducted on a Celeron machine dpavin
configuration: 1.86GHz with 1MB of L2 cache and BG
of RAM running a standard Ubuntu Linux version 8aiwl
JDK 1.6.

To evaluate the overhead in building a simulatesu@l
computing environment that consists of a singleadat
center, a broker and a user, we performed series of
experiments. The number of hosts in the data cémtsach
experiment was varied from 100 to 100000. As e gf
these tests were to evaluate the computing power
requirement to instantiate the Cloud simulation
infrastructure, no attention was given to the wsarkload.

For the memory test, we profile the total physic&mory memory, 1 CPU core and 1GB of storage. The apmicat
used by the hosting computer (Celeron machine)ydero unit was modeled to consist of 500 task units, veith
to fully instantiate and load the CloudSim enviramn task unit requiring 1200000 million instructions 0(2
The total delay in instantiating the simulation irorment minutes in the simulated hosts) to be executed bosh
is the time difference between the following egefi) the As networking was not a concern in these experigj¢ask
time at which the runtime environment (java virtual units required only 300kB of data to be transferi@énd
machine) is directed to load the CloudSim programl from the data center.

(i) the instance at which CloudSim's entities and

components are fully initialized and are ready tocpss

events.

Figures 6 and 7 present, respectively, the amofutime
and the amount of memory is required to instanttate
experiment when the number of hosts in a data cente
increases. The growth in memory consumption (sge®i
is linear, with an experiment with 100000 machines
demanding 75MB of RAM. It makes our simulation
suitable to run even on simple desktop computett wi
moderated processing power because CloudSim memory
requirements, even for larger simulated environsi&ain
easily be provided by such computers.

Figure 7. Memory usage in resources
instantiation.

Figure 6. Time to simulation instantiation.

Regarding time overhead related to simulation
instantiation, the growth in terms of time grows
exponentially with the number of hosts/machines.

Neverthele_ss, the time _to instantiate 100Q00 _mashis Figure 8. Tasks execution with space-shared

below 5 mm_utes, which is reasonabl_e congderneagsttale scheduling of tasks.

of the experiment. Currently, we are investigatimg cause) _))
of this behavior to avoid it in future versions@budSim. After creation of VMs, task units were submitted in

The next test aimed at quantifying the performaote 9roups of 50 (one submitted to each VM) every 10
CloudSim’'s core components when subjected to userMminutes. The VM were configured to use both space-
workloads such as VM creation, task unit executibne shared and time-shared policies for allocatinggasiits to
simulation environment consisted of a data centi#h w the processing cores.

10000 hosts, where each host was modeled to hsivgjla Figures 8 and 9 present task units progress steths
CPU core (1000MIPS), 1GB of RAM memory and 2TB of increase in simulation steps (time) for the spdwred test
storage. Scheduling policy for VMs was Space-shared and for the time-shared tests respectively. As etegk in
which meant only one VM was allowed to be hostec in the space-shared case every task took 20 minutes fo
host at a given instance of time. We modeled ther us completion as they had dedicated access to theegsing
(through the DatacenterBroker) to request creatibb0 core. Since, in this policy each task unit had atsn
VMs having following constraints: 512MB of physical dedicated core therefore number of incoming tasks o

queue size did not affect execution time of indixtitask
units.

However, in the time-shared case execution time of
each task varied with increase in number of sulechitaks
units. Using this policy, execution time is sigoéntly
affected as the processing core is concurrentlytexon
switched among the list of scheduled tasks. Tt group
of 50 tasks was able to complete earlier than thermnes
because in this case the hosts were not over-loatidt
beginning of execution. To the end, as more taskshed
completion, comparatively more hosts became availab 2]
for allocation. Due to this we observed improvespanse
time for the tasks as shown in Figure 9.

[1]

(3]

[4]

[5]

[6]

[7]

Figure 9. Task execution with time-shared
scheduling of tasks.

6. Conclusion and Future Work

The recent efforts to design and develop Cloud
technologies focus on defining novel methods, jediand
mechanisms for efficiently managing Cloud infrastuues.

To test these newly developed methods and policies,
researchers need tools that allow them to evaltlze
hypothesis prior to real deployment in an environme
where one can reproduce tests. Especially in tise c&
Cloud computing, where access to the infrastrudnoers
payments in real currency, simulation-based appesc
offer significant benefits, as it allows Cloud diers to
test performance of their provisioning and sendeévery
policies in repeatable and controllable environnfest of
cost, and to tune the performance bottlenecks befor
deploying on real Clouds.

To this end, we developed the CloudSim systam,
framework for modeling and simulation of next-geatem
Clouds. As a completely customizable tool, it akow
extension and definition of policies in all the qumnents
of the software stack, which makes it suitable assaarch
tool that can handle the complexities arising from
simulated environments. As future work, we are piag
to incorporate new pricing and provisioning polgito
CloudSim, in order to offer a built-in support tonslate
the currently available Clouds. We also intend tovige

(8]

[9]

support for simulating federated network of cloudsth
focus on designing and testing elastic Cloud appbas.

References

R. Buyya, C. S. Yeo, and S. Venugopal. Market-
oriented cloud computing: Vision, hype, and reality
for delivering IT services as computing utilitiels
Proceedings of the 10th IEEE International
Conference on High Performance Computing and
Communications2008.

D. Chappell. Introducing the Azure services platfor
White paper, Oct. 2008.

X. Chu et al. Aneka: Next-generation enterprisal gri
platform for e-science and e-business applicatitms.
Proceedings of the 3rd IEEE International
Conference on e-Science and Grid Compytkap7.

C. L. Dumitrescu and |. Foster. GangSim: a simulato
for grid scheduling studiedn Proceedings of the
IEEE International Symposium on Cluster Computing
and the Grid 2005.

I. Foster and C. Kesselman (editor§he Grid:
Blueprint for a New Computing Infrastructure
Morgan Kaufmann, 1999.

F. Howell and R. Mcnab. SimJava: A discrete event
simulation library for javaln Proceedings of the first
International Conference on Web-Based Modeling
and Simulation1998.

A. Legrand, L. Marchal, and H. Casanova. Scheduling
distributed applications: the SimGrid simulation
framework. In Proceedings of the 3rd IEEE/ACM
International Symposium on Cluster Computing and
the Grid 2003.

J. E. Smith and R. NaiWirtual Machines: Versatile
platforms for systems and processeMorgan
Kauffmann, 2005.

R. Buyya and M. Murshed, GridSim: A Toolkit for the
Modeling and Simulation of Distributed Resource
Management and Scheduling for Grid Computifige
Journal of Concurrency and Computation: Practice
and Experience (CCPE)Volume 14, Issue 13-15,
Wiley Press, Nov.-Dec., 2002.

[10]A. Weiss. Computing in the clouddNetWorkey

11(4):16-25, Dec. 2007.

[11] M. Armbrust, A. Fox, R. Griffith, A. Joseph, R. &aA.

Konwinski, G. Lee, D. Patterson, A. Rabkin, |. 8tmi
M. Zaharia.Above the Clouds: A Berkelsyew of Cloud
computing Technical Report No. UCB/EECS-2009-28,
University of California at Berkley, USA, Feb. 12009.

