
Deploying OpenStack on CentOS Using the KVM
Hypervisor and GlusterFS Distributed File System∗

Anton Beloglazov, Sareh Fotuhi Piraghaj, Mohammed Alrokayan, and
Rajkumar Buyya

Cloud Computing and Distributed Systems (CLOUDS) Laboratory
Department of Computing and Information Systems

The University of Melbourne, Australia
a.beloglazov@student.unimelb.edu.au

s.fotuhipiraghaj@student.unimelb.edu.au
m.alrokayan@student.unimelb.edu.au

rbuyya@unimelb.edu.au

14th of August 2012

Abstract

Cloud computing has proven to be a successful distributed computing model
as demostrated by its wide spread industrial adoption. Apart from public Clouds,
such as Amazon EC2, private and hybrid Cloud deployments are important for
organizations of all scales. The availability of free open source Cloud platforms is
essential to further drive the proliferation of private and hybrid Cloud computing
environments. OpenStack is free open source Cloud computing software originally
released by Rackspace and NASA, which strives to close the gap in the lack of a
comprehensive Cloud platform with a fast pace of development and innovation,
and supported by both an active community of people and large companies.
In this work, we go through and discuss the steps required to come from bare
hardware to a fully operational multi-node OpenStack installation. Every step
discussed in this paper is implemented as a separate shell script making it easy
to understand the intricate details of the installation process. The full set of
installation scripts is reseased under the Apache 2.0 License and is publicly
available online.

∗To cite this technical report, please use the following: Anton Beloglazov, Sareh Fotuhi Piraghaj,
Mohammed Alrokayan, and Rajkumar Buyya, “Deploying OpenStack on CentOS Using the KVM
Hypervisor and GlusterFS Distributed File System,” Technical Report CLOUDS-TR-2012-3, Cloud
Computing and Distributed Systems Laboratory, The University of Melbourne, August 14, 2012.

1

Contents

1 Introduction 3

2 Overview of the OpenStack Cloud Platform 5

3 Comparison of Open Source Cloud Platforms 7

4 Existing OpenStack Installation Tools 9

5 Step-by-Step OpenStack Deployment 10

5.1 Hardware Setup . 11

5.2 Organization of the Installation Package 12

5.3 Configuration Files . 12

5.4 Installation Procedure . 13

5.4.1 CentOS . 13

5.4.2 Network Gateway . 15

5.4.3 GlusterFS Distributed Replicated Storage 17

5.4.4 KVM . 20

5.4.5 OpenStack . 22

5.5 OpenStack Troubleshooting . 45

5.5.1 Glance . 45

5.5.2 Nova Compute . 46

5.5.3 Nova Network . 46

6 Conclusions 47

7 References 47

2

1 Introduction

The Cloud computing model leverages virtualization to deliver computing resources
to users on-demand on a pay-per-use basis [1], [2]. It provides the properties of
self-service and elasticity enabling users to dynamically and flexibly adjust their
resource consumption according to the current workload. These properties of the
Cloud computing model allow one to avoid high upfront investments in a computing
infrastructure, thus reducing the time to market and facilitating a higher pace of
innovation.

Cloud computing resources are delivered to users through three major service models:

• Infrastructure as a Service (IaaS): computing resources are delivered in the form
of Virtual Machines (VMs). A VM provides to the user a view of a dedicated
server. The user is capable of managing the system within a VM and deploying
the required software. Examples of IaaS are Amazon EC21 and Google Compute
Engine2.

• Platform as a Service (PaaS): the access to the resources is provided in the
form of an Application Programming Interface (API) that is used for application
development and deployment. In this model, the user does not have a direct
access to the system resources, rather the resource allocation to applications
is automatically managed by the platform. Examples of PaaS are Google App
Engine3 and Microsoft Azure4.

• Software as a Service (SaaS): application-level software services are provided
to the users on a subscription basis over the Internet. Examples of SaaS are
Salesforce.com5 and applications from the Amazon Web Services Marketplace6.

In this work, we focus on the low level service model – IaaS. Apart from the service
models, Cloud computing services are distinguished according to their deployment
models. There are three basic deployment models:

• Public Cloud: computing resources are provided publicly over the Internet based
on a pay-per-use model.

• Private Cloud: the Cloud infrastructure is owned by an organization, and hosted
and operated internally.

• Hybrid Cloud: computing resources are provided by a composition of a private
and public Clouds.

1Amazon EC2. http://aws.amazon.com/ec2/.
2Google Compute Engine. http://cloud.google.com/products/compute-engine.html.
3Google App Engine. http://cloud.google.com/products/.
4Microsoft Azure. http://www.windowsazure.com/.
5Salesforce.com. http://www.salesforce.com/.
6Amazon Web Services Marketplace. https://aws.amazon.com/marketplace/.

3

http://aws.amazon.com/ec2/
http://cloud.google.com/products/compute-engine.html
http://cloud.google.com/products/
http://www.windowsazure.com/
http://www.salesforce.com/
https://aws.amazon.com/marketplace/

Public Clouds, such as Amazon EC2, have initiated and driven the industrial adoption
of the Cloud computing model. However, the software platforms utilized by public
Cloud providers are usually proprietary disallowing their deployment on-premise. In
other words, due to closed-source software, it is not possible to deploy the same software
platform used, for example, by Amazon EC2 on a private computing infrastructure.
Fortunately, there exist several open source Cloud platforms striving to address the
issue, such as OpenStack, Eucalyptus, OpenNebula, and CloudStack. The mentioned
projects basically allow anyone to not only deploy a private Cloud environment free of
charge, but also contribute back to the development of the platform.
The aim of this work is to facilitate further development and adoption of open source
Cloud computing software by providing a step-by-step guide to installing OpenStack
on multiple compute nodes of a real-world testbed using a set of shell scripts. The
difference from the existing tools for automated installation of OpenStack is that
the purpose of this work is not only obtaining a fully operational OpenStack Cloud
environment, but also learning the steps required to perform the installation from the
ground up and understanding the responsibilities and interaction of the OpenStack
components. This is achieved by splitting the installation process into multiple logical
steps, and implementing each step as a separate shell script. In this paper, we
go through and discuss each of the complete sequence of steps required to install
OpenStack on top of CentOS 6.3 using the Kernel-based Virtual Machine (KVM)
as a hypervisor and GlusterFS as a distributed replicated file system to enable live
migration and provide fault tolerance. The source code described in this paper is
released under the Apache 2.0 License and is publicly available online7.
In summary, this paper discusses and guides through the installation process of the
following software:

• CentOS8: a free Linux Operating System (OS) distribution derived from the
Red Hat Enterprise Linux (RHEL) distribution.

• GlusterFS9: a distributed file system providing shared replicated storage across
multiple servers over Ethernet or Infiniband. Having a storage system shared
between the compute nodes is a requirement for enabling live migration of VM
instances. However, having a centralized shared storage service, such as NAS
limits the scalability and leads to a single point of failure. In contrast, the
advantages of a distributed file system solution, such as GlusterFS, are: (1)
no single point of failure, which means even if a server fails, the storage and
data will remain available due to automatic replication over multiple servers;
(2) higher scalability, as Input/Output (I/O) operations are distributed across
multiple servers; and (3) due to the data replication over multiple servers, if a
data replica is available on the host, VM instances access the data locally rather
than remotely over network improving the I/O performance.

• KVM10: a hypervisor providing full virtualization for Linux leveraging hardware-
7The project repository. https://github.com/beloglazov/openstack-centos-kvm-glusterfs.
8CentOS. http://centos.org/.
9GlusterFS. http://gluster.org/.

10KVM. http://www.linux-kvm.org/.

4

https://github.com/beloglazov/openstack-centos-kvm-glusterfs
http://centos.org/
http://gluster.org/
http://www.linux-kvm.org/

assisted virtualization support of the Intel VT and AMD-V chipsets. The kernel
component of KVM is included in the Linux kernel since the 2.6.20 version.

• OpenStack11: free open source IaaS Cloud computing software originally released
by Rackspace and NASA under the Apache 2.0 License in July 2010. The
OpenStack project is currently lead and managed by the OpenStack Foundation,
which is “an independent body providing shared resources to help achieve the
OpenStack Mission by Protecting, Empowering, and Promoting OpenStack
software and the community around it, including users, developers and the entire
ecosystem”.12

In the next section we give an overview of the OpenStack software, its features,
main components, and their interaction. In Section 3, we briefly compare 4 open
source Cloud computing platforms, namely OpenStack, Eucalyptus, CloudStack, and
OpenNebula. In Section 4, we discuss the existing tools for automated installation of
OpenStack and the differences from our approach. In Section 5 we provide a detailed
description and discussion of the steps required to install OpenStack on top of CentOS
using KVM and GlusterFS. In Section 6, we conclude the paper with a summary and
discussion of future directions.

2 Overview of the OpenStack Cloud Platform

Figure 1: A high level view of the OpenStack service interaction [3]

OpenStack is a free open source IaaS Cloud platform originally released by Rackspace
and NASA under the Apache 2.0 License in July 2010. OpenStack controls and
manages compute, storage, and network resource aggregated from multiple servers in
a data center. The system provides a web interface (dashboard) and APIs compatible

11OpenStack. http://openstack.org/.
12The OpenStack Foundation. http://wiki.openstack.org/Governance/Foundation/Structure.

5

http://openstack.org/
http://wiki.openstack.org/Governance/Foundation/Structure

with Amazon EC2 to the administrators and users that allow flexible on-demand
provisioning of resources. OpenStack also supports the Open Cloud Computing
Interface (OCCI)13, which is an emerging standard defining IaaS APIs, and delivered
through the Open Grid Forum (OGF)14.

In April 2012, the project lead and management functions have been transferred to
a newly formed OpenStack Foundation. The goals of the foundation are to support
an open development process and community building, drive awareness and adoption,
and encourage and maintain an ecosystem of companies powered by the OpenStack
software. The OpenStack project is currently supported by more than 150 companies
including AMD, Intel, Canonical, SUSE Linux, Red Hat, Cisco, Dell, HP, IBM and
Yahoo!.

The OpenStack software is divided into several services shown in Figure 1 that through
their interaction provide the overall system management capabilities. The main
services include the following:

• OpenStack Compute (Nova): manages the life cycle of VM instances from
scheduling and resource provisioning to live migration and security rules. By
leveraging the virtualization API provided by Libvirt15, OpenStack Compute
supports multiple hypervisors, such as KVM and Xen.

• OpenStack Storage: provides block and object storage to use by VM instances.
The block storage system allows the uses to create block storage devices and
dynamically attach and detach them from VM instances using the dashboard
or API. In addition to block storage, OpenStack provides a scalable distributed
object storage called Swift, which is also accessible through an API.

• OpenStack Networking: provides API-driven network and IP address management
capabilities. The system allows the users to create their own networks and assign
static, floating, or dynamic IP addresses to VM instances.

• OpenStack Dashboard (Horizon): provides a web interface for the administrators
and users to the system management capabilities, such as VM image management,
VM instance life cycle management, and storage management.

• OpenStack Identity (Keystone): a centralized user account management service
acting as an authentication and access control system. In addition, the service
provides the access to a registry of the OpenStack services deployed in the data
center and their communication endpoints.

• OpenStack Image (Glance): provides various VM image management capabilities,
such as registration, delivery, and snapshotting. The service supports multiple
VM image formats including Raw, AMI, VHD, VDI, qcow2, VMDK, and OVF.

13Open Cloud Computing Interface. http://occi-wg.org/.
14Open Grid Forum. http://www.ogf.org/.
15Libvirt. http://libvirt.org/.

6

http://occi-wg.org/
http://www.ogf.org/
http://libvirt.org/

The OpenStack software is architectured with an aim of providing decoupling between
the services constituting the system. The services interact with each other through
the public APIs they provide and using Keystone as a registry for obtaining the
information about the communication endpoints. The OpenStack Compute service, also
referred to as Nova, is built on a shared-nothing messaging-based architecture, which
allows running the services on multiple servers. The services, which compose Nova
communicate via the Advanced Message Queue Protocol (AMQP) using asynchronous
calls to avoid blocking. More detailed information on installation and administration
of OpenStack in given in the official manuals [4], [5]. In the next section we compare
OpenStack with the other major open source Cloud platforms.

3 Comparison of Open Source Cloud Platforms

In this section, we briefly discuss and compare OpenStack with three other major
open source Cloud platforms, namely Eucalyptus, OpenNebula, and CloudStack.

Eucalyptus16 is an open source IaaS Cloud platform developed by Eucalyptus Systems
and released in March 2008 under the GPL v3 license. Eucalyptus is an acronym
for “Elastic Utility Computing Architecture for Linking Your Programs To Useful
Systems”. Prior to version 3.1, Eucalyptus had two editions: open source, and
enterprise, which included extra features and commercial support. As of version 3.1,
both the editions have been merged into a single open source project. In March
2012, Eucalyptus and Amazon Web Services (AWS) announced a partnership aimed
at bringing and maintaining additional API compatibility between the Eucalyptus
platform and AWS, which will enable simpler workload migration and deployment of
hybrid Cloud environments17. The Eucalyptus platform is composed of the following
5 high-level components, each of which is implemented as a standalone web service:

• Cloud Controller : manages the underlying virtualized resources (servers, network,
and storage) and provides a web interface and API compatible with Amazon
EC2.

• Cluster Controller : controls VMs running on multiple physical nodes and man-
ages the virtual networking between VMs, and between VMs and external
users.

• Walrus: implements object storage accessible through an API compatible with
Amazon S3.

• Storage Controller : provides block storage that can be dynamically attached
to VMs, which is managed via an API compatible with Amazon Elastic Block
Storage (EBS).

• Node Controller : controls the life cycle of VMs within a physical node using the
functionality provided by the hypervisor.

16Eucalyptus. http://www.eucalyptus.com/.
17Http://www.eucalyptus.com/news/amazon-web-services-and-eucalyptus-partner.

7

http://www.eucalyptus.com/
http://www.eucalyptus.com/news/amazon-web-services-and-eucalyptus-partner

OpenNebula18 is an open source IaaS Cloud platform originally established as a
research project back in 2005 by Ignacio M. Llorente and Rubén S. Montero. The
software was first publicly released in March 2008 under the Apache 2.0 license. In
March 2010, the authors of OpenNebula founded C12G Labs, an organization aiming
to provide commercial support and services for the OpenNebula software. Currently,
the OpenNebula project is managed by C12G Labs. OpenNebula supports several
standard APIs, such as EC2 Query, OGF OCCI, and vCLoud. OpenNebula provides
the following features and components:

• Users and Groups: OpenNebula supports multiple user accounts and groups,
various authentication and authorization mechanisms, as well as Access Control
Lists (ACL) allowing fine grained permission management.

• Virtualization Subsystem: communicates with the hypervisor installed on a
physical host enabling the management and monitoring of the life cycle of VMs.

• Network Subsystem: manages virtual networking provided to interconnect VMs,
supports VLANs and Open vSwitch.

• Storage Subsystem: supports several types of data stores for storing VM images.

• Clusters: are pools of hosts that share data stores and virtual networks, they can
be used for load balancing, high availability, and high performance computing.

CloudStack19 is an open source IaaS Cloud platform originally developed by Cloud.com.
In May 2010, most of the software was released under the GPL v3 license, while 5%
of the code were kept proprietary. In July 2011, Citrix purchased Cloud.com and in
August 2011 released the remaining code of CloudStack under the GPL v3 license.
In April 2012, Citrix donated CloudStack to the Apache Software Foundation, while
changing the license to Apache 2.0. CloudStack implements the Amazon EC2 and
S3 APIs, as well as the vCloud API, in addition to its own API. CloudStack has a
hierarchical structure, which enables management of multiple physical hosts from a
single interface. The structure includes the following components:

• Availability Zones: represent geographical locations, which are used in the
allocation of VM instances in data storage. An Availability Zone consists of at
least one Pod, and Secondary Storage, which is shared by all Pods in the Zone.

• Pods: are collections of hardware configured to form Clusters. A Pod can contain
one or more Clusters, and a Layer 2 switch architecture, which is shared by all
Clusters in that Pod.

• Clusters: are groups of identical physical hosts running the same hypervisor. A
Cluster has a dedicated Primary Storage device, where the VM instances are
hosted.

18OpenNebula. http://opennebula.org/.
19CloudStack. http://cloudstack.org/.

8

http://opennebula.org/
http://cloudstack.org/

• Primary Storage: is unique to each Cluster and is used to host VM instances.

• Secondary Storage: is used to store VM images and snapshots.

A comparison of the discussed Cloud platforms is summarized in Table 1.

OpenStack Eucalyptus OpenNebula CloudStack
Managed By OpenStack

Foundation
Eucalyptus
Systems

C12G Labs Apache
Software
Foundation

License Apache 2.0 GPL v3 Apache 2.0 Apache 2.0

Initial Release October 2010 May 2010 March 2008 May 2010

OCCI
Compatibility

Yes No Yes No

AWS
Compatibility

Yes Yes Yes Yes

Hypervisors Xen, KVM,
VMware

Xen, KVM,
VMware

Xen, KVM,
VMware

Xen, KVM,
VMware,
Oracle VM

Programming
Language

Python Java, C C, C++,
Ruby, Java

Java

Table 1: Comparison of OpenStack, Eucalyptus, OpenNebula, and CloudStack

4 Existing OpenStack Installation Tools

There are several official OpenStack installation and administration guides [5]. These
are invaluable sources of information about OpenStack; however, the official guides
mainly focus on the configuration in Ubuntu, while the documentation for other Linux
distributions, such as CentOS, is incomplete or missing. In this work, we aim to
close to gap by providing a step-by-step guide to installing OpenStack on CentOS.
Another difference of the current guide from the official documentation is that rather
then describing a general installation procedure, we focus on concrete and tested
steps required to obtain an operational OpenStack installation for our testbed. In
other words, this guide can be considered to be an example of how OpenStack can be
deployed on a real-world multi-node testbed.

One of the existing tools for automated installation of OpenStack is DevStack20.
DevStack is distributed in the form of a single shell script, which installs a complete
OpenStack development environment. The officially supported Linux distributions are
Ubuntu 12.04 (Precise) and Fedora 16. DevStack also comes with guides to installing

20DevStack. http://devstack.org/.

9

http://devstack.org/

OpenStack in a VM, and on real hardware. The guides to installing OpenStack on
hardware include both single node and multi-node installations. One of the drawbacks
of the approach taken by DevStack is that in case of an error during the installation
process, it is required to start installation from the beginning instead of just fixing the
current step.

Another tool for automated installation of OpenStack is dodai-deploy21, which is
described in the OpenStack Compute Administration Manual [4]. dodai-deploy is a
Puppet22 service running on all the nodes and providing a web interface for automated
installation of OpenStack. The service is developed and maintained to be run on
Ubuntu. Several steps are required to install and configure the dodai-deploy service on
the nodes. Once the service is started on the head and compute nodes, it is possible
to install and configure OpenStack using the provided web interface or REST API.

The difference of our approach from both DevStack and dodai-deploy is that instead of
adding an abstraction layer and minimizing the number of steps required to be followed
by the user to obtain an operational OpenStack installation, we aim to explicitly
describe and perform every installation step in the form of a separate shell script.
This allows the user to proceed slowly and customize individual steps when necessary.
The purpose of our approach is not just obtaining an up and running OpenStack
installation, but also learning the steps required to perform the installation from the
ground up and understanding the responsibilities and interaction of the OpenStack
components. Our installation scripts have been developed and tested on CentOS,
which is a widely used server Linux distribution. Another difference of our approach
from both DevStack and dodai-deploy is that we also set up GlusterFS to provide a
distributed shared storage, which enables fault tolerance and efficient live migration of
VM instances.

Red Hat, a platinum member of the OpenStack Foundation, has announced its
commercial offering of OpenStack starting from the Folsom release with the availability
in 201323. From the announcement it appears that the product will be delivered
through the official repositories for Red Hat Enterprise Linux 6.3 or higher, and will
contain Red Hat’s proprietary code providing integration with other Red Hat products,
such as Red Hat Enterprise Virtualization for managing virtualized data centers and
Red Hat Enterprise Linux. This announcement is a solid step to the direction of
adoption of OpenStack in enterprises requiring commercial services and support.

5 Step-by-Step OpenStack Deployment

As mentioned earlier, the aim of this work is to detail the steps required to perform
a complete installation of OpenStack on multiple nodes. We split the installation
process into multiple subsequent logical steps and provide a shell script for each of
the steps. In this section, we explain and discuss every step needed to be followed

21Dodai-deploy. https://github.com/nii-cloud/dodai-deploy.
22Puppet. http://puppetlabs.com/.
23Red Hat OpenStack. http://www.redhat.com/openstack/.

10

https://github.com/nii-cloud/dodai-deploy
http://puppetlabs.com/
http://www.redhat.com/openstack/

to obtain a fully operational OpenStack installation on our testbed consisting of 1
controller and 4 compute nodes. The source code of the shell scripts described in this
paper is released under the Apache 2.0 License and is publicly available online24.

5.1 Hardware Setup

The testbed used for testing the installation scripts consists of the following hardware:

• 1 x Dell Optiplex 745

– Intel(R) Core(TM) 2 CPU (2 cores, 2 threads) 6600 @ 2.40GHz
– 2GB DDR2-667
– Seagate Barracuda 80GB, 7200 RPM SATA II (ST3808110AS)
– Broadcom 5751 NetXtreme Gigabit Controller

• 4 x IBM System x3200 M3

– Intel(R) Xeon(R) CPU (4 cores, 8 threads), X3460 @ 2.80GHz
– 4GB DDR3-1333
– Western Digital 250 GB, 7200 RPM SATA II (WD2502ABYS-23B7A)
– Dual Gigabit Ethernet (2 x Intel 82574L Ethernet Controller)

• 1 x Netgear ProSafe 16-Port 10/100 Desktop Switch FS116

The Dell Optiplex 745 machine has been chosen to serve as a management host running
all the major OpenStack services. The management host is referred to as the controller
further in the text. The 4 IBM System x3200 M3 servers are used as compute hosts,
i.e. for hosting VM instances.

Due to the specifics of our setup, the only one machine connected to the public network
and the Internet is one of the IBM System x3200 M3 servers. This server is refereed to
as the gateway. The gateway is connected to the public network via the eth0 network
interface.

All the machines form a local network connected via the Netgear FS116 network switch.
The compute hosts are connected to the local network through their eth1 network
interfaces. The controller is connected to the local network through its eth0 interface.
To provide the access to the public network and the Internet, the gateway performs
Network Address Translation (NAT) for the hosts from the local network.

24The project repository. https://github.com/beloglazov/openstack-centos-kvm-glusterfs.

11

https://github.com/beloglazov/openstack-centos-kvm-glusterfs

5.2 Organization of the Installation Package

The project contains a number of directories, whose organization is explained in this
section. The config directory includes configuration files, which are used by the
installation scripts and should be modified prior to the installation. The lib directory
contains utility scripts that are shared by the other installation scripts. The doc
directory comprises the source and compiled versions of the documentation.

The remaining directories directly include the step-by-step installation scripts. The
names of these directories have a specific format. The prefix (before the first dash)
is the number denoting the order of execution. For example, the scripts from the
directory with the prefix 01 must be executed first, followed by the scripts from the
directory with the prefix 02, etc. The middle part of a directory name denotes the
purpose of the scripts in this directory. The suffix (after the last dash) specifies the
host, on which the scripts from this directory should be executed. There are 4 possible
values of the target host prefix:

• all – execute the scripts on all the hosts;

• compute – execute the scripts on all the compute hosts;

• controller – execute the scripts on the controller;

• gateway – execute the scripts on the gateway.

For example, the first directory is named 01-network-gateway, which means that
(1) the scripts from this directory must be executed in the first place; (2) the scripts
are supposed to do a network set up; and (3) the scripts must be executed only on
the gateway. The name 02-glusterfs-all means: (1) the scripts from this directory
must be executed after the scripts from 01-network-gateway; (2) the scripts set up
GlusterFS; and (3) the scripts must be executed on all the hosts.

The names of the installation scripts themselves follow a similar convention. The
prefix denotes the order, in which the scripts should be run, while the remaining part
of the name describes the purpose of the script.

5.3 Configuration Files

The lib directory contains configuration files used by the installation scripts. These
configuration files should be modified prior to running the installation scripts. The
configuration files are described below.

configrc: This file contains a number of environmental variables defining various
aspects of OpenStack’s configuration, such as administration and service account
credentials, as well as access points. The file must be “sourced” to export the
variables into the current shell session. The file can be sourced directly by
running: . configrc, or using the scripts described later. A simple test to

12

check whether the variables have been correctly exported is to echo any of the
variables. For example, echo $OS_USERNAME must output admin for the default
configuration.

hosts: This file contains a mapping between the IP addresses of the hosts in the local
network and their host names. We apply the following host name convention: the
compute hosts are named computeX, where X is replaced by the number of the
host. According the described hardware setup, the default configuration defines
4 compute hosts: compute1 (192.168.0.1), compute2 (192.168.0.2), compute3
(192.168.0.3), compute4 (192.168.0.4); and 1 controller (192.168.0.5). As
mentioned above, in our setup one of the compute hosts is connected to the
public network and acts as a gateway. We assign to this host the host name
compute1, and also alias it as gateway.

ntp.conf: This file contains a list of Network Time Protocol (NTP) servers to use by
all the hosts. It is important to set accessible servers, since time synchronization
is important for OpenStack services to interact correctly. By default, this file
defines servers used within the University of Melbourne. It is advised to replace
the default configuration with a list of preferred servers.

It is important to replaced the default configuration defined in the described config-
uration files, since the default configuration is tailored to the specific setup of our
testbed.

5.4 Installation Procedure

5.4.1 CentOS

The installation scripts have been tested with CentOS 6.3, which has been installed on
all the hosts. The CentOS installation mainly follows the standard process described
in detail in the Red Hat Enterprise Linux 6 Installation Guide [6]. The steps of the
installation process that differ from the standard are discussed in this section.

Network Configuration. The simplest way to configure network is during the OS
installation process. As mentioned above, in our setup, the gateway is connected to two
networks: to the public network through the eth0 interface; and to the local network
through the eth1 interface. Since in our setup the public network configuration can
be obtained from a DHCP server, in the configuration of the eth0 interface it is only
required to enable the automatic connection by enabling the “Connect Automatically”
option. We use static configuration for the local network; therefore, eth1 has be
configured manually. Apart from enabling the “Connect Automatically” option, it is
necessary to configure IPv4 by adding an IP address and netmask. According to the
configuration defined in the hosts file described above, we assign 192.168.0.1/24 to
the gateway.

13

One of the differences in the network configuration of the other compute hosts
(compute2, compute3, and compute4) from the gateway is that eth0 should be kept
disabled, as it is unused. The eth1 interface should be enabled by turning on the
“Connect Automatically” option. The IP address and netmask for eth1 should be set
to 192.168.0.X/24, where X is replaced by the compute host number. The gateway for
the compute hosts should be set to 192.168.0.1, which the IP address of the gateway.
The controller is configured similarly to the compute hosts with the only difference
that the configuration should be done for eth0 instead of eth1, since the controller
has only one network interface.

Hard Drive Partitioning. The hard drive partitioning scheme is the same for
all the compute hosts, but differs for the controller. Table 2 shows the partitioning
scheme for the compute hosts. vg_base is a volume group comprising the standard OS
partitions: lv_root, lv_home and lv_swap. vg_gluster is a special volume group
containing a single lv_gluster partition, which is dedicated to serve as a GlusterFS
brick. The lv_gluster logical volume is formatted using the XFS25 file system, as
recommended for GlusterFS bricks.

Device Size (MB) Mount Point / Volume Type
LVM Volume Groups

vg_base 20996

lv_root 10000 / ext4

lv_swap 6000 swap

lv_home 4996 /home ext4

vg_gluster 216972

lv_gluster 216972 /export/gluster xfs

Hard Drives

sda

sda1 500 /boot ext4

sda2 21000 vg_base PV (LVM)

sda3 216974 vg_gluster PV (LVM)

Table 2: The partitioning scheme for the compute hosts

Table 3 shows the partitioning scheme for the controller. It does not include a
vg_gluster volume group since the controller is not going to be a part of the Glus-
terFS volume. However, the scheme includes two new important volume groups:

25XFS. http://en.wikipedia.org/wiki/XFS.

14

http://en.wikipedia.org/wiki/XFS

nova-volumes and vg_images. The nova-volumes volume group is used by Open-
Stack Nova to allocated volumes for VM instances. This volume group is managed by
Nova; therefore, there is not need to create logical volumes manually. The vg_images
volume group and its lv_images logical volume are devoted for storing VM images
by OpenStack Glance. The mount point for lv_images is /var/lib/glance/images,
which is the default directory used by Glance to store VM image files.

Device Size (MB) Mount Point / Volume Type
LVM Volume Groups

nova-volumes 29996

Free 29996

vg_base 16996

lv_root 10000 / ext4

lv_swap 2000 swap

lv_home 4996 /home ext4

vg_images 28788

lv_images 28788 /var/lib/glance/images ext4

Hard Drives

sda

sda1 500 /boot ext4

sda2 17000 vg_base PV (LVM)

sda3 30000 nova-volumes PV (LVM)

sda4 28792 Extended

sda5 28788 vg_images PV (LVM)

Table 3: The partitioning scheme for the controller

5.4.2 Network Gateway

Once CentOS is installed on all the machines, the next step is to configure NAT on
the gateway to enable the Internet access on all the hosts. First, it is necessary to
check whether the Internet is available on the gateway itself. If the Internet is not
available, the problem might be in the configuration of eth0, the network interface
connected to the public network in our setup.

In all the following steps, it is assumed that the user logged in is root. If the Internet

15

is available on the gateway, it is necessary to install the Git26 version control client to
be able to clone the repository containing the installation scripts. This can be done
using yum, the default package manager in CentOS, as follows:

yum install -y git

Next, the repository can be cloned using the following command:

git clone \
https://github.com/beloglazov/openstack-centos-kvm-glusterfs.git

Now, we can continue the installation using the scripts contained in the cloned
Git repository. As described above, the starting point is the directory called
01-network-gateway.

cd openstack-centos-kvm-glusterfs/01-network-gateway

All the scripts described below can be run by executing ./<script name>.sh in the
command line.

(1) 01-iptables-nat.sh

This script flushes all the default iptables rules to open all the ports. This is
acceptable for testing; however, it is not recommended for production environments
due to security concerns. Then, the script sets up NAT using iptables by forwarding
packets from eth1 (the local network interface) through eth0. The last stage is saving
the defined iptables rules and restarting the service.

Flush the iptables rules.
iptables -F
iptables -t nat -F
iptables -t mangle -F

Set up packet forwarding for NAT
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE
iptables -A FORWARD -i eth1 -j ACCEPT
iptables -A FORWARD -o eth1 -j ACCEPT

Save the iptables configuration into a file and restart iptables
service iptables save
service iptables restart

26Git. http://git-scm.com/.

16

http://git-scm.com/

(2) 02-ip-forward.sh

By default, IP packet forwarding is disabled in CentOS; therefore, it is necessary to
enable it by modifying the /etc/sysctl.conf configuration file. This is done by the
02-ip-forward.sh script as follows:

Enable IP packet forwarding
sed -i ’s/net.ipv4.ip_forward = 0/net.ipv4.ip_forward = 1/g’ \

/etc/sysctl.conf

Restart the network service
service network restart

(3) 03-copy-hosts.sh

This script copies the hosts file from the config directory to /etc locally, as well
to all the other hosts: the remaining compute hosts and the controller. The hosts
file defines a mapping between the IP addresses of the hosts and host names. For
convenience, prior to copying you may use the ssh-copy-id program to copy the
public key to the other hosts for password-less SSH connections. Once the hosts file
is copied to all the hosts, they can be accessed by using their respective host names
instead of the IP addresses.

Copy the hosts file into the local configuration
cp ../config/hosts /etc/

Copy the hosts file to the other nodes.
scp ../config/hosts root@compute2:/etc/
scp ../config/hosts root@compute3:/etc/
scp ../config/hosts root@compute4:/etc/
scp ../config/hosts root@controller:/etc/

From this point, all the installation steps on any host can be performed remotely over
SSH.

5.4.3 GlusterFS Distributed Replicated Storage

In this section, we describe how to set up distributed replicated storage using GlusterFS.

02-glusterfs-all (all nodes). The steps discussed in this section need to be run on
all the hosts. The easiest way to manage multi-node installation is to SSH into all
the hosts from another machine using separate terminals. This way the hosts can be
conveniently managed from a single machine simultaneously. Before applying further
installation scripts, it is necessary to run the following commands:

17

Update the OS packages
yum update -y

Install Git
yum install -y git

Clone the repository
git clone \

https://github.com/beloglazov/openstack-centos-kvm-glusterfs.git

It is optional but might be useful to install other programs on all the hosts, such as
man, nano, or emacs for reading manuals and editing files.

(4) 01-iptables-flush.sh

This script flushes all the default iptables rules to allow connections through all the
ports. As mentioned above, this is insecure and not recommended for production
environments. For production it is recommended to open only the required ports.

Flush the iptables rules.
iptables -F

Save the configuration and restart iptables
service iptables save
service iptables restart

(5) 02-selinux-permissive.sh

This script switches SELinux27 into the permissive mode. By default, SELinux blocks
certain operations, such as VM migrations. Switching SELinux into the permissive
mode is not recommended for production environments, but is acceptable for testing
purposes.

Set SELinux into the permissive mode
sed -i ’s/SELINUX=enforcing/SELINUX=permissive/g’ /etc/selinux/config
echo 0 > /selinux/enforce

(6) 03-glusterfs-install.sh

This script installs GlusterFS services and their dependencies.
27SELinux. http://en.wikipedia.org/wiki/Security-Enhanced_Linux.

18

http://en.wikipedia.org/wiki/Security-Enhanced_Linux

Install GlusterFS and its dependencies
yum -y install \

openssh-server wget fuse fuse-libs openib libibverbs \
http://download.gluster.org/pub/gluster/glusterfs/LATEST/\

CentOS/glusterfs-3.3.0-1.el6.x86_64.rpm \
http://download.gluster.org/pub/gluster/glusterfs/LATEST/\

CentOS/glusterfs-fuse-3.3.0-1.el6.x86_64.rpm \
http://download.gluster.org/pub/gluster/glusterfs/LATEST/\

CentOS/glusterfs-server-3.3.0-1.el6.x86_64.rpm

(7) 04-glusterfs-start.sh

This script starts the GlusterFS service, and sets the service to start during the system
start up.

Start the GlusterFS service
service glusterd restart
chkconfig glusterd on

03-glusterfs-controller (controller). The scripts described in this section need
to be run only on the controller.

(8) 01-glusterfs-probe.sh

This script probes the compute hosts to add them to a GlusterFS cluster.

Probe GlusterFS peer hosts
gluster peer probe compute1
gluster peer probe compute2
gluster peer probe compute3
gluster peer probe compute4

(9) 02-glusterfs-create-volume.sh

This scripts creates a GlusterFS volume out of the bricks exported by the compute
hosts mounted to /export/gluster for storing VM instances. The created GlusterFS
volume is replicated across all the 4 compute hosts. Such replication provides fault
tolerance, as if any of the compute hosts fail, the VM instance data will be available
from the remaining replicas. Compared to a Network File System (NFS) exported
by a single server, the complete replication provided by GlusterFS improves the read
performance, since all the read operations are local. This is important to enable
efficient live migration of VMs.

19

Create a GlusterFS volume replicated over 4 gluster hosts
gluster volume create vm-instances replica 4 \

compute1:/export/gluster compute2:/export/gluster \
compute3:/export/gluster compute4:/export/gluster

Start the created volume
gluster volume start vm-instances

04-glusterfs-all (all nodes). The script described in this section needs to be run
on all the hosts.

(10) 01-glusterfs-mount.sh

This scripts adds a line to the /etc/fstab configuration file to automatically mount
the GlusterFS volume during the system start up to the /var/lib/nova/instances
directory. The /var/lib/nova/instances directory is the default location where
OpenStack Nova stores the VM instance related data. This directory must be mounted
and shared by the controller and all the compute hosts to enable live migration of
VMs. Even though the controller does not manage the data of VM instances, it is
still necessary for it to have the access to the VM instance data directory to enable
live migration. The reason is that the controller coordinates live migration by writing
some temporary data to the shared directory. The mount -a command re-mounts
everything from the config file after it has been modified.

Mount the GlusterFS volume
mkdir -p /var/lib/nova/instances
echo "localhost:/vm-instances /var/lib/nova/instances \

glusterfs defaults 0 0" >> /etc/fstab
mount -a

5.4.4 KVM

The scripts included in the 05-kvm-compute directory need to be run on the compute
hosts. KVM is not required on the controller, since it is not going to be used to host
VM instances.

Prior to enabling KVM on a machine, it is important to make sure that the machine
uses either Intel VT or AMD-V chipsets that support hardware-assisted virtualization.
This feature might be disabled in the Basic Input Output System (BIOS); therefore,
it is necessary to verify that it is enabled. To check whether hardware-assisted
virtualization is supported by the hardware, the following Linux command can be
used:

grep -E ’vmx|svm’ /proc/cpuinfo

20

If the command returns any output, it means that the system supports hardware-
assisted virtualization. The vmx processor feature flag represents an Intel VT chipset,
whereas the svm flag represents AMD-V. Depending on the flag returned, you need to
modify the 02-kvm-modprobe.sh script.

(11) 01-kvm-install.sh

This script installs KVM and the related tools.

Install KVM and the related tools
yum -y install kvm qemu-kvm qemu-kvm-tools

(12) 02-kvm-modprobe.sh

This script enables KVM in the OS. If the grep -E ’vmx|svm’ /proc/cpuinfo com-
mand described above returned vmx, there is no need to modify this script, as it enables
the Intel KVM module by default. If the command returned svm, it is necessary to
comment the modprobe kvm-intel line and uncomment the modprobe kvm-amd line.

Create a script for enabling the KVM kernel module
echo "
modprobe kvm

Uncomment this line if the host has an AMD CPU
#modprobe kvm-amd

Uncomment this line if the host has an Intel CPU
modprobe kvm-intel
" > /etc/sysconfig/modules/kvm.modules

chmod +x /etc/sysconfig/modules/kvm.modules

Enable KVM
/etc/sysconfig/modules/kvm.modules

(13) 03-libvirt-install.sh

This script installs Libvirt28, its dependencies and the related tools. Libvirt provides
an abstraction and a common Application Programming Interface (API) over various
hypervisors. It is used by OpenStack to provide support for multiple hypervisors
including KVM and Xen. After the installation, the script starts the messagebus and
avahi-daemon services, which are prerequisites of Libvirt.

28Libvirt. http://libvirt.org/.

21

http://libvirt.org/

Install Libvirt and its dependencies
yum -y install libvirt libvirt-python python-virtinst avahi dmidecode

Start the services required by Libvirt
service messagebus restart
service avahi-daemon restart

Start the service during the system start up
chkconfig messagebus on
chkconfig avahi-daemon on

(14) 04-libvirt-config.sh

This script modifies the Libvirt configuration to enable communication over TCP
without authentication. This is required by OpenStack to enable live migration of VM
instances.

Enable the communication with Libvirt
over TCP without authentication.
sed -i ’s/#listen_tls = 0/listen_tls = 0/g’ \

/etc/libvirt/libvirtd.conf
sed -i ’s/#listen_tcp = 1/listen_tcp = 1/g’ \

/etc/libvirt/libvirtd.conf
sed -i ’s/#auth_tcp = "sasl"/auth_tcp = "none"/g’ \

/etc/libvirt/libvirtd.conf
sed -i ’s/#LIBVIRTD_ARGS="--listen"/LIBVIRTD_ARGS="--listen"/g’ \

/etc/sysconfig/libvirtd

(15) 05-libvirt-start.sh

This script starts the libvirtd service and sets it to automatically start during the
system start up.

Start the Libvirt service
service libvirtd restart
chkconfig libvirtd on

5.4.5 OpenStack

This section contains a few subsection describing different phases of OpenStack
installation.

22

06-openstack-all (all nodes). The scripts described in this section need to be
executed on all the hosts.

(16) 01-epel-add-repo.sh

This scripts adds the Extra Packages for Enterprise Linux29 (EPEL) repository, which
contains the OpenStack related packages.

Add the EPEL repo: http://fedoraproject.org/wiki/EPEL
yum install -y http://dl.fedoraproject.org/pub/epel/6/i386/\

epel-release-6-7.noarch.rpm

(17) 02-ntp-install.sh

This script install the NTP service, which is required to automatically synchronize the
time with external NTP servers.

Install NTP
yum install -y ntp

(18) 03-ntp-config.sh

This script replaces the default servers specified in the /etc/ntp.conf configuration
file with the servers specified in the config/ntp.conf file described above. If the
default set of servers is satisfactory, then the execution of this script is not required.

Fetch the NTP servers specified in ../config/ntp.conf
SERVER1=‘cat ../config/ntp.conf | sed ’1!d;q’‘
SERVER2=‘cat ../config/ntp.conf | sed ’2!d;q’‘
SERVER3=‘cat ../config/ntp.conf | sed ’3!d;q’‘

Replace the default NTP servers with the above
sed -i "s/server 0.*pool.ntp.org/$SERVER1/g" /etc/ntp.conf
sed -i "s/server 1.*pool.ntp.org/$SERVER2/g" /etc/ntp.conf
sed -i "s/server 2.*pool.ntp.org/$SERVER3/g" /etc/ntp.conf

(19) 04-ntp-start.sh

This script starts the ntpdate service and sets it to start during the system start up.
Upon the start, the ntpdate service synchronizes the time with the servers specified
in the /etc/ntp.conf configuration file.

Start the NTP service
service ntpdate restart
chkconfig ntpdate on

29The EPEL repository. http://fedoraproject.org/wiki/EPEL.

23

http://fedoraproject.org/wiki/EPEL

07-openstack-controller (controller). The scripts described in this section need
to be run only on the controller host.

(20) 01-source-configrc.sh

This scripts is mainly used to remind of the necessity to “source” the configrc file
prior to continuing, since some scripts in this directory use the environmental variable
defined in configrc. To source the file, it is necessary to run the following command:
. 01-source-configrc.sh.

echo "To make the environmental variables available \
in the current session, run: "

echo ". 01-source-configrc.sh"

Export the variables defined in ../config/configrc
. ../config/configrc

(21) 02-mysql-install.sh

This script installs the MySQL server, which is required to host the databases used by
the OpenStack services.

Install the MySQL server
yum install -y mysql mysql-server

(22) 03-mysql-start.sh

This script start the MySQL service and initializes the password of the root MySQL
user using a variable from the configrc file called $MYSQL_ROOT_PASSWORD.

Start the MySQL service
service mysqld start
chkconfig mysqld on

Initialize the MySQL root password
mysqladmin -u root password $MYSQL_ROOT_PASSWORD

echo ""
echo "The MySQL root password has been set \

to the value of $MYSQL_ROOT_PASSWORD: \"$MYSQL_ROOT_PASSWORD\""

(23) 04-keystone-install.sh

24

This script installs Keystone - the OpenStack identity management service, and other
OpenStack command line utilities.

Install OpenStack utils and Keystone, the identity management service
yum install -y openstack-utils openstack-keystone

(24) 05-keystone-create-db.sh

This script creates a MySQL database for Keystone called keystone, which is used to
store various identity data. The script also creates a keystone user and grants the
user with full permissions to the keystone database.

Create a database for Keystone
../lib/mysqlq.sh "CREATE DATABASE keystone;"

Create a keystone user and grant all privileges
to the keystone database
../lib/mysqlq.sh "GRANT ALL ON keystone.* TO ’keystone’@’controller’ \

IDENTIFIED BY ’$KEYSTONE_MYSQL_PASSWORD’;"

(25) 06-keystone-generate-admin-token.sh

Keystone allows two types of authentication for administrative action like creating
users, tenants, etc:

1. Using an admin token and admin_port (35357), e.g.:

keystone \
--token=<admin token> \
--endpoint=http://controller:35357/v2.0 user-list

2. Using an admin user and public_port (5000), e.g.:

keystone \
--os_username=admin \
--os_tenant_name=admin \
--os_password=<password> \
--os_auth_url=http://controller:5000/v2.0 user-list

Services, such as Glance and Nova, can also authenticate in Keystone using one of
two ways. One way is to share the admin token among the services and authenticate
using the token. However, it is also possible to use special users created in Keystone
for each service. By default, these users are nova, glance, etc. The service users are
assigned to the service tenant and admin role in that tenant.

Here is an example of the password-based authenication for nova:

25

nova \
--os_username=nova \
--os_password=<password> \
--os_tenant_name=service \
--os_auth_url=http://controller:5000/v2.0 list

One of two sets of authentication parameters is required to be specified in
/etc/nova/api-paste.ini. The first option is to set up the token-based authentica-
tion, like the following:

auth_host = controller
auth_protocol = http
admin_token = <admin token>

The second option is to set up the password-based authentication, as follows:

auth_host = controller
auth_protocol = http
admin_tenant_name = service
admin_user = nova
admin_password = <password>

The password-based authentication might be preferable, since it uses Keystone’s
database backend to store user credentials. Therefore, it is possible to update user
credentials, for example, using Keystone’s command line tools without the necessity
to re-generate the admin token and update the configuration files.

Even though, the user name and password are specified in the config file, it is still
necessary to provide these data when using the command line tools. One way to do
this is to directly provide the credentials in the form of command line arguments, as
shown above. Another approach, which we apply in this work, is to set corresponding
environmental variables that will be automatically used by the command line tools.

The 06-keystone-generate-admin-token.sh script generates a random token used
to authorize the Keystone admin account. The generated token is stored in the
./keystone-admin-token file.

Generate an admin token for Keystone and save it into
./keystone-admin-token
openssl rand -hex 10 > keystone-admin-token

(26) 07-keystone-config.sh

This script modifies the configuration file of Keystone, /etc/keystone/keystone.conf.
It sets the generated admin token and the MySQL connection configuration using the
variables defined in configrc.

26

Set the generated admin token in the Keystone configuration
openstack-config --set /etc/keystone/keystone.conf DEFAULT \

admin_token ‘cat keystone-admin-token‘

Set the connection to the MySQL server
openstack-config --set /etc/keystone/keystone.conf sql connection \

mysql://keystone:$KEYSTONE_MYSQL_PASSWORD@controller/keystone

(27) 08-keystone-init-db.sh

This script initializes the keystone database using the keystone-manage command
line tool. The executed command creates tables in the database.

Initialize the database for Keystone
keystone-manage db_sync

(28) 09-keystone-permissions.sh

This script sets restrictive permissions (640) on the Keystone configuration file, since it
contains the MySQL account credentials and the admin token. Then, the scripts sets
the ownership of the Keystone related directories to the keystone user and keystone
group.

Set restrictive permissions on the Keystone config file
chmod 640 /etc/keystone/keystone.conf

Set the ownership for the Keystone related directories
chown -R keystone:keystone /var/log/keystone
chown -R keystone:keystone /var/lib/keystone

(29) 10-keystone-start.sh

This script starts the Keystone service and sets it to automatically start during the
system start up.

Start the Keystone service
service openstack-keystone restart
chkconfig openstack-keystone on

(30) 11-keystone-create-users.sh

27

The purpose of this script is to create user accounts, roles and tenants in Keystone for
the admin user and service accounts for each OpenStack service: Keystone, Glance,
and Nova. Since the process is complicated when done manually (it is necessary
to define relations between database records), we use the keystone-init project30 to
automate the process. The keystone-init project allows one to create a configuration
file in the “YAML Ain’t Markup Language”31 (YAML) data format defining the
required OpenStack user accounts. Then, according the defined configuration, the
required database records are automatically created.

Our script first installs a dependency of keystone-init and clones the project’s repository.
Then, the script modifies the default configuration file provided with the keystone-init
project by populating it with the values defined by the environmental variables defined
in configrc. The last step of the script is to invoke keystone-init. The script does not
remove the keystone-init repository to allow one to browse the generated configuration
file, e.g. to check the correctness. When the repository is not required anymore, it can
be removed by executing rm -rf keystone-init.

Install PyYAML, a YAML Python library
yum install -y PyYAML

Clone a repository with Keystone initialization scripts
git clone https://github.com/nimbis/keystone-init.git

Replace the default configuration with the values defined be the
environmental variables in configrc
sed -i "s/192.168.206.130/controller/g" \

keystone-init/config.yaml
sed -i "s/012345SECRET99TOKEN012345/‘cat keystone-admin-token‘/g" \

keystone-init/config.yaml
sed -i "s/name: openstackDemo/name: $OS_TENANT_NAME/g" \

keystone-init/config.yaml
sed -i "s/name: adminUser/name: $OS_USERNAME/g" \

keystone-init/config.yaml
sed -i "s/password: secretword/password: $OS_PASSWORD/g" \

keystone-init/config.yaml
sed -i "s/name: glance/name: $GLANCE_SERVICE_USERNAME/g" \

keystone-init/config.yaml
sed -i "s/password: glance/password: $GLANCE_SERVICE_PASSWORD/g" \

keystone-init/config.yaml
sed -i "s/name: nova/name: $NOVA_SERVICE_USERNAME/g" \

keystone-init/config.yaml
sed -i "s/password: nova/password: $NOVA_SERVICE_PASSWORD/g" \

keystone-init/config.yaml
sed -i "s/RegionOne/$OS_REGION_NAME/g" \

30The keystone-init project. https://github.com/nimbis/keystone-init.
31YAML. http://en.wikipedia.org/wiki/YAML.

28

https://github.com/nimbis/keystone-init
http://en.wikipedia.org/wiki/YAML

keystone-init/config.yaml

Run the Keystone initialization script
./keystone-init/keystone-init.py ./keystone-init/config.yaml

echo ""
echo "The applied config file is keystone-init/config.yaml"
echo "You may do ’rm -rf keystone-init’ to remove \

the no more needed keystone-init directory"

(31) 12-glance-install.sh

This script install Glance – the OpenStack VM image management service.

Install OpenStack Glance, an image management service
yum install -y openstack-glance

(32) 13-glance-create-db.sh

This script creates a MySQL database for Glance called glance, which is used to store
VM image metadata. The script also creates a glance user and grants full permissions
to the glance database to this user.

Create a database for Glance
../lib/mysqlq.sh "CREATE DATABASE glance;"

Create a glance user and grant all privileges
to the glance database
../lib/mysqlq.sh "GRANT ALL ON glance.* TO ’glance’@’controller’ \

IDENTIFIED BY ’$GLANCE_MYSQL_PASSWORD’;"

(33) 14-glance-config.sh

This scripts modifies the configuration files of the Glance services, which include
the API and Registry services. Apart from various credentials, the script also sets
Keystone as the identity management service used by Glance.

Make Glance API use Keystone as the identity management service
openstack-config --set /etc/glance/glance-api.conf \

paste_deploy flavor keystone

Set Glance API user credentials
openstack-config --set /etc/glance/glance-api-paste.ini \

filter:authtoken admin_tenant_name $GLANCE_SERVICE_TENANT

29

openstack-config --set /etc/glance/glance-api-paste.ini \
filter:authtoken admin_user $GLANCE_SERVICE_USERNAME

openstack-config --set /etc/glance/glance-api-paste.ini \
filter:authtoken admin_password $GLANCE_SERVICE_PASSWORD

Set Glance Cache user credentials
openstack-config --set /etc/glance/glance-cache.conf \

DEFAULT admin_tenant_name $GLANCE_SERVICE_TENANT
openstack-config --set /etc/glance/glance-cache.conf \

DEFAULT admin_user $GLANCE_SERVICE_USERNAME
openstack-config --set /etc/glance/glance-cache.conf \

DEFAULT admin_password $GLANCE_SERVICE_PASSWORD

Set Glance Registry to use Keystone
as the identity management service
openstack-config --set /etc/glance/glance-registry.conf \

paste_deploy flavor keystone

Set the connection to the MySQL server
openstack-config --set /etc/glance/glance-registry.conf \

DEFAULT sql_connection \
mysql://glance:$GLANCE_MYSQL_PASSWORD@controller/glance

Set Glance Registry user credentials
openstack-config --set /etc/glance/glance-registry-paste.ini \

filter:authtoken admin_tenant_name $GLANCE_SERVICE_TENANT
openstack-config --set /etc/glance/glance-registry-paste.ini \

filter:authtoken admin_user $GLANCE_SERVICE_USERNAME
openstack-config --set /etc/glance/glance-registry-paste.ini \

filter:authtoken admin_password $GLANCE_SERVICE_PASSWORD

(34) 15-glance-init-db.sh

This scripts initializes the glance database using the glance-manage command line
tool.

Initialize the database for Glance
glance-manage db_sync

(35) 16-glance-permissions.sh

This scripts sets restrictive permissions (640) on the Glance configuration files, since
they contain sensitive information. The script also set the ownership of the Glance
related directories to the glance user and glance group.

30

Set restrictive permissions for the Glance config files
chmod 640 /etc/glance/*.conf
chmod 640 /etc/glance/*.ini

Set the ownership for the Glance related directories
chown -R glance:glance /var/log/glance
chown -R glance:glance /var/lib/glance

(36) 17-glance-start.sh

This script starts the Glance services: API and Registry. The script sets the services
to automatically start during the system start up.

Start the Glance Registry and API services
service openstack-glance-registry restart
service openstack-glance-api restart

chkconfig openstack-glance-registry on
chkconfig openstack-glance-api on

(37) 18-add-cirros.sh

This script downloads the CirrOS VM image32 and imports it into Glance. This image
contains a pre-installed CirrOS, a Tiny OS specialized for running in a Cloud. The
image is very simplistic: its size is just 9.4 MB. However, it is sufficient for testing
OpenStack.

Download the CirrOS VM image
mkdir /tmp/images
cd /tmp/images
wget https://launchpad.net/cirros/trunk/0.3.0/+download/\

cirros-0.3.0-x86_64-disk.img

Add the downloaded image to Glance
glance add name="cirros-0.3.0-x86_64" is_public=true \

disk_format=qcow2 container_format=bare \
< cirros-0.3.0-x86_64-disk.img

Remove the temporary directory
rm -rf /tmp/images

(38) 19-add-ubuntu.sh

32CirrOS. https://launchpad.net/cirros/.

31

https://launchpad.net/cirros/

This script downloads the Ubuntu Cloud Image33 and imports it into Glance. This
is a VM image with a pre-installed version of Ubuntu that is customized by Ubuntu
engineering to run on Cloud platforms such as Openstack, Amazon EC2, and LXC.

Download an Ubuntu Cloud image
mkdir /tmp/images
cd /tmp/images
wget http://uec-images.ubuntu.com/precise/current/\

precise-server-cloudimg-amd64-disk1.img

Add the downloaded image to Glance
glance add name="ubuntu" is_public=true disk_format=qcow2 \

container_format=bare < precise-server-cloudimg-amd64-disk1.img

Remove the temporary directory
rm -rf /tmp/images

(39) 20-nova-install.sh

This script installs Nova – the OpenStack compute service, as well as the Qpid
AMQP message broker. The message broker is required by the OpenStack services to
communicate with each other.

Install OpenStack Nova (compute service)
and the Qpid AMQP message broker
yum install -y openstack-nova* qpid-cpp-server

(40) 21-nova-create-db.sh

This script creates a MySQL database for Nova called nova, which is used to store
VM instance metadata. The script also creates a nova user and grants full permissions
to the nova database to this user. The script also enables the access to the database
from hosts other than controller.

Create a database for Nova
../lib/mysqlq.sh "CREATE DATABASE nova;"

Create a nova user and grant all privileges
to the nova database
../lib/mysqlq.sh "GRANT ALL ON nova.* TO ’nova’@’controller’ \

IDENTIFIED BY ’$NOVA_MYSQL_PASSWORD’;"

The following is need to allow access
33Ubuntu Cloud Images. http://uec-images.ubuntu.com/.

32

http://uec-images.ubuntu.com/

from Nova services running on other hosts
../lib/mysqlq.sh "GRANT ALL ON nova.* TO ’nova’@’%’ \

IDENTIFIED BY ’$NOVA_MYSQL_PASSWORD’;"

(41) 22-nova-permissions.sh

This script sets restrictive permissions on the Nova configuration file, since it contains
sensitive information, such as user credentials. The script also sets the ownership of
the Nova related directories to the nova group.

Set restrictive permissions for the Nova config file
chmod 640 /etc/nova/nova.conf

Set the ownership for the Nova related directories
chown -R root:nova /etc/nova
chown -R nova:nova /var/lib/nova

(42) 23-nova-config.sh

The /etc/nova/nova.conf configuration file should be present on all the compute
hosts running Nova Compute, as well as on the controller, which runs the other Nova
services. Moreover, the content of the configuration file should be the same on the
controller and compute hosts. Therefore, a script that modifies the Nova configuration
is placed in the lib directory and is shared by the corresponding installation scripts of
the controller and compute hosts. The 23-nova-config.sh script invokes the Nova
configuration script provided in the lib directory.

Run the Nova configuration script
defined in ../lib/nova-config.sh
../lib/nova-config.sh

The content of the nova-config.sh script is given below:

This is a Nova configuration shared
by the compute hosts, gateway and controller

Enable verbose output
openstack-config --set /etc/nova/nova.conf \

DEFAULT verbose True

Set the connection to the MySQL server
openstack-config --set /etc/nova/nova.conf \

DEFAULT sql_connection \
mysql://nova:$NOVA_MYSQL_PASSWORD@controller/nova

33

Make Nova use Keystone as the identity management service
openstack-config --set /etc/nova/nova.conf \

DEFAULT auth_strategy keystone

Set the host name of the Qpid AMQP message broker
openstack-config --set /etc/nova/nova.conf \

DEFAULT qpid_hostname controller

Set Nova user credentials
openstack-config --set /etc/nova/api-paste.ini \

filter:authtoken admin_tenant_name $NOVA_SERVICE_TENANT
openstack-config --set /etc/nova/api-paste.ini \

filter:authtoken admin_user $NOVA_SERVICE_USERNAME
openstack-config --set /etc/nova/api-paste.ini \

filter:authtoken admin_password $NOVA_SERVICE_PASSWORD
openstack-config --set /etc/nova/api-paste.ini \

filter:authtoken auth_uri $NOVA_OS_AUTH_URL

Set the network configuration
openstack-config --set /etc/nova/nova.conf \

DEFAULT network_host compute1
openstack-config --set /etc/nova/nova.conf \

DEFAULT fixed_range 10.0.0.0/24
openstack-config --set /etc/nova/nova.conf \

DEFAULT flat_interface eth1
openstack-config --set /etc/nova/nova.conf \

DEFAULT flat_network_bridge br100
openstack-config --set /etc/nova/nova.conf \

DEFAULT public_interface eth1

Set the Glance host name
openstack-config --set /etc/nova/nova.conf \

DEFAULT glance_host controller

Set the VNC configuration
openstack-config --set /etc/nova/nova.conf \

DEFAULT vncserver_listen 0.0.0.0
openstack-config --set /etc/nova/nova.conf \

DEFAULT vncserver_proxyclient_address controller

This is the host accessible from outside,
where novncproxy is running on
openstack-config --set /etc/nova/nova.conf \

DEFAULT novncproxy_base_url \
http://$PUBLIC_IP_ADDRESS:6080/vnc_auto.html

34

This is the host accessible from outside,
where xvpvncproxy is running on
openstack-config --set /etc/nova/nova.conf \

DEFAULT xvpvncproxy_base_url \
http://$PUBLIC_IP_ADDRESS:6081/console

Set the host name of the metadata service
openstack-config --set /etc/nova/nova.conf \

DEFAULT metadata_host $METADATA_HOST

Apart from user credentials, the script configures a few other important options:

• the identity management service – Keystone;

• the Qpid server host name – controller;

• the host running the Nova network service – compute1 (i.e. gateway);

• the network used for VMs – 10.0.0.0/24;

• the network interface used to bridge VMs to – eth1;

• the Linux bridge used by VMs – br100;

• the public network interface – eth1;

• the Glance service host name – controller;

• the VNC server host name – controller;

• the IP address of the host running VNC proxies (they must be run on the
host that can be accessed from outside; in our setup it is the gateway) –
$PUBLIC_IP_ADDRESS;

• the Nova metadata service host name – controller.

(43) 24-nova-init-db.sh

This scripts initializes the nova database using the nova-manage command line tool.

Initialize the database for Nova
nova-manage db sync

(44) 25-nova-start.sh

This script starts various Nova services, as well as their dependencies: the Qpid AMQP
message broker, and iSCSI target daemon used by the nova-volume service.

35

Start the Qpid AMQP message broker
service qpidd restart

iSCSI target daemon for nova-volume
service tgtd restart

Start OpenStack Nova services
service openstack-nova-api restart
service openstack-nova-cert restart
service openstack-nova-consoleauth restart
service openstack-nova-direct-api restart
service openstack-nova-metadata-api restart
service openstack-nova-scheduler restart
service openstack-nova-volume restart

Make the service start on the system startup
chkconfig qpidd on
chkconfig tgtd on
chkconfig openstack-nova-api on
chkconfig openstack-nova-cert on
chkconfig openstack-nova-consoleauth on
chkconfig openstack-nova-direct-api on
chkconfig openstack-nova-metadata-api on
chkconfig openstack-nova-scheduler on
chkconfig openstack-nova-volume on

08-openstack-compute (compute nodes). The scripts described in this section
should be run on the compute hosts.

(45) 01-source-configrc.sh

This scripts is mainly used to remind of the necessity to “source” the configrc file
prior to continuing, since some scripts in this directory use the environmental variable
defined in configrc. To source the file, it is necessary to run the following command:
. 01-source-configrc.sh.

echo "To make the environmental variables available \
in the current session, run: "

echo ". 01-source-configrc.sh"

Export the variables defined in ../config/configrc
. ../config/configrc

(46) 02-install-nova.sh

36

This script installs OpenStack Nova and OpenStack utilities.

Install OpenStack Nova and utils
yum install -y openstack-nova* openstack-utils

(47) 03-nova-permissions.sh

This script sets restrictive permissions (640) on the Nova configuration file, since it
contains sensitive information, such as user credentials. Then, the script sets the
ownership on the Nova and Libvirt related directories to the nova user and nova group.
The script also sets the user and group used by the Quick EMUlator34 (QEMU) service
to nova. This is required since a number of directories need to accessed by both Nova
using the nova user and nova group, and QEMU.

Set restrictive permissions for the Nova config file
chmod 640 /etc/nova/nova.conf

Set the ownership for the Nova related directories
chown -R root:nova /etc/nova
chown -R nova:nova /var/lib/nova
chown -R nova:nova /var/cache/libvirt
chown -R nova:nova /var/run/libvirt
chown -R nova:nova /var/lib/libvirt

Make Qemu run under the nova user and group
sed -i ’s/#user = "root"/user = "nova"/g’ /etc/libvirt/qemu.conf
sed -i ’s/#group = "root"/group = "nova"/g’ /etc/libvirt/qemu.conf

(48) 04-nova-config.sh

This scripts invokes the Nova configuration script provided in the lib directory, which
has been detailed above.

Run the Nova configuration script
defined in ../lib/nova-config.sh
../lib/nova-config.sh

(49) 05-nova-compute-start.sh

First, this script restarts the Libvirt service since its configuration has been modified.
Then, the script starts Nova compute service and sets it to automatically start during
the system start up.

34QEMU. http://en.wikipedia.org/wiki/QEMU.

37

http://en.wikipedia.org/wiki/QEMU

Start the Libvirt and Nova services
service libvirtd restart
service openstack-nova-compute restart
chkconfig openstack-nova-compute on

09-openstack-gateway (network gateway). The scripts described in this section
need to be run only on the gateway.

Nova supports three network configuration modes:

1. Flat Mode: public IP addresses from a specified range are assigned and injected
into VM instances on launch. This only works on Linux systems that keep their
network configuration in /etc/network/interfaces. To enable this mode, the
following option should be specified in nova.conf:

network_manager=nova.network.manager.FlatManager

2. Flat DHCP Mode: Nova runs a Dnsmasq35 server listening to a created network
bridge that assigns public IP addresses to VM instances. This is the mode we use
in this work. There must be only one host running the openstack-nova-network
service. The network_host option in nova.conf specifies which host the
openstack-nova-network service is running on. The network bridge name
is specified using the flat_network_bridge option. To enable this mode, the
following option should be specified in nova.conf:

network_manager=nova.network.manager.FlatDHCPManager

3. VLAN Mode: VM instances are assigned private IP addresses from networks
created for each tenant / project. Instances are accessed through a special VPN
VM instance. To enable this mode, the following option should be specified in
nova.conf:

network_manager=nova.network.manager.VlanManager

Nova runs a metadata service on http://169.254.169.254 that is queried by VM
instances to obtain SSH keys and other user data. The openstack-nova-network
service automatically configures iptables to NAT the port 80 of 169.254.169.254
to the IP address specified in the metadata_host option and the port speci-
fied in the metadata_port option configured in nova.conf (the defaults are
the IP address of the openstack-nova-network service and 8775). If the
openstack-nova-metadata-api and openstack-nova-network services are running
on different hosts, the metadata_host option should point to the IP address of
openstack-nova-metadata-api.

(50) 01-source-configrc.sh

35Dnsmasq. http://en.wikipedia.org/wiki/Dnsmasq.

38

http://en.wikipedia.org/wiki/Dnsmasq

This scripts is mainly used to remind of the necessity to “source” the configrc file
prior to continuing, since some scripts in this directory use the environmental variable
defined in configrc. To source the file, it is necessary to run the following command:
. 01-source-configrc.sh.

echo "To make the environmental variables available \
in the current session, run: "

echo ". 01-source-configrc.sh"

Export the variables defined in ../config/configrc
. ../config/configrc

(51) 02-nova-start.sh

It is assumed that the gateway host is one of the compute hosts; therefore,
the OpenStack compute service has already been configured and is run-
ning. This scripts starts 3 additional Nova services that are specific to the
gateway host: openstack-nova-network, openstack-nova-novncproxy, and
openstack-nova-xvpvncproxy. The openstack-nova-network service is responsible
for bridging VM instances into the physical network, and configuring the Dnsmasq
service for assigning IP addresses to the VMs. The VNC proxy services enable VNC
connections to VM instances from the outside network; therefore, they must be run
on a machine that has access to the public network, which is the gateway in our case.

Start the Libvirt and Nova services
(network, compute and VNC proxies)
service libvirtd restart
service openstack-nova-network restart
service openstack-nova-compute restart
service openstack-nova-novncproxy restart
service openstack-nova-xvpvncproxy restart

Make the service start on the system start up
chkconfig openstack-nova-network on
chkconfig openstack-nova-compute on
chkconfig openstack-nova-novncproxy on
chkconfig openstack-nova-xvpvncproxy on

(52) 03-nova-network-create.sh

This service creates a Nova network 10.0.0.0/24, which is used to allocate IP addresses
from by Dnsmasq to VM instances. The created network is configured to use the
br100 Linux bridge to connect VM instances to the physical network.

39

Create a Nova network for VM instances: 10.0.0.0/24
nova-manage network create --label=public \

--fixed_range_v4=10.0.0.0/24 --num_networks=1 \
--network_size=256 --bridge=br100

(53) 04-nova-secgroup-add.sh

This script adds two rules to the default OpenStack security group. The first rule
enables the Internet Control Message Protocol (ICMP) for VM instances (the ping
command). The second rule enables TCP connections via the 22 port, which is used
by SSH.

Enable ping for VMs
nova secgroup-add-rule default icmp -1 -1 0.0.0.0/0

Enable SSH for VMs
nova secgroup-add-rule default tcp 22 22 0.0.0.0/0

(54) 05-dashboard-install.sh

This script installs the OpenStack dashboard. The OpenStack dashboard provides
a web-interface to managing an OpenStack environment. Since the dashboard is
supposed to be accessed from outside, this service must be installed on a host that
has access to the public network, which is the gateway in our setup.

Install OpenStack Dashboard
yum install -y openstack-dashboard

(55) 06-dashboard-config.sh

This script configures the OpenStack dashboard. Particularly, the script sets the
OPENSTACK_HOST configuration option denoting the host name of the management
host to controller. The script also sets the default Keystone role to the value of the
$OS_TENANT_NAME environmental variable.

Set the OpenStack management host
sed -i ’s/OPENSTACK_HOST = "127.0.0.1"/\

OPENSTACK_HOST = "controller"/g’ \
/etc/openstack-dashboard/local_settings

Set the Keystone default role
sed -i "s/OPENSTACK_KEYSTONE_DEFAULT_ROLE = \"Member\"/\

OPENSTACK_KEYSTONE_DEFAULT_ROLE = \"$OS_TENANT_NAME\"/g" \
/etc/openstack-dashboard/local_settings

40

(56) 07-dashboard-start.sh

This script starts the httpd service, which is a web server configured to serve the
OpenStack dashboard. The script also sets the httpd service to start automatically
during the system start up. Once the service is started, the dashboard will be available
at http://localhost/dashboard, where ‘localhost’ should be replaced by the public
IP address of the gateway host for accessing the dashboard from the outside network.

Start the httpd service.
service httpd restart
chkconfig httpd on

At this point the installation of OpenStack can be considered completed. The next
steps are only intended for testing the environment.

10-openstack-controller (controller). This section describes commands and
scripts that can be used to test the OpenStack installation obtained by following
the steps above. The testing should start from the identity management service,
Keystone, since it coordinates all the other OpenStack services. To use the command
line programs provided by OpenStack, it is necessary to “source” the configrc. This
can be done by executing the following command: . config/configrc. The check
whether Keystone is properly initialized and the authorization works, the following
command can be used:

keystone user-list

If everything is configured correctly, the command should output a table with a list of
user accounts, such as admin, nova, glance, etc.

The next service to test is Glance. In the previous steps, we have already imported
VM images into Glance; therefore, it is possible to output a list of them:

glance index

The command should output a list of two VM images: cirros-0.3.0-x86_64 and
ubuntu.

A list of active OpenStack service spanning all the hosts can be output using the
following command:

nova-manage service list

41

The command should output approximately the following table:

Binary Host Zone Status State Updated
nova-consoleauth controller nova enabled :-) <date>

nova-cert controller nova enabled :-) <date>

nova-scheduler controller nova enabled :-) <date>

nova-volume controller nova enabled :-) <date>

nova-compute compute1 nova enabled :-) <date>

nova-compute compute2 nova enabled :-) <date>

nova-compute compute3 nova enabled :-) <date>

nova-compute compute4 nova enabled :-) <date>

nova-network controller nova enabled :-) <date>

Table 4: The expected output of the nova-manage service list command

If the value of any cell in the State column is XXX instead of :-), it means that the
corresponding service failed to start. The first place to start troubleshooting is the
log files of the failed service. The log files are located in the /var/log/<service>
directory, where <service> is replaced with the name of the service.

Another service to test is the OpenStack dashboard, which should be available
at http://$PUBLIC_IP_ADDRESS/dashboard. This URL should open a login page
prompting the user to enter a user name and password. The values of the $OS_USERNAME
and $OS_PASSWORD variables defined in configrc can be used to log in as the ad-
min user. The dashboard provides a web interface to all the main functionality of
OpenStack, such as managing VM instances, VM images, security rules, key pairs, etc.

Once the initial testing steps are successfully passed, we can go on to test the actual
instantiation of VMs using the OpenStack command line tools, as shown by the scripts
from the 10-openstack-controller directory.

(57) 01-source-configrc.sh

This scripts is mainly used to remind of the necessity to “source” the configrc file
prior to continuing, since some scripts in this directory use the environmental variable
defined in configrc. To source the file, it is necessary to run the following command:
. 01-source-configrc.sh.

echo "To make the environmental variables available \
in the current session, run: "

echo ". 01-source-configrc.sh"

42

Export the variables defined in ../config/configrc
. ../config/configrc

(58) 02-boot-cirros.sh

This script creates a VM instance using the CirrOS image added to Glance previously.

Create a VM instance from the CirrOS image
nova boot --image cirros-0.3.0-x86_64 --flavor m1.small cirros

Depending on the hardware the instantiation process may take from a few seconds
to a few minutes. The status of a VM instance can be checked using the following
command:

nova show cirros

This command shows detailed information about the VM instances, such as the host
name, where the VM has been allocated to, instance name, current state, flavor, image
name, IP address of the VM, etc. Once the state of the VM turns into ACTIVE, it
means that the VM has started booting. It may take some more time before the VM
is ready to accept SSH connections. The CirrOS VM image has a default user cirros
with the cubswin:) password. The following command can be used to SSH into the
VM instance once it is booted:

ssh curros@<ip address>

Where <ip address> is replaced with the actual IP address of the VM instance. The
following command can be used to delete the VM instance:

nova delete cirros

(59) 03-keypair-add.sh

Nova supports injection of SSH keys into VM instances for password-less authentication.
This script creates a key pair, which can be used by Nova to inject into VMs. The
generated public key is stored internally by Nova, whereas, the private key is saved
into the specified ../config/test.pem file.

Create a key pair
nova keypair-add test > ../config/test.pem
chmod 600 ../config/test.pem

43

(60) 04-boot-ubuntu.sh

This script creates a VM instance using the Ubuntu Cloud image added to Glance
previously. The executed command instructs OpenStack to inject the previously
generated public key called test to allow password-less SSH connections.

Create a VM instance from the Ubuntu Cloud image
nova boot --image ubuntu --flavor m1.small --key_name test ubuntu

(61) 05-ssh-into-vm.sh

This script shows how to SSH into a VM instance, which has been injected with the
previously generated test key. The script accepts one argument: the IP address of
the VM instance.

SSH into a VM instance using the generated test.pem key.

if [$# -ne 1]
then

echo "You must specify one arguments - \
the IP address of the VM instance"

exit 1
fi

ssh -i ../config/test.pem -l test $1

(62) 06-nova-volume-create.sh

This script shows how to create a 2 GB Nova volume called myvolume. Once created,
the volume can be dynamically attached to a VM instance, as shown in the next script.
A volume can only be attached to one instance at a time.

Create a 2GB volume called myvolume
nova volume-create --display_name myvolume 2

(63) 07-nova-volume-attach.sh

This script shows how to attached a volume to a VM instance. The script accepts two
arguments: (1) the name of the VM instance to attach the volume to; and (2) the
ID of the volume to attach to the VM instance. Once attached, the volume will be
available inside the VM instance as the /dev/vdc/ device. The volume is provided as
a block storage, which means it has be formatted before it can be used.

44

Attach the created volume to a VM instance as /dev/vdc.

if [$# -ne 2]
then

echo "You must specify two arguments:"
echo "(1) the name of the VM instance"
echo "(2) the ID of the volume to attach"
exit 1

fi

nova volume-attach $1 $2 /dev/vdc

5.5 OpenStack Troubleshooting

This section lists some of the problems encountered by the authors during the instal-
lation process and their solutions. The following general procedure can be used to
resolve problems with OpenStack:

1. Run the nova-manage service list command to find out if any of the services
failed. A service failed if the corresponding row of the table the State column
contains XXX instead of :-).

2. From the same service status table, the host running the failed service can be
identified by looking at the Host column.

3. Once the problematic service and host are determined, the respective log files
should be examined. To do this, it is necessary to open an SSH connection with
the host and find the log file that corresponds to the failed service. The default
location of the log files is /var/log/<service name>, where <service name>
is one of: keystone, glance, nova, etc.

5.5.1 Glance

Sometimes the Glance Registry service fails to start during the OS start up. This
results in failing of various requests of the OpenStack services to Glance. The problem
can be identified by running the glance index command, which should not fail in
a normal case. The reason of a failure might be the fact that the Glance Registry
service starts before the MySQL server. The solution to this problem is to restart the
Glance services as follows:

service openstack-glance-registry restart
service openstack-glance-api restart

45

5.5.2 Nova Compute

The libvirtd service may fail with errors, such the following:

15391: error : qemuProcessReadLogOutput:1005 : \
internal error Process exited while reading console \
log output: chardev: opening backend "file" failed

And such as:

error : qemuProcessReadLogOutput:1005 : internal error \
Process exited while reading console log output: \
char device redirected to /dev/pts/3

qemu-kvm: -drive file=/var/lib/nova/instances/instance-00000015/ \
disk,if=none,id=drive-virtio-disk0,format=qcow2,cache=none: \
could not open disk image /var/lib/nova/instances/ \
instance-00000015/disk: Permission denied

Both the problems can be resolved by setting the user and group in the
/etc/libvirt/libvirtd.conf configuration file as follows:

user = "nova"
group = "nova"

And also changing the ownership as follows:

chown -R nova:nova /var/cache/libvirt
chown -R nova:nova /var/run/libvirt
chown -R nova:nova /var/lib/libvirt

5.5.3 Nova Network

If after a start up, the openstack-nova-network service hangs with the following last
message in the log file: ‘Attempting to grab file lock “iptables” for method “apply” ’,
the solution is the following36:

rm /var/lib/nova/tmp/nova-iptables.lock
36OpenStack Compute Questions. https://answers.launchpad.net/nova/+question/200985.

46

https://answers.launchpad.net/nova/+question/200985

6 Conclusions

We have gone through and discussed all the steps required to get from bare hardware to
a fully operational OpenStack infrastructure. We have started from notes on installing
CentOS on the nodes, continued through setting up a network gateway, distributed
replicated storage using GlusterFS, KVM hypervisor, and all the main OpenStack
services. We have concluded with steps to test the OpenStack installation, suggestions
on ways of finding problem sources and resolving them, and a discussion of solutions
to a number of problems that may be encountered during the installation process.

In our opinion, the availability of step-by-step installation and configuration guides,
such as this one, is very important to lower the barrier to entry into the real world
application of open source Cloud platforms for a wider audience. The task of providing
such a guidance lies on both the official documentation and tutorials and materials
developed by the project community. It is hard to underestimate the role of the
community support in facilitating the adoption of open source software. We believe
that the OpenStack project has attracted a large, active and growing community of
people, who will undoubtedly greatly contribute to further advancements of both
the software and documentation of OpenStack leading to a significant impact on the
adoption of free open source software and Cloud computing.

7 References

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski, G.
Lee, D. Patterson, A. Rabkin, I. Stoica, and others, “A view of cloud computing,”
Communications of the ACM, vol. 53, pp. 50–58, 2010.

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud computing
and emerging IT platforms: Vision, hype, and reality for delivering computing as the
5th utility,” Future Generation computer systems, vol. 25, pp. 599–616, 2009.

[3] OpenStack LLC, “OpenStack: The Open Source Cloud Operating System,” 21-Jul-
2012. [Online]. Available: http://www.openstack.org/software/.

[4] OpenStack LLC, “OpenStack Compute Administration Manual,” 2012.

[5] OpenStack LLC, “OpenStack Install and Deploy Manual,” 2012.

[6] R. Landmann, J. Reed, D. Cantrell, H. D. Goede, and J. Masters, “Red Hat
Enterprise Linux 6 Installation Guide,” 2012.

47

http://www.openstack.org/software/

	Introduction
	Overview of the OpenStack Cloud Platform
	Comparison of Open Source Cloud Platforms
	Existing OpenStack Installation Tools
	Step-by-Step OpenStack Deployment
	Hardware Setup
	Organization of the Installation Package
	Configuration Files
	Installation Procedure
	CentOS
	Network Gateway
	GlusterFS Distributed Replicated Storage
	KVM
	OpenStack

	OpenStack Troubleshooting
	Glance
	Nova Compute
	Nova Network

	Conclusions
	References

