
A Flexible Resource Co-Allocation Model based on

Advance Reservations with Rescheduling Support

Marco A. S. Netto and Rajkumar Buyya

Grid Computing and Distributed Systems Laboratory

Department of Computer Science and Software Engineering

The University of Melbourne, Australia

{netto, raj}@csse.unimelb.edu.au

Abstract

Several parallel and distributed applications require simultaneous access to resources located

in multiple administrative domains. Current research on resource co-allocation relies on either

rigid advance reservations or non-booking-in-advance mechanisms. The first approach leads to

high fragmentation inside the resource provider’s scheduling queue, whereas the second approach

offers no starting time guarantees of user applications. In this work, we propose a new model

for resource co-allocation based on flexible advance reservations and processor remapping. The

model allows the metascheduler to reschedule the co-allocation requests by modifying the starting

time of each subtask and remapping the number of processors used by them in each resource

provider. We evaluate our model and algorithms in a scenario where users are not able to provide

accurate runtime estimations of their applications—using job response time and system utilization

as metrics. The results show that rescheduling co-allocation requests brings benefits for both local

and multi-site applications especially when the runtime estimation quality is low and there is a

reduced number of small jobs in the system.

1 Introduction

A number of distributed applications require simultaneous access to resource spread over dif-

ferent administrative sites; problem known as resource co-allocation [6]. There are some reasons

for requiring resource co-allocation [20]: (i) applications may require certain computing power

or different resources that are not available in a single site; or (ii) users may need to reduce the

response time of their applications by using resources from multiple sites. In addition, users can

use resource co-allocation to improve fault tolerance of their applications through redundancy of

resources.

In large-scale environments, resource allocation usually requires a considerable amount of hu-

man interaction. This interaction is necessary to handle resource or software failures, define qual-

ity of service, negotiate resource usage prices, deal with security and access control policies, and

schedule the requests. The interaction problem becomes more complicated when resources man-

aged by different resource providers must be available at the same time. The reason is that the

resource providers have to manage their own users and have their own goals and policies. In ad-

dition, users are responsible for interacting with each resource provider individually. Thus, we

are far from executing complex large-scale applications effectively on distributed and autonomous

resources in a completely automatic fashion.

A simple and straightforward solution for resource co-allocation is requesting the scheduling

queue for each resource provider, verifying a free common timeslot that fits the request in all

queues, and submitting the request parts to the resource providers. Although this approach works

for some cases, there are a number of problems and optimizations to consider in order to co-allocate

resources efficiently.

Initially, resource co-allocation was performed with no advance reservations [5]. In that case,

if all the resources were available at the same time, the user could access them, otherwise the

user had to wait for another opportunity (all-or-none approach). Nowadays most of the research

on resource co-allocation relies on advance reservations [7, 8, 14, 17]. Advance reservations are

important to guarantee that resources are available at the expected time, so users can have a certain

level of quality of service. However, advance reservations reduce resource utilization due to the

inflexibility they generate to schedule the other requests [20], being those advance reservations or

not. Resource providers usually have timeslot fragments in their request queues generated by users

supplying wrong execution time estimations or by modifications on the computing systems, e.g.

resource availability. If a resource provider needs to modify an advance reservation to optimize a

system metric, the user has to renegotiate the request with all the other resource providers involved

in the co-allocation.

Recently, researchers working with advance reservations started to rely on flexibility of starting

times and deadlines of requests in order to minimize the impact of advance reservations on system

utilization [10, 13, 15, 18, 19]. Rather than specifying tight starting and completion times for ad-

vance reservations, users specify relaxed time intervals in order to allow the resource provider to

optimize the scheduling. Nevertheless, the use of these flexible advance reservations for resource

co-allocation has been barely explored. In particular, to the best of our knowledge, no work has

investigated the rescheduling of these co-allocation requests in autonomous multi-site computing

environments.

The contributions of this paper are (i) a resource co-allocation model based on flexible advance

reservations and processor remapping; and (ii) the rescheduling support for multi-site parallel

jobs. Due to the changes in the resource provider’s queue, the rescheduling of co-allocation re-

quests becomes important, which has not been explored in current resource co-allocation solutions.

It is important to highlight that some of the ideas here can be directly applied to co-allocation of

other resources such as network bandwidth links. Our work tackles the problem of co-allocation

from the moment when the metascheduler has already selected the resource providers until the

moment when the user applications start the execution.

The rest of this paper is organized as follows: Section 3 presents a detailed description of flexible

resource co-allocation requests, including their properties and operations. Section 4 introduces

algorithms for scheduling and rescheduling co-allocation requests. Section 5 presents an extensive

evaluation of the flexible co-allocation model to show in which cases the use of the proposed

2

model reduces the response time of users applications. Section 6 provides a description of related

projects on resource co-allocation. We finalize the paper in Section 7 with our concluding remarks

and further work.

2 Problem Description

In the co-allocation problem an application needs to access resources spanning different au-

tonomous sites, named resource providers, simultaneously. A metascheduler books resources in

advance on behalf of the users. This metascheduler needs to find a common timeslot in the re-

source providers. These resource providers manage scheduling queues for both local and external

requests. The scheduling queues must be updated over time due to inaccurate estimation of re-

source usage, cancellations or modifications of user requirements. Therefore resource providers

may need to modify parts of a co-allocation request, named sub-requests, to increase their system

utilization. However, the metascheduler must keep all the sub-requests synchronized, which may

be difficult because each resource provider has its own workload, strategies, and goals. In this

paper explore the inaccurate estimation of application executions as the main source for generating

the fragments in the scheduling queues.

2.1 Computing environment and resource management system

The resources considered are space-shared high performance computing (HPC) machines, e.g.

clusters or massively parallel processing (MPP) machines, M = {m1,m2, ...mk}, where k is

the total number of machines. Each machine mi ∈ M has a set of resources, or processors,

R = {r1, r2, ...rn} where n is the total number of resources (or nodes) in a given machine mi. For

the sake of simplicity we assume that all the resources R in a given machine mi are homogenous—

which is a reasonable assumption considering that most of the clusters are composed of homoge-

neous resources. The machines in M can be heterogeneous among them. We consider that there is

a network interconnecting these machines in order to execute parallel applications, which can be

either exclusive or shared in an open environment such as the Internet.

Resource Management Systems (RMSs), named local schedulers, are responsible for schedul-

ing both local and external requests in each resource provider. A metascheduler, on behalf of

users requiring co-allocation requests, is responsible for negotiating the timeslots with the local

schedulers. We do not assume that a metascheduler has total information of the local schedulers.

In our scenario, rather than publishing the complete scheduling queue to the metascheduler, the

local schedulers may want to publish only certain timeslots to optimize some local system usage.

Moreover, in our computing environment schema the resource providers have no knowledge about

one another. The scheduling management policy we use here is a FIFO with conservative back-

filling, which provides a good level of guarantee of completion time once the users receive their

scheduling timeslots.

2.2 Application model

We investigate the resource co-allocation for parallel applications that require simultaneous

access to resources from multiple sites. This requirement may be due to: (i) insufficient resources

provided by a single resource provider to execute an application with a feasible turnaround time;

3

and (ii) to reduce the response time by using the fragments of the scheduling queues from multiple

resource providers. We consider here applications that are mainly CPU bound. Data intensive

applications would require some special treatment, and therefore we do not handle them in this

work.

In order to co-allocate resources we consider the worst-case scenario in terms of starting time,

i.e. all application processes must start exactly at the same time. That is mainly required by parallel

applications with data exchange among the processes.

The metascheduler is responsible for decomposing the job, named metajob or external job, re-

quest Jobj into a set of sub-requests Jobj = {job1
j , job

2
j , ..., job

k
j}, where k is the number of

sub-requests, which are executed by each machine mi. Note that, in some cases, the user may

want to incorporate some constraints to decompose the request.

2.3 Metrics

Our main optimization criteria here is the response time of user applications from both external

and local users, which is defined as the time difference between the submission time of the user

request and its completion time.

3 Flexible Resource Co-allocation

The flexible resource co-allocation (FlexCo) model proposed here is inspired by existing work

on flexible advance reservations [10,13,15,16,18,19]. A FlexCo request can have relaxed starting

and completion times, can be moldable, i.e. number of allocated resources is not rigid, and can

have flexibility on defining the number of processors used in each resource provider. As a FlexCo

request is composed of sub-requests that are submitted to different machines (homogeneous or

heterogeneous). Each sub-request may have a different number of resources with different capa-

bilities.

We define a FlexCo request as a request model with the following operations (Figure 1):

• Starting time shifting: changes the starting time according to the relaxed time interval—the

change must be the same for all sub-requests.

• Processor remapping: changes the number of required resources of two or more sub-requests;

• Moldability: changes the number of resources and execution time—the change must be the

same for all sub-requests;

Combining operations is also important for the scheduler. In Figure 1 we observe that after using

the moldability or processor remapping operations, it is possible to shift the requests in order to

reduce the user response time.

The starting time shifting (Shift) operation is motivated by the fact that finding a common

timeslot may be difficult for the users, hence once they commit the co-allocation based on advance

reservations, they will not be willing to change it. The modification of the starting time may be

useful for one resource provider in order to fill a fragment in the scheduling queue. If the other

resource providers are also willing to shift the advance reservations to start earlier, the users will

also have benefits. Remark that this operation is not application dependent in the sense that it is

4

Figure 1. Operations of a FlexCo request.

only a shift on the starting time of the user application. However, as we mentioned in Section 2.2,

data intensive applications would require some special method, since a shift would not be possible

if the data is not ready to be processed.

The processor remapping (Remap) operation has the same motivation as the previous opera-

tion but works with the number of resources in each site. Since negotiating resources is a difficult

process, a user requiring certain number of resources tends to decompose the request statically

according to the available providers at a certain time. There are at least two problems with this

approach: users may not be able to reduce the starting time, and the resources providers may not

be able to perform optimizations that could, for example, reduce completion time of user applica-

tions. With this operation it is possible to remap the processors dynamically once the sub-requests

are queued. This operation is application dependent since the throughput offered by each resource

provider may influence the overall performance of the user application. Therefore, the users may

also want to incorporate some restrictions on how the metascheduler should map and remap their

requests.

The moldability (Mold) operation is a more complex operation since in practice it is not easy for

the users to define moldability functions. This operation would require a moldability function for

each different type of resource. Alternatively, the user could provide a single moldability function

that represents the slowest machine when jobs require synchronization. In this work we describe

scheduling strategies for the Shift and Remap operations only.

Following are the parameters and notations to represent a FlexCo request for a job j:

• R
mk

j : number of resources, in our case CPUs, required in each site mi, where k is the total

number of sub-requests of the job j;

• T s
j : job starting time—time determined by the scheduler;

• T e
j : job execution time;

• T x
j : job estimated execution time;

• T r
j : job ready time—minimum starting time determined by the user;

• T c
j : job completion time—defined as T s

j + T e
j ;

• T xo
j : job estimated network overhead when using multiple sites.

5

4 Scheduling of FlexCo Requests

The scheduling of a FlexCo request consists of finding a free common timeslot that meets the

job requirements in a set of resource providers. We consider here the scheduling to be on-line,

where users submit jobs to the resource provider’s scheduler over time and the schedulers make

decisions based only on the currently accepted jobs. The scheduling involves the manipulation of

timeslots, which are data structures composed of four values:

• tsid: time slot identification;

• tss: time slot starting;

• tsc: time slot completion time;

• tsn: number of resources available in this time slot.

4.1 Initial scheduling

The initial scheduling consists of mainly four stages, which are described by Algorithm 1.

First the metascheduler asks the resource providers for the list of available timeslots, TS =
{ts1, ts2, ..., tst}, where t is the number of timeslots (Lines 1-4). Second the metascheduler finds

a common starting time cs that meets the request constraints, such as number of resources, starting

time, and completion time (Lines 5-23). Third the metascheduler generates a list of sub-requests

(Lines 24-29). Finally, in the forth stage, the metascheduler submits the sub-requests to the re-

source providers accordingly (Lines 30-32).

In order to find the common starting time cs (Lines 5-23), the algorithm verifies cs according

to the list of available time slots TS and gets the maximum number of resources available in each

machine mi starting at time cs that fits the job. Note that if the number of resources available in a

particular mi is greater than or equal to Rj , there is no need to consider the network overhead T xo
j

since the job will be submitted only to that machine.

When generating the list of sub-requests (Lines 24-29), the metascheduler could follow different

approaches. For example, it could try to decompose the jobs in an even way in order to maintain

the same load in each resource provider. In our approach the metascheduler allocates as many

processors as possible from a single resource provider per request. Every time a new external job

arrives, the metascheduler uses the next-fit approach to give priority to the next resource provider.

The idea behind of the second approach is to increase the chances of fitting some metajobs in a

single site over time due to the rescheduling.

4.2 Rescheduling

As described in the previous subsection, the initial scheduling of a metajob involves manipula-

tion and transfer of timeslots over the network. In order to reschedule metajobs, one must consider

the cost-benefit of transfering and manipulating timelots to optimize the schedule. Therefore our

approach is to reschedule a metajob only when the resource provider is not able to find a local job

that fills the fragment generated due to the earlier completion time of a job (Figure 2). The local

schedulers use Algorithm 2 for rescheduling jobs whenever a job completes before the estimated

time. The rescheduling is based on the compressing method described by Weil and Feilson [22],

which consists of bringing the jobs to the current time according to their starting times, not arrival

6

Algorithm 1 Pseudo-code for scheduling a new FlexCo request jk.

1: for ∀mi ∈M do

2: TSi ← Get time slots from mi

3: Sort TSi | ts
s
1 ≤ tss

2 ≤ ... ≤ tss
t

4: end for

5: foundLocalSite← false

6: bestT s
j ← null

7: cs← null

8: while foundLocalSite← false and cs is not the last in TS do

9: cs← Get next starting time from TS

10: totalAvailableResources← 0
11: listAvailableResources← null

12: for ∀mi ∈M do

13: numResources←max R from mi |
(

cs ≥ T r
j and (cs+T x

j +T xo
j ≤ tsc

i or cs+T x
j ≤ tsc

i

when R ≥ Rj)
)

14: totalAvailableResources← totalAvailableResources + numResources

15: if numResources ≥ Rj then

16: foundLocalSite← true

17: end if

18: listAvailableResourcesi ← numResources

19: end for

20: if foundLocalSite = false and totalAvailableResources ≥ Rj and bestT s
j 6= null then

21: bestT c
j ← cs + T x

j + T xo
j , bestT s

j ← cs, bestM ← mi

22: end if

23: end while

24: if foundLocalSite = true and (bestT s
j 6= null or cs + T x

j ≤ bestT c
j) then

25: subreqs← Get sub requests (bestM)

26: else if bestT c
j 6= null then

27: subreqs← Get sub requests (listAvailableResources)

28: cs← bestT s
j

29: end if

30: if found cs then

31: Submit subreqs to required mi ∈M

32: end if

times (Lines 2-7, 17-21). This avoids the violation of the completion time of jobs given by the orig-

inal schedule. When implementing the algorithm, one could keep a list of sorted jobs according to

starting time instead of sorting them when executing the rescheduling (Line 2).

Once the metascheduler receives a notification for rescheduling a job ji from the resource

provider, it performs the rescheduling in a similar way as described in the initial scheduling pro-

cedures (Algorithm 1). The main difference is that the metascheduler may need to remove the

subrequest from a resource provider since a job may not need all the original sites anymore.

7

Figure 2. Reschedule of multi-site jobs in the head of the waiting queue.

Algorithm 2 Pseudo-code for rescheduling jobs in the resource provider.

1: coallocHeadRescheduled← false

2: Sort Qw | {T s
1 ≤ T s

2 ... ≤ T s
n}, where n is number of jobs in the waiting queue

3: for ∀ji ∈ Qw do

4: if ji is local job then

5: Schedule job with backfilling

6: end if

7: end for

8: if there are idle resources then

9: for ∀ multisite jobs ji in the head of the queue do

10: previousT c
ji
← T c

ji

11: Contact metascheduler to reschedule ji

12: if T c
ji
≤ previousT c

ji
then

13: coallocHeadRescheduled← true

14: end if

15: end for

16: if coallocHeadRescheduled = true then

17: for ∀ji ∈ Qw do

18: if ji is local job then

19: Schedule job with backfilling

20: end if

21: end for

22: end if

23: end if

5 Evaluation

We evaluated our strategies using an event-driven simulator, named PaJFit (Parallel Job Fit)

[16], which has been extended to support multi-site environments and FlexCo requests. We used

real traces from supercomputers available at the Parallel Workloads Archive1 to model the user

1Parallel Workloads Archive: http://www.cs.huji.ac.il/labs/parallel/workload

8

applications. We compared the use of Shift and Shift with Remap operations against the traditional

co-allocation model based on rigid advance reservations, which provides response time guarantees

but suffers from high fragmentation inside resource provider’s scheduling queues. This section

presents a detailed description of the environment setup and metrics followed by the results and

our analysis.

5.1 Experimental configuration

We modeled an environment composed of 4 clusters with their own load and one metascheduler

which receives metajobs from external users. For the local jobs we used the traces from the 416-

node Intel Paragon located at the San Diego Supercompter Center (SDSC). The Parallel Archive

has two traces from this machine. We used the version 2.1, year 1995 and version 2.1 year 1996.

We split each of these files in halves and synchronized the submission times in order to have 4

files which represent the load of each one of the simulated clusters for 6 months. For the metajobs

we used a larger machine, the San Diego Supercomputer Center (SDSC) Blue Horizon with 1,152

processors: 144-node IBM SP, with 8 processors per node, trace version 3.1 year 2000. In order to

have a considerable number of metajobs for 4 clusters, we used the first year of this trace, split in

2 parts of 6 months each and mixed them by bringing the load of the second semester to the first

semester, hence maintaining load approximately 80% in the local clusters.

The traces we chose for the local jobs provide no user estimation times, only the actual job

execution times. In order to include user estimations we relied on a model proposed by Tsafrir et

al. [21]2. As the mandatory parameter of this model, the maximum estimation time, we used 13

hours. We also generated different runtime estimations using alternative random number generator

seeds.

For the network overhead of multi-site jobs, we assigned to each job a randomly value defined

by a Poisson distribution with λ=20. A study by Ernemann et al. [9] shows that it pays off to use

co-allocation when the penalty for the network overhead is up to approximately 25%. Therefore,

we limited the network overhead under this value.

We evaluated the system utilization, response time, which is the difference between the job

completion time and submission time, as well as the bounded-slowdown, which is the response

time normalized by the running time [11]:

bounded-slowdown = max
{

Tw+Tr
max{Tr,τ}

, 1
}

, where Tw is the waiting time, Tr is the task running

time, and τ is a threshold factor which we setup with the value of 10 minutes.

We investigate the behavior of these metrics according to the precision of the job runtime esti-

mations, which we varied from the original value defined in the workload to 25% plus the original

value. We also evaluated these metrics by executing the experiments without considering small

jobs, i.e. T x ≤ 1 hour and R ≤ 64.

5.2 Results and analysis

We calculated the values of the response time and slowdown for (a) all jobs, for (b) only local

jobs, and for (c) only meta jobs in order to have a better understanding of the behavior of the

metrics for each type of user, i.e. local and external users.

2Estimation runtimes generator model: http://www.cs.huji.ac.il/labs/parallel/workload/m_tsafrir05

9

 1

 2

 3

 4

 5

 0 5 10 15 20 25

R
e

s
p

o
n

s
e

 t
im

e
 r

e
d

u
c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

All Jobs

Shift+Remap
Shift

 1

 2

 3

 4

 5

 6

 7

 8

 0 5 10 15 20 25

R
e

s
p

o
n

s
e

 t
im

e
 r

e
d

u
c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

Small jobs excluded

Shift+Remap
Shift

Figure 3. Response time reduction considering both local and meta jobs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

S
lo

w
d

o
w

n
 r

e
d

u
c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

All Jobs

Shift+Remap
Shift

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25
S

lo
w

d
o

w
n

 r
e

d
u

c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

Small jobs excluded

Shift+Remap
Shift

Figure 4. Slowdown reduction for both local and meta jobs.

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0 5 10 15 20 25

S
lo

w
d

o
w

n
 r

e
d

u
c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

All Jobs

Shift+Remap
Shift

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

S
lo

w
d

o
w

n
 r

e
d

u
c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

Small jobs excluded

Shift+Remap
Shift

Figure 5. Slowdown reduction for local jobs.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25

S
lo

w
d

o
w

n
 r

e
d

u
c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

All Jobs

Shift+Remap
Shift

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 5 10 15 20 25

S
lo

w
d

o
w

n
 r

e
d

u
c
ti
o

n
 (

%
)

Added runtime estimation precision (%)

Small jobs excluded

Shift+Remap
Shift

Figure 6. Slowdown reduction for meta jobs.

10

 0

 1

 2

 3

 4

 5

 6

 0 5 10 15 20 25

S
y
s
te

m
 U

ti
liz

a
ti
o

n
 g

a
in

 (
%

)

Added runtime estimation precision (%)

All Jobs

Shift+Remap
Shift

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25

S
y
s
te

m
 U

ti
liz

a
ti
o

n
 g

a
in

 (
%

)

Added runtime estimation precision (%)

Small jobs excluded

Shift+Remap
Shift

Figure 7. Global system utilization gain.

Figure 3 presents the response time reduction when using FlexCo requests with Shift and Shift

with Remap operations, both over the co-allocation using the rigid advance reservation. We ob-

serve that the FlexCo requests with Shift and processor Remapping together generate better results

than only with Shift operation. This happens because jobs have more flexibility to find better

scheduling options that generate earlier completion times. Moreover, having these two operations

together increases the possibility of moving multi-site jobs into a single cluster, hence reducing

significantly the response time due to the network overhead that is eliminated. In addition, when

small jobs are removed, the response time reduction is higher since there are no jobs to fit the

gaps generated by the jobs that completed before the expected time. We can also conclude that the

FlexCo requests have a higher impact on environments where users do not provide precise runtime

estimations. The results for only local and only external jobs are the same for the response time,

thus we have not included them here.

Figures 4, 5, 6 present the slowdown reduction when using FlexCo requests with Shift and

Remap operations and only Shift, both over the co-allocation using rigid advance reservations. We

observe that the reduction is more significant than the response time since the slowdown normalizes

the response time with the execution time of the jobs. Therefore small jobs that are delayed have

a higher impact; therefore, the reductions of the head co-allocation jobs minimize the delay of the

short jobs. In addition, similar to the response time, we observe the benefit of the FlexCo requests

over the traditional co-allocation based only on rigid advance reservations. Comparing the benefit

of external and local users, we see that there is a slightly advantage for the local users in relation to

the meta users. This is because the metric slowdown gives more advantage for small jobs, which

constitutes a large number of local jobs and not external users.

Figure 7 shows the global system utilization gain by using the model with rescheduling support.

The metric has the same behavior as the other metrics but with different values.

6 Related Work

Czajkowski et al. [5] deal with the co-allocation problem with the main focus on failures during

allocation. Different from our work, they do not use advance reservations due to the lack of support

of the local resource managers at that time. They rely on a solution based on the current availability

of the resources and queue-time estimations of the resource providers. Later Czajkowski et al. [6]

propose an approach in which users could modify the co-allocation specification their requests

initialize via add, delete, and substitute operations. Moreover in their work resources could be

11

classified in categories, required, interactive and optional, in order to simplify the management of

resource failures.

Foster et al. [12] propose and describe the prototype of the Globus Architecture for Reservation

and Allocation (GARA). This prototype aims to provide a platform with support for quality of

service guarantees through advanced reservations. Their work focuses more on middleware aspects

rather than on scheduling optimizations.

Alhusaini et al. [1, 2] investigate the mapping of a set of independent tasks on compute and

non-compute distributed resources. The tasks have co-allocation requirements and their goal is to

minimize schedule length. Their solution is based on a two-phase approach. The first phase is

an off-line planning where the scheduler assigns tasks to resources assuming that all the applica-

tions hold all the required resources for their entire execution. The second phase is the run-time

adaptation phase where the scheduler takes decisions according to the actual computation and com-

munication costs, which may be different from the estimated costs used in the first phase. Some

applications may release some resources before the conclusion of the execution. Different from

our work they assume that each task to be mapped is known a priori and that all the resources are

exclusive for the co-allocation tasks, i.e. there are no local jobs competing for resources. Similar

to our work they consider wrong estimation of job requirements and the need of a rescheduling

phase to overcome the problem.

MacLaren et al. [14] discuss the problem of resource co-allocation, in particular focusing on

fault tolerance, and propose a co-allocation system called HARC (Highly-Available Robust Co-

allocator). Their system uses a two-phase approach based on advance reservations to handle the

distributed transaction problem. Similar to our approach, the scheduler does not have access the

scheduling queue of the resource managers but asks for the free time slots. The system supports

the creation of a reservation, cancellation, modification of number of requested CPUs and time of

the reservation. They do not address issues such as finding an optimal scheduling or managing the

reservations once they have been made. Therefore we see HARC as a middleware which provides

services that can be used to deploy the policies described in this paper.

Azzedin et al. [3] propose a co-allocation mechanism that does not rely on advanced reserva-

tions. Their main argument for this approach is the strict timing constraints on the client side due

to the advance reservations, i.e. once a user requests an allocation, the initial and final time are

fixed. Consequently, advanced reservations generate fragments that the schedulers cannot utilize.

Furthermore, the authors argue that a resource provider can reject a co-allocation request at any

time in favor of internal requests, and hence the co-allocation would fail. Their schema, called

synchronous queuing (SQ), synchronizes the subtasks at the scheduling cycles (or more often), by

speeding them up or slowing them down. One of the main problems of this approach is the co-

allocation skew, i.e. time difference between the fastest running and the slower running subtask,

may be long. Therefore, the resources would not be effectively utilized. Another problem is that,

depending on the application and on the computing environment, it is not possible to modify the

subtasks execution speed. The strategies we have presented in this paper are a step to overcome

the limitations the authors mentioned about using advance reservations for co-allocation.

Bucur and Epema [4] investigate scheduling policies and different queuing structures for re-

source co-allocation in multicluster systems. They evaluate the differences of having single global

schedulers, only local schedulers and both structures together, as well as different priorities for

local and metajobs. Moreover, they do not use advance reservations and therefore it is not possible

12

to give guarantees of completion time to the users requiring co-allocation and local resources may

be idle until all the co-allocation requirements are satisfied.

7 Conclusions and Further Work

In this paper we have proposed and evaluated a resource co-allocation model for multi-site par-

allel jobs based on flexible advance reservations and processor remapping. The model overcomes

the limitations of existing solutions for resource co-allocation in relation to the starting time guar-

antees of user applications and the reduction of fragments in the scheduling queues of the resource

providers. From our experiments we concluded that the model is particularly important in envi-

ronments where users are not able to provide accurate runtime estimation time of their tasks and

where there is a lack of small jobs to fill the fragments.

Rescheduling co-allocation requests involves the cooperation of different autonomous parties. In

this paper we investigated a cooperative environment, which is a typical research environment such

as TeraGrid and Grid’5000. As future work we will explore a more competitive environment where

resource providers need to increase their own system utilization. Moreover, in this paper we have

used the FlexCo requests to improve the user response time. As next step we will also explore

the modification of the already scheduled FlexCo requests in order to meet the requirements of

incoming requests.

References

[1] A. H. Alhusaini, V. K. Prasanna, and C. S. Raghavendra. A framework for mapping with resource

co-allocation in heterogeneous computing systems. In Proceedings of the Heterogeneous Comput-

ing Workshop (HCW), in conjunction with the 14th International Parallel & Distributed Processing

Symposium (IPDPS), pages 273–286, 2000.

[2] A. H. Alhusaini, C. S. Raghavendra, and V. K. Prasanna. Run-time adaptation for grid environments.

In Proceedings of the Heterogeneous Computing Workshop (HCW), in conjunction with the 15th In-

ternational Parallel & Distributed Processing Symposium (IPDPS), pages 864–874, San Francisco,

USA, 23-27 April 2001.

[3] F. Azzedin, M. Maheswaran, and N. Arnason. A synchronous co-allocation mechanism for grid com-

puting systems. Cluster Computing, 7(1):39–49, 2004.

[4] A. I. D. Bucur and D. H. J. Epema. Scheduling policies for processor coallocation in multicluster

systems. IEEE Transactions on Parallel and Distributed Systems, 18(7):958–972, 2007.

[5] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A resource

management architecture for metacomputing systems. In Proceedings of the 4th Workshop on Job

Scheduling Strategies for Parallel Processing (JSSPP), volume 1459 of Lecture Notes in Computer

Science, pages 62–82, Orlando, USA, 1998. Springer.

[6] K. Czajkowski, I. Foster, and C. Kesselman. Resource co-allocation in computational grids. In Pro-

ceedings of the 8th International Symposium on High Performance Distributed Computing (HPDC),

pages 219–228, Redondo Beach, USA, 3-6 Aug. 1999. IEEE Computer Society.

[7] J. Decker and J. Schneider. Heuristic scheduling of grid workflows supporting co-allocation and

advance reservation. In Proceedings of the 7th IEEE International Symposium on Cluster Computing

and the Grid (CCGrid), pages 335–342, Rio de Janeiro, Brazil, May 14-17 2007. IEEE Computer

Society.

13

[8] E. Elmroth and J. Tordsson. A standards-based grid resource brokering service supporting advance

reservations, coallocation and cross-grid interoperability. Submitted: http://www.cs.umu.se/

~elmroth/papers/elmroth_tordsson_2006_draft.pdf. Dec 2006.

[9] C. Ernemann, V. Hamscher, U. Schwiegelshohn, R. Yahyapour, and A. Streit. On advantages of grid

computing for parallel job scheduling. In Proceedings of the 2nd IEEE International Symposium

on Cluster Computing and the Grid (CCGrid, pages 39–, Berlin, Germany, 22-24 May 2002. IEEE

Computer Society.

[10] U. Farooq, S. Majumdar, and E. W. Parsons. A framework to achieve guaranteed QoS for applications

and high system performance in multi-institutional grid computing. In Proceedings of the 35th Inter-

national Conference on Parallel Processing (ICPP), pages 373–380, Columbus, USA, August 14–18

2006. IEEE Computer Society.

[11] D. G. Feitelson. Metrics for parallel job scheduling and their convergence. In Proceedings of the 7th

International Workshop Job Scheduling Strategies for Parallel Processing (JSSPP), volume 2221 of

Lecture Notes in Computer Science, pages 188–206, Cambridge, USA, 2001. Springer.

[12] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy. A distributed resource man-

agement architecture that supports advance reservations and co-allocation. In Proceedings of the 7th

International Workshop on Quality of Service (WQoS), pages 27–36, 31 May-4 June 1999.

[13] N. R. Kaushik, S. M. Figueira, and S. A. Chiappari. Flexible time-windows for advance reservation

scheduling. In Proceedings of the 14th IEEE International Symposium on Modeling, Analysis, and

Simulation of Computer and Telecommunication Systems (MASCOTS), pages 218–225, Monterey,

USA, September 11–14 2006. IEEE Computer Society.

[14] J. Maclaren, M. M. Keown, and S. Pickles. Co-allocation, fault tolerance and grid computing. In

Proceedings of the 5th UK e-Science All Hands Meeting (AHM), pages 155–162, Nottingham, UK,

September 18–21 2006.

[15] S. Naiksatam and S. Figueira. Elastic reservations for efficient bandwidth utilization in lambdagrids.

Future Generation Computer Systems, 23(1):1–22, 2007.

[16] M. A. S. Netto, K. Bubendorfer, and R. Buyya. SLA-based advance reservations with flexible and

adaptive time QoS parameters. In Proceedings of the 5th International Conference on Service-

Oriented Computing (ICSOC), volume 4749 of Lecture Notes in Computer Science, pages 119–131,

Vienna, Austria, 2007. Springer.

[17] T. Röblitz and A. Reinefeld. Co-reservation with the concept of virtual resources. In Proceedings of

the 5th IEEE International Symposium on Cluster Computing and the Grid (CCGrid), pages 398–406,

Cardiff, UK, May 9–12 2005. IEEE Computer Society.

[18] T. Röblitz, F. Schintke, and A. Reinefeld. Resource reservations with fuzzy requests. Concurrency

and Computation: Practice and Experience, 18(13):1681–1703, 2006.

[19] T. Röblitz, F. Schintke, and J. Wendler. Elastic grid reservations with user-defined optimization poli-

cies. In Proceedings of the Workshop on Adaptive Grid Middleware (AGridM), September 2004.

[20] Q. Snell, M. J. Clement, D. B. Jackson, and C. Gregory. The performance impact of advance reserva-

tion meta-scheduling. In Proceedings of the 6th Workshop on Job Scheduling Strategies for Parallel

Processing (JSSPP), volume 1911 of Lecture Notes in Computer Science, pages 137–153, Cancun,

Mexico, May 1 2000. Springer.

[21] D. Tsafrir, Y. Etsion, and D. G. Feitelson. Modeling user runtime estimates. In Proceedings of the

11th International Workshop Job Scheduling Strategies for Parallel Processing (JSSPP), volume 3834

of Lecture Notes in Computer Science, pages 1–35. Springer, 2005.

[22] A. M. Weil and D. G. Feitelson. Utilization, predictability, workloads, and user runtime estimates in

scheduling the IBM SP2 with backfilling. IEEE Transactions on Parallel and Distributed Systems,

12(6):529–543, 2001.

14

