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1. Introduction

Simulation tools play an essential role in the evaluation of emerging peer-to-peer, 

computing, service and content delivery networks. Given the scale, complexity and 

operational costs of such networks, it is often impossible to analyse the low-level 

performance, or the effect of new scheduling, replication and organisational 

algorithms on actual test-beds. As such, practitioners turn to simulation tools to allow 

them to rapidly evaluate the efficiency, performance and reliability of new algorithms 

on large topologies before considering their implementation on test-beds and 

production systems. 

 

In particular, the study of Grids is significantly aided by robust and rapid prototyping 

via simulation, due to the sheer scale and complexities that arise when operating over 

many administrative domains, which precludes easy prototyping on real test-beds. 

Grid computing [1] has been integral in enabling knowledge breakthroughs in fields 

as diverse as climate modelling, drug design and protein analysis, through the 

harnessing of computing, network, sensor and storage resources owned and 

administered by many different organisations. These fields (and other so-called Grand 

Challenges) have benefited from the economies of scale brought about by Grid 

computing, tackling difficult problems that would be impossible to feasibly solve 

using the computing resources of a single organisation. However, when prototyping 

such applications and services that harness the power of the Grid, it is beneficial to 

test their operation via simulation in order to optimise their behaviour, and avoid 

placing strain on Grid resources during the development phase. 

 

Despite the obvious advantages of simulation when prototyping applications and 

services that run on Grids, realistically simulating large topologies and complicated 

scenarios can take significant amounts of memory and computational power. For 

statistically significance, large numbers of simulation runs are needed to increase our 

confidence in the results we obtain from simulation platforms. This is particularly the 

case when studying applications and services that store and move significant volumes 

of data over the grid, such as data-grids or content and service delivery networks. 

Simulators that attempt to model the full complexity of TCP/IP networking in such 

environments scale poorly and often run significantly slower than real-time, 

practically defeating the purpose of simulating such environments in the first place. 

 

In this chapter we look at incorporating flow-level (or ‘fluid’) networking models into 

Grid simulators, in order to improve the scalability and speed of Grid simulations by 

reducing the overhead of data and network intensive experiments, and improving their 

accuracy. Network flow models are used that closely approximate actual steady-state 



TCP/IP networking. We utilise the GridSim toolkit as a candidate implementation, 

and fully replace the existing packet-level networking model in GridSim with a flow-

level networking stack. However, the principles outlined in this chapter could be 

applied to other simulation platforms. 

 

 

The remainder chapter is organised as follows; Section 2 describes the GridSim 

Toolkit, and gives a brief overview of its feature set. In Section 3, the existing packet-

level networking implementation for the GridSim toolkit is described, and some 

inefficiencies are identified that arise when doing large scale network and data centric 

simulations. In Section 4 we outline the basic principles behind modelling network 

traffic and transfers as flows or ‘fluid’, rather than discrete packets. The bandwidth-

sharing model utilised in our flow-level networking model is described in Section 5. 

The new flow-level networking implementation for the GridSim toolkit is introduced 

in Section 6, highlighting the additions made to GridSim in order to support the flow-

based networking paradigm. Section 7 describes the flow tracking and management 

algorithms required to compute the durations of network flows, and to update them 

when conditions change during a simulation run. The performance improvements 

gained from the flow-networking model over existing packet-based implementation 

are highlighted in Section 8. Finally, we conclude this chapter in Section 9, taking a 

macroscopic view of the potential applications of flow-level networking in large scale 

grid simulations. 

 

 

Figure 1: The GridSim Architecture 

2. The GridSim Toolkit 

GridSim is a grid simulation toolkit for resource modelling and application scheduling 

for parallel and distributed computing [2]. The GridSim toolkit has been used 

extensively by researchers across the globe [3] to model and simulate data grids [4], 

failure detection [5], differentiated service [6], auction protocols [7], advanced 

reservation of resources [8] and computational economies in grid marketplaces. 

 

GridSim has been designed as an extensible framework by following a multi-layer 

architecture as shown in Figure 1. This allows new components or layers to be added 

and integrated into GridSim easily. GridSim implementations use SimJava [9], a 

general purpose discrete-event simulation package for handling the interaction or 

events among GridSim components. 

 



At basic level, all components in GridSim communicate with each other through 

message passing operations defined by SimJava. The second layer models the core 

elements of the distributed infrastructure, namely Grid resources such as clusters, 

storage repositories and network links. These core components are absolutely 

essential to create simulations in GridSim. The third and fourth layers are concerned 

with modelling and simulation of services specific to Computational and Data Grids 

[4] respectively. Some of the services provide functions common to both types of 

Grids such as information about available resources and managing job submission. 

 

From networking perspective, the current version supports packet-based routing 

including background network traffic modelling based on a probabilistic distribution 

[6]. This is useful for simulating data-intensive jobs over a public network where the 

network is congested. The limitations of this network model are highlighted in the 

next section. 

 

 

Figure 2: GridSim Packet Networking Architecture 

 

3. The GridSim Packet Networking Architecture 

A typical dog-bone topology is shown in Figure 2, for a GridSim experiment using 

the existing packet-level network framework. Consider a user at user node 1 that 

wishes to send a 10Mb file to resource node 6. In the current GridSim network model 

[6] the file would be packetised into MTU-sized packets by the Output class of the 

NetUser GridSim entity and sent over the links. Every packet but the last is an empty 

packet (GridSimTags.EMPTY_PKT), with the last packet containing the actual data 

(IO_data). If the Maximum Transmission Unit (MTU) was 1500 on all elements 

between the source and destination, sending a 10MB file would result in 

approximately 34,952 packets being generated. In GridSim, each packet is 

represented by a NetPacket Java object, thus creating a considerable amount of 

overhead for large data transfers. This can lead to lengthy simulation execution times 

for data or network dependent simulations. The magnitude of this overhead will be 

quantified later in this chapter. In the next section we describe the new flow 



networking implementation that seeks to minimise the overhead of network 

dependant simulations. 

 

4. Flow Networking Concepts 

Rather than modelling each network transfer using packets, we wish to consider a 

network flow model that captures the steady-state behaviour of network transfers. For 

convenience we will denote our Grid topology (such as that depicted in Figure 2) as a 

graph G = (V ,E) , where V  is the set of vertices and E  is the set of edges, consisting 

of 2-element subsets of V . For instance, if vertices x  and y  are connected, then 

{x,y} ∈ E . In the system there exist flows   f =1,2,K,F , with each flow f  having a 

source and destination. Each flow f  describes a simple path of length k  represented 

by a set of edges   {(v1,v2),K,(vk,vk+1)}. The number of bytes in each flow f  is 

denoted as SIZE f . 

 

Let us consider a simple topology where the two entities, node u and node v  are 

directly connected by an edge (u,v) , with available bandwidth BWu,v  (in bytes per 

second) and latency BWu,v  (in seconds). Calculating the duration of a single network 

flow f  with size SIZE
f  from u to v  can be trivially computed as follows: 

 

Tf = LATu,v +
SIZE

f

BWu,v

 

Equation 1 

 

As an interesting aside, the above equation can be tested in a rudimentary fashion by 

utilising the first networking example in the GridSim distribution (NetEx01)
1
. An 

extremely coarse approximation of basic flow networking can be achieved with the 

current packet-level network framework in GridSim by setting the MTU to equal the 

size of the network flow to be transferred, causing only a single NetPacket to be 

generated, which is held at the Output of the NetUser GridSim entity for the 

appropriate duration. However, this does not model bandwidth sharing on the links in 

any way. 

 

More generally, a flow f  with a source u  and destination v  that is not directly 

connected has an expected duration of: 

 

Tf = LATu,v

( ′ u , ′ v )∈ f

∑ +
SIZE

f

min BW
f

 

Equation 2 

 

where min BW
f is the smallest bandwidth available on any edge on the path 

f  between u and v  (i.e. the bottleneck link), and latency LAT
f = LATu,v

( ′ u , ′ v )∈ f

∑ is the 

sum of the latency of all edges ( ′ u , ′ v )  that connect the source u to the destination v . 

                                                
1
 Available at http://www.gridbus.org/gridsim/example/net_index.html 



 

We note that the above equations and discussions are only valid for a single active 

flow at a time, as it does not account for any bandwidth sharing between multiple 

flows on common (overlapping) links. Where multiple flows are active over links, 

then minBW
f  is the smallest bandwidth allocated by edge (based on some bandwidth 

sharing model) on the path f  between u and v . The implications of this will be 

discussed in the following section. 

 

5. Bandwidth Sharing Models 

In Section 4 we examined a simple theoretical model to compute the duration of each 

flow in a system based on the bottleneck bandwidth. This approach significantly 

improves the speed of Grid simulations by avoiding the need to packetise large 

network transfers, instead taking a macro or fluid view of network traffic in a given 

topology. 

 

In order for this approach to be effective we need to calculate the appropriate 

bandwidth given to flows on each segment of their respective route. More 

importantly, we must model how the bandwidth is shared when many flows are active 

over one or many links. As a proof of concept for the GridSim flow networking 

implementation, we have implemented simple MIN-MAX bandwidth fair sharing, 

where each flow that shares a link is allocated an equal portion of the bandwidth. That 

is, an edge (u,v) , with available bandwidth BWu,v  that has n active flows will 

allocate each flow 
BWu,v

n
 bandwidth. Whilst it has been found that other bandwidth 

sharing models are closer to actual TCP/IP behaviour [10], MIN-MAX bandwidth 

sharing is a useful candidate model with minimal state to track in the implementation. 

 

We intend to include other bandwidth sharing models that more closely approximate 

TCP/IP in the near future, such as proportional bandwidth sharing that considers 

latency, round-trip times and class-based priorities [11, 12]. 

 

 

 



 

Figure 3: GridSim Flow Networking Architecture 

6. The New GridSim Flow Networking Architecture 

In order to implement the flow-level networking model described in Section 4, we 

need to make some fundamental changes to the existing packet-level network 

implementation in GridSim. More specifically, we need to replace the entire 

networking stack with flow-aware components due to the significant differences 

between the two approaches. 

 

Figure 4 depicts a high-level class diagram showing the flow aware networking stack 

that is to be added to GridSim to enable flow-level network functionality. The new 

support components are shown as dotted boxes to differentiate them from the existing 

packet networking stack. A summary of these additions (and changes) is listed in 

Table 1. Figure 3 shows an example GridSim topology that utilises the new flow 

model 

 

To keep the flow-level network functionality logically separated, a new package was 

added, namely gridsim.net.flow. This will encapsulate all of the flow-level 

networking functionality to be added. A new interface, NetIO, was created to 

provide a common set of functions for the existing Input and Output classes, as 

well as the new flow-aware FlowInput and FlowOutput classes. These flow-

aware input and output classes are automatically generated for GridSim entities by 

calling GridSim.initNetworkType(GridSimTags.NET_FLOW_LEVEL), 

before initialising a GridSim simulation. 

 

The FlowOutput class performs a similar function to the existing Output class, 

but instead of packetising data than is sent by GridSim entities into MTU sized 

chunks (as described in Section 3), it creates a single FlowPacket that will 

represent an active flow for its lifetime. The FlowOutput class also supports 

background traffic, creating junk flows to simulate load on links, and the Grid 

Information Service (GIS), which is an entity that provides grid resource registration, 

indexing and discovery services. These two features were available in the 

NetPacket implementation and are depended on by GridSim users worldwide for 



simulating complex scenarios and topologies, and thus were supported in the flow 

implementation. 

 

Figure 4: GridSim Flow Networking class diagram 

 

 

We still require an entity to represent the network flow. As such, for convenience we 

will leverage a subset of the existing Packet implementation, extending it to create 

a FlowPacket class. This allows us to utilise the existing features of the Packet 

class, whilst adding logic that will support an accurate flow-networking model for 

GridSim. A flow is then simply represented by a single FlowPacket, which exists 



as long as the flow is active. As it traverses along a GridSim topology from its source 

to destination, it maintains a list of the FlowLink entities it passes over, and more 

specifically the latency and bandwidth available on each of these links. 

 

Table 1: Summary of changes between GridSim packet and flow 

implementations 

Component Packet Model Flow Model 
GridSim 

Network type 

GridSimTags.NET_PACKET_LEVEL GridSimTags.NET_FLOW_LEVEL 

Input / Output Input / Output extends 
Sim_entity 

FlowInput / FlowOutput  
extends Sim_entity 
implements NetIO 

Packet NetPacket extends Packet FlowPacket extends Packet 

Link SimpleLink extends Link FlowLink extends Link 

Router RIPRouter / FloodingRouter / 
RateControlledRouter extends 

Router 

FlowRouter extends Router 

Scheduler SCFQScheduler / 
FIFOScheduler / 

RateControlledScheduler 
implements PacketScheduler 

N / A 

Event filter N /A FilterFlow 

Package gridsim.net gridsim.net.flow 

 

 

As a FlowPacket traverses a FlowLink, it is registered as an active flow on that 

link for the purpose of computing the bandwidth a FlowLink allocates a given 

FlowPacket, when multiple flows are active on a given link. If the bottleneck 

bandwidth of an existing flow is affected by a new flow becoming active or an 

existing flow becoming de-active), then FlowLink notifies the remaining active 

flows (which are held at the FlowInput of their destination) of their new bottleneck 

bandwidth. 

 

Routers for flow-level networking are significantly less complicated than those 

supporting the packet networking model, as they have minimal responsibility in the 

flow model. A new class, FlowRouter, has been added, which enables many-to-

many (m:m) connections from GridSim entities but performs no actual scheduling 

itself. As such, there is no equivalent to PacketScheduler needed for the flow 

model. 

 

 

Finally, the FlowInput holds the FlowPacket for the appropriate duration, based 

on Equation 2 and an appropriate bandwidth sharing model that determines the 

bandwidth assigned to each flow (as described in Section 5). As stated previously, the 

bottleneck bandwidth of a flow can change during its lifetime due to the arrival of a 

new overlapping flow or the termination of an existing flow. When this occurs, 

affected flows are notified and the duration is updated, potentially being brought 

forward as available bandwidth increases or pushed back as available bandwidth 

decreases. This process is explained in more detail in the next section. 

 

 



7. High Level Flow Management Algorithms 

When running any non-trivial GridSim scenario, it is obvious that more than one flow 

will be active at a given time, and that flows will overlap, begin and end at different 

times. As such, the bandwidths assigned to each flow can change frequently. 

Therefore, flow management algorithms are employed to make an initial forecast 

based on the bottleneck bandwidth when the flow begins, and to update the forecast 

when the bottleneck bandwidth increases or decreases, decreasing or increasing the 

expected duration accordingly. 

 

Let us consider a GridSim system connected in a dog-bone topology like that depicted 

in Figure 2. We wish to compute the end time Tend

f  of a new flow f  that arrives into a 

system, created at time TNOW : 

Algorithm 1: Initial flow forecast 

BWmin

f ← ∞

Tstart

f ← TNOW

Tend

f
← ∞

REM _ SIZE
f ← SIZE

f

for each BWu,v ∈ BW
f

   do if BWu,v < BWmin

f  then BWmin

f = BWu,v{ }

Tdur

f
= LAT

f
+

REM _ SIZE
f

BWmin

f

Tend

f ← Tstart

f + Tdur

f

 

 

If a the bottleneck link of an active flow f  changes (i.e. it becomes larger or smaller) 

at time TNOW , then the expected duration of that flow must be updated: 

Algorithm 2: Update flow forecast 

BWold min

f ← BWmin

f

BWmin

f ← ∞

Telap

f ← TNOW − Tstart

f

Tstart

f ← TNOW

Tend

f
← ∞

REM _ SIZEold

f ← REM _ SIZE
f

REM _ SIZE
f = REM _ SIZEold

f − Telap

f − BWold min

f( )
for each BWu,v ∈ BW

f

   do if BWu,v < BWmin

f  then BWmin

f = BWu,v{ }

Tdur

f = LAT
f +

REM _ SIZE
f

BWmin

f

Tend

f ← Tstart

f + Tdur

f

 

 



8. Performance comparison 

In this section we quantify the performance improvements gained from modelling 

networking traffic as flows instead of packets. Using our candidate implementation of 

a flow model for the GridSim toolkit (described in Section 6), we perform some 

numerical comparisons of specific scenarios. In each scenario we compare the 

existing NetPacket implementation and the new flow-level FlowPacket 

implementation described in this chapter. All tests are run using on a Macbook with a 

2GHZ Intel Core 2 Duo  and 2GB of ram. Each data point represents the average of 

30 runs. 

 

The first scenario is a classic dogbone topology like that depicted in Figure 2 and 

Figure 3. NetUser1/FlowUser1 and NetUser2/FlowUser2 each send 3 

identically sized files to Resource6 and Resource5 respectively. The size of the 

files is varied from 0.5MB to 500MB. The links between the Users and the first router 

are rated at 10MB/sec. The link between the two routers has a capacity of 1.5MB/sec, 

and is clearly the bottleneck link. The link between the second router and the 

resources is 10MB/sec. The files transfers are initiated in 10-second intervals. The 

latencies from the users to the router, between the routers, and from the router to the 

resources are 45, 25 and 30 milliseconds respectively.  

 

In Figure 5 we see a comparison of the CPU time taken for the simulation to execute 

when utilising either the NetPacket or FlowPacket networking stack. The size of the 

files sent by each user is varied from 0.5MB to 500MB. We can clearly see that as the 

size of the files increase, the overhead of the NetPacket implementation is 

demonstrated as the CPU time explodes. The plot is presented on a log-scale on the y-

axis to highlight the huge difference in simulation running time. The FlowPacket 

implementation is totally impervious to the size of the files being transferred, as it has 

no effect whatsoever on the amount of state it maintains. When transmitting several 

500MB files, the FlowPacket implementation takes 0.432 seconds to execute, while 

the NetPacket implementation takes a staggering 6699 seconds, or approximately 111 

minutes. 

 

 

 



 

Figure 5: Comparison of CPU time needed for "dogbone" simulation run 

 

We can see a linear relationship between the amount of memory consumed and the 

size of the files being transmitted by the GridSim simulator when using the NetPacket 

implementation in Figure 6. When utilising the FlowPacket implementation, the size 

of the files being transferred has no effect on the peak memory consumption, as it 

stores the same amount of state regardless of whether it is sending a 0.5MB file or a 

500MB file. 

 

In the second scenario we examine a similar dogbone topology where users submit 

Gridlets for processing, instead of sending files.  A Gridlet is a construct that contains 

all the information related to a grid job  and its execution management details such 

as job length expressed in MI  (Millions Instruction), and the size of input and 

output  files. Individual users can model their application by creating Gridlets for  

processing on Grid resources.  These basic parameters are utilised to determine the 

execution time, the time required to transport input and output files between users 

and remote resources, and returning the processed Gridlets back to the originating 

user along with the results.  We have two users submitting Gridlets with 5000 byte 

input file, an service requirement of 5000MI and return a 5000 byte output file to 10 

available resources. The number of Gridlets sent by each user is varied from 5 to 40. 

 



 

Figure 6: Comparison of peak memory usage for "dogbone" simulation run 

 

 

Figure 7: Comparison of CPU time needed for Gridlet simulation run 



From Figure 7 can see as the number of Gridlets being sent by each user increases, the 

CPU time taken to execute the simulation increases exponentially (highlighted by the 

near-linear line on the plot, where the y axis is log-scale).  On the other hand, the 

FlowPacket implementation only sees a nominal increase in simulation time as the 

number of Gridlets sent by each user increases. 

 

In Figure 8 we see an examination of the peak memory usage of the NetPacket and 

FlowPacket implementations for GridSim, running the Gridlet scenario described 

previously. As the number of Gridlets sent by each user increases, we see a significant 

increase in memory utilisation by the NetPacket implementation after an initial flat 

response. Conversely, the FlowPacket sees only negligible increases in memory 

utilisation as the number of Gridlets increases. 

 

 

Figure 8: Comparison of peak memory usage for Gridlet simulation run 

 

9. Conclusion 

We have explored the improvements in accuracy and reduction in complexity that that 

be achieved by utilising flow-based networking in grid simulation, instead of packet 

based networking, when attempting to model real TCP/IP networks. From the results 

obtained it is clear that significant improvements, in the order of many magnitudes, 

can be made in terms of speed and scalability when executing complex Grid 

Simulations involving large data transfers and large numbers of Grid job submissions. 

It is clear that practitioners will not be limited in the size or complexity of the 

scenarios they wish to model, allowing them to simulate complex computational Grid 

topologies, content and service delivery networks, and data Grids, to name a few 

examples. This will hopefully lead to greater advances in solving the so-called Grand 



Challenges in areas such as climate modelling, drug design and protein analysis, by 

allowing practitioners to prototype their solutions trivially and rapidly before 

committing time and resources in building complex software and network systems 

that operate on global Grids. 
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