SLA-based Resource Provisioning for Management of
Cloud-based Software-as-a-Service Applications

by

Linlin Wu

Submitted in totafulfillment of
the requirements for thekegree of

Doctor of Philosophy

Cloud Computing and Distributed Systems Laboratory
Department of Compirtg and Information Systems
The University of Melbourne, Australia

March2014






SLA-based Resource Provisioning for Management of
Cloud-based Software-as-a-Service Applications

PhD Candidate:Linlin Wu
Principle Supervisor:Professor Rajkumar Buyya

Co-Supervisor:Dr. Saurabh Kumar Garg

Abstract

The Cloud computingSoftwareasa-Service(SaaS)modelhas changethe sales model for
software providersThe SaaS modelransforms the traditional license based modehto
subscription model, which allows customers to access applications over the Internet without
software and hardware upfront coand providesreducedmaintenance costHowever, the
key for sales is stilcustomersatisfactionwhich is at the heart of the selling process. To
guarantee Quality of Service (QoS) for customer satisfadtierefore the Service Level
Agreement (SLA) ismplementedbetweencustomers and SaaS providers,evdthe main
objectives are profinaximizationandincreasednarket share.

To achieve these objectivabgere areseveral challengedue to thedynamicnature ofthe
Cloud environmentFirsty, the SaaS providettilizes shared infrastructure angrioustypes
of request loadswvhich can lead to unpredictability in performanceand availability of
resources. Secolyd there isa possibility that existing customers mawake changes in
requirementswhich canlead to esource reallocatio\s suchresource allocation magause
SLA violationswhich couldreducetheS a a S p r poofit marginargli@putation mearing
a possibleloss of existing customerand potential new customerdhirdly, SaaS provider
need to attract customers with special neaad considemarket competitiorfrom other
providersin orderto increasgrofit and market share.

To overcome the above challengamst proposedsolutionsare focused on the resource
managementith the aim of minimizing cost withowdufficiently consideration of u st o mer 6
needs.Therefore to addresghesechallengesthis thesigproposes algorithms and techniques
for optimal provisioning of Cloud resources with the aimm@iximizing profit andcustomer
baseby handling the dynamism associated with SLAs lagtdrogeneougsources.

Thekey contributions of the thesis are:

1 A comprehensive survey of how SkAarecreated managed and used with case
examplegdrawnfrom both academy and industry widlmajor emphasis on the SEA
based resource management systems.

1 Theadmission control and scheduling algorithassistin identifying which request
is moreacceptable based @mofitahility, reducingthe probability of SLA violations
given theheterogeneousature of Cloud resources.

1 The customer requirementdriven resource provisioning algorithms can help in
adaping to changes in the requirement¥he poposed algorithmsprovide
personalized atteloin to the customer andre also able to understand specific
customemeeds.

1 A new negotiation frameworlto enlargea SaaSp r o v i cdstomér dasehat
consides dynamism inthe Cloud environment with time and market factors to make
thebest possible decisions for negotiation

1 A prototype of the customer requirements driven Sla&ed resource management
system to prove the usefulness of our proposed strategies using the latest
technologies.



This is to certify that
() the thesisomprises only my original work,
(i) due acknowledgement has been made in the text to all other material used,
(iii) the thesis is less than 100,000 words in length, exclusiviable, maps,

bibliographiesappendices and footnotes.

Signature

Date




ACKN OWLEDGMENTS

Throughout my PhD journey, | receiveglidance,support and motivation from
amazing people whom | wish to acknowled§é&st and foremost, | would like to
express my sincere gratitude to my supergs$tnofessor Rajkumar Buyya and Dr.
Saurabh Kumar Garg for tinecontinuous support, advice, and guidance throughout
my candidature. Tlee individuals have built and directed an environment that
granted mehe opportunity to learn and practice research skitheet and collaborate
with brilliant researchers, and transfer the long journep®PhDinto an immensely
rewardingexperienceThis was speciallysowhen | encountered personal issues]
they supported me as a family.

| alsowish to extend my gratitude to the membershafPhD committee: Prof. Rao
Kotagiri and Dr. Rodrigo N. Calheiros for their encouragement and insightful
commentdn relation tomy research. In particular, it has bemmsistentlybeneficial

to discuss inital research ideas withr. Rodrigo. Dr. Rodrigo hasalso generously
assistedoth inpreparingfor my experiments anth the proofreadingof my papers
and thesis.

| would also like to thankhe past andporesentmembers of the CLOUDS Laboratory
at the University of MelbourneThey include Mohsen Amini, Anton Beloglazov,
Atefe Khosrai, Sare Fotouhi, Deepak PopldMohammed Alrokayan, Yaser
Mansouri, Marco Netto, Mustafi zur Rahman, Mukaddim Pathan, Suraj Parajay, R
Ranjan, Christian Vecchiola, and Marcos Dias de Assurnicamuld also like to
thank Dr.Steve Versteeg andr. Bevan Mailmanfor proofreading thisthesis and
for their extensive comments.

It has been agreat pleasure and a privilege to work wityou all | wish to
acknowledgehe Australian Federal Government, the University of Melbourne, the
School of Engineeringhe Australian Research Council (ARC), Computer Associates
(CA), IEEE Victoria, Google, and CLOUDISaboratory for granting scholarships and
thetravel support which enaldlane to pursue doctoral study and attend international
conferences.

Finally, I would like thankmy family members includingarents, my sisteand my
parentsin-law for their sipport ad love.

Linlin Wu
Melbourne, Australia
March 2014.



Vi



CONTENTS

L 1 Nt r 0d U Cotid Dol me e 1
1.1 SQAS MOUEL....ooiiiiiiiei e 2
1.1.1  SaaS and Service Level AgreemENtS........ccvvvvveeeeeieeeiieiiieeieeeeeeeeeeeeeeeen 3
1.2  SLA-based Resource Management for SaasS...........ccccooivimiieeiiiiiiiiieeee e 4
121 Limitation of EXiSting SOIULIONS............cccviiieieeiiiiiieeee e 5
1.3  Problem Statement and ODJECHVES.........cccccociiiiiiirreer e e 6
1.3.1 Challenges and ReqUIrEMENLS..........cceeeeeeeieiiieii e 7
1.3.2 Proposed SOIULION..........coovviiiiiii e 9
1.4 CONIDULIONS......cuiiiiiieeiiie et e e e e e e e 10
1.5 MEethOAOIOY........uuueiiieeiiiiiiiie e e e e 11
151 WOTKIOAQ......cceeeiieiiiiiieee e 11
152 EXPEriMEt SYSIEIML.. ...ttt e e e e e e e e e e e e e e e e e e e e e e 12
1.6 OrganiZation..........cccoeeiieiii e a e e e e e e e e e e e 12
2 Service Level Agreement (SLA) .i.n.UBility Com
2.1 INEFOAUCTION ...ttt ane e 15
2.2 Utility Architecture and SLA Foundations............cccccvvviviiiiimiieeiieeieeeeceeeeeeen 18
221 ULtility ArCHITECIUIE ... 18
2.2.2  SLA DEfINITIONS......uiiiiiieiiiiiie et e e 19
2.2.3 S I @0 5 ] 0T ] = o | € S 20
224  SLA LIfECYCLE ettt 21
2.3 SLA in Utility Computing SYStEMS.......ccoooiiiiiiiiii e 24
2.3.1  SLAManagement irJtility Computing SyStemS............evvveeeiiiiiiiiieeeennnnns 24
2.3.2  Solutions folSLAManagement irUtility Computing Systems................... 27
2.4 SLA Use Cases in Utility COmpUtiMgySIEMS.........ccvvviiieeeiiiiiieeeee e 35
2.4.1  SLA N Grid Computing SYSIEMLS........uuuuuiiiiiiiiiiiiriirirerrererereeeeeeeeeeeeaaaans 35
2.4.2 SLA N Cloud CoOmMPULING......coooiiieiieieee e 36
2.5 0PN ProblemMS.......ccuueiiiiiieeiieceeee e 44
2.6 SUMIMIBINY . ettt e et e e et e et et e e et e e e aaaeaaaaaaaaens 45
3 SLAdAased Admission Conasa-$¢r vioce SBE.HdWiader s
% A | 11 {0 To [ U T 1o IO PP PPPP T POTUPPPPPPRRPPIRY Lo |
3.2 SYSIEM MOUEL.... . 50
Bi2. 1 ACHOIS. ittt e 51
3.2.2 Profit MOEL........oeiieee e 53

Vil



3.3 Algorithms and Strat@QiesS........eeuiiiiiiiiiieiie e 55

TR T A 1 1 =1 (=T 1 (=T PP EPP P PPPPPRRPRP 55
3.3.2 Proposed Algorithms.............oooi i 59
34  Performance EValuation............cccocuiiiiiiiiiiiiiicciece e 64
34.1 Experimental Methodology.............ccoooiiiiiiii e 65
3.4.2 Performance RESUIS............ooooiiiiiii e 66
35 RelAted WOTK.. ... e 77
3.5. 1 AdMISSION CONLIOL......cciiiiiiiiiiie e 78
3.5.2  SCREAUIING......uuuiiiiiiiiiiiieeee e 79
3.6 SUMIMIAIY .. ieiii ettt e et e e e e e e e e e et e s e e e e e e e e e eeae bbb reeeeeeeeeennres 80
4 SLAased WRecseo Provisioning for..Saa83Applicati
N 101 o T [0 Tox 1o o APPSR PP PP PP POTPR 83
4.2 SYSIEM MOUEL....... e 85
N R Y o1 (0] £ T PP PPTRPTPPPPPO 86
4.2.2 Mathematical MOUEIS..........ccuuiiiiieei e 89
4.2.3 Mapping of products t0 rESOUICES..........ccceeeeiciiniieiiierrrree e 93
4.2.4  Problem desCriptioN..........coooiiiiiiiiii e 93
4.3  Resource Provisioning AIgOrthmS...........ccccvviiiiiiiiiiiiiiieeeeeeeeceee e, 96

431 Base Algorithm: Maximizing the profit by minimizing the cost by sharing the

minimim available space VMS (BESFIL).........cooiiiiiiiiiiiiiieee e 97
4.3.2 Proposed Algorithms.............oooiiii e 929
4.3.3  LOWEIN BOUNG.......oiiiiiiiiieiiiie et 105
4.4 Performance EvValuation.............cccoiiiiiiiiii e 107
44.1 Experimental Mthodology...........coooiiiiiiiiiiiee . 107
4.4.2 QOS PArAMELEIS ... ettt e e e e e e e e e e 108
4.4.3 RESUItS ANAIYSIS....uviiiiiieiiiiiii e 110
45  RElAEA WOIK. .. ..ot 119
45.1 L1 o PRSPPI 120
45.2 L1 o 11 o PSP 121
4.6 SUMIMAIY cceeeieieiieeiite et e et e e et et e e e e e e e e e et ereaeeeeeaaeeas 122
5 Automated SLA Negoti.at.i.a.n..Er.ame.wolr2k5
ST R | 011 oo [0 T 1o o PP PP PPPPPRO 125
5.1.1 MOTIVALIONS. ...t e e e e e e e eeas 126
5.1.2  CONIDULION. ....oiiiiiiiiiiii e 127
5.2  Automated Negotiation Framewark...........ccccceerviiierrireieiiiiiiiinneeeeeeeeeeeeennnns 127

viii



521 Framework COMPONENIS. .....coovviiiiiiieee e 127

5.2.2  SYSIEM SCENAIO.......iieieiiieeeeeiiteie e e e e e e e e 129
5.3  Negotiation ODJECHVES..........ccooiiiiccccrre e e e 130
5.3.1  Mathematical MOdEIS............coooiiiiiiiiiii e 130
5.4  Negotiation Policy Specification...........cccccvevvieiiiiiiiiiiiiiiee e 132
54.1 QOS MOAEL....ccoieiiiiieieeeeee e 132
5.4.2 Policy SPeCIfICAtIQN..........eeviiiiiiiiiiiiee e 132
5.5  Negotiation ProtOCaL...........uuviiiiiiiiiiiieee e 133
5.6  DecCision MaKing SYSIEML.......cccccciiiiiiiiiiiiiiiiiirireeeer e e e e e e e e e e e e e e e e e 136
5.6.1  BIOKEI....ciiiiiieiiitii ettt 136
5.6.2  PrOVIOEI.....eiiiiiiiiiie ettt 137
5.7  NegOtiation StralEgY......ccceiiiurrieiieeeiiiiiieeee e e e e e e ssbrrre e e e e 138
5.8  Performance EValUation...........c.c.eeviiiiiiiiiiiiiiee e 140
5.8.1  Reference HEUNSHIC..........ccuviiiiiiiiiiiieee e 140
5.8.2 BExperimental Methodology...........coooooe i 140
5.8.3 RESUIt ANAIYSIS... ..o e e 141
5.9  Related WOTKS.....coiiiiiiiiii e 145
5.10  SUMMEBLY ...oooieiiiiii e e e e e e e e e et et e e e e e e e e e e e e e e e e e e eassaanaanans 146
6 An Shédsed Resource Management Sy.sltde7m
6.1 Motivation and REQUIFEMENLS............uuriiiiieiiiiiiie e 147
6.2 SYStEM AICHItECIUIE......oiiiiiiei e 148
6.2.1  DetailS. ... 149
6.3  System Implementation TeChNOIOQIES.........cccoociiiiiiieee e, 153
6.3.1 Design ConSIderationS...........uuuueireiiiiiiiieieeiieeeeee e 154
6.3.2 Implementation DetailS. ... 155
6.4  Case Study: CA (Computer Associates) DireCtory.......cccccceeeeeeeiieeeiiiiiiennn, 157
6.4.1  SYStEM DEtallS.......uuuiiiiiiiiiiiiiiiiieeeee e 157
6.5  Performance EValuation............ccocuviiiiiiiiiiiiiiiecee e 159
6.5.1 EXPErMENt SEIUD. ... .uutiiiiiiiiiiiiiiieee e 159
6.5.2 Scheduling algorithms evaluate............ccccvveiieiieeeiiiiiiiieeeeeeeeee e, 159
6.5.3  Admission control algorithms evaluate..............cccvveeiieiiniiiieeiee e 160
6.6 RelAted WOTK. ... e 161
6.7  SUMMEAY ...eeieiiieieititt ettt e e e e e et e et ee e a e e e e e e e e eeeeebbbaaa e e e eeaeees 161

7 Conclusions and Fu.t.u.r.e...Di.r.e.c.t..i..o0.nsl 63
20 T 1 11 = T 163

iX



7.2 Lessons Leaed and SignifiCanCe..........eeeeiiiiiiiiiiiiie e 165

7.3 FULUIE DIrECHIONS ...ci et iiitieiee e e ettt e e e e e e e e e e e e e e eees 167
7.3.1 Providing Services with Different Pricing Models...........ccccccvvvvivvveeeeeennnn.. 167
7.3.2 Using Resources with Different Pricing Models..........cccvvvvvevvieviiiiinnennen.n. 167
7.3.3 Resource Provisioning for Mdlér Applications..........ccccvvveeveevieeiieeeeeneeeenn. 168
7.3.4 Resource Provisioning for Network andePaware Application................... 168

7.3.5 Customer Usage Model for Customer Driven Resource Management....168

R ST ST =T o = Y TP 169



LIST OF FIGURES

Figure 1.1 A layered architecture for Cloud COMPULING............evvveeeiiiiiiiiieeeeiiiieeeeeen 2
Figure 1.2 Thesis OrganizatiQns..........ccccccuuuiuuiiuiiiiiiiririeeeeere e reeeseaessaeaaeaeaeaeeeseeasaaaaans 13
Figure 2.1 A typical architectural view of utility computing system..........ccccuvvvevveenen.. 16
Figure 2.2 Sl-Based Utility Computing System ArchiteCture............cccocccvvvveeeeniiinnn. 19
FIgure 2.3 SLA COMPONENLS.....uuuuuiiiiiiiiiiiiiirerieerereeereereteaaeaaeaaaaaaaaeaaeese e e s sassiassassnnnne 21

Figure 2.4 SLA high level lifecycle phases, according to the destopfRon et al. [51]..22
Figure 2.5 SLA life cycle six steps, as defined by Sun Microsystems Internet Data Center

LT (o 10 T 1 R 23
Figure 2.6 Layered Cloud computing architecture [23]...........cccccceeiiiiiii i, 38
Figure 3.1A high level system model for application service scalability for in 1aaS providers.
.................................................................................................................................... 52
Figure3.22f 2¢ / KI NI 2F WL V.AO0ALGS.. Y .Sé..xa..ak6N §S3TeQ
Figure3.3f 2 ¢ / KI NI 2.F.. .Wal. Al a0NL.0.S32Q..... 57
Figure3.4Cf 2 ¢ / KI NI 2 F..WA.Y.4SNI...4a04.N>.0.S3.2.Q...58
CAIdz2NBE odp Cf2g /[ KFNL..2F. .. WLISyY.L{.028..RSf58B&8 aidNI 4GS
CAIdzNE odc h@SNIfft IfI2NAGKYAQ LISNF2NBI yOS RdzN
Figure 3.7 Impact of arrival rate variation..................cccoo oo 69
Figure 3.8 Impact of deline variation.............ccccooeiiiiiiiiiiiiicee e 70
Figure 3.9 Impact of budget Variation............couiiiiiiiieeieiiiiie e 72
Figure 3.10 Impact of request length variation..............ccccccvvviiiiiiiiiiieiieeeeeceeeeeee e, 73
Figure 3.11Impact ofpenalty rate factor variation...............cceeeeiiiiiiieeeeeeniiiiieeee e 74
Figure 3.12 Impact of initiation time variatiQn.............cccoecuveieieeeniiiiieeeee e 75
Figure 3.13 Impact of performance degradation variatian.............cccceeveeeeeeieeeieeneenen... 76
Figure 3.14mpact of performance degradation variation after considering slack.timez7
Figure 4.1 A system model 88aS layer StrUCTUIE...........ccoeiiiiiiiiiiee e 386
Figure 4. 2Mlapping between VMs and @ HOSL..........cooooiiiiiiiii i, 93
Figure 4.3 BeSt Fit Strategy........oooviririieeiiiiiie e 97
Figure 4.4 The ReSErvation Strat@gy..........ccuurrreieeiiriiiiieiee e s e s 100
Figure 4.5 The Reschedule Strategy..........coooeiiiiiiiii e 102
Figure 4.6 Impact on reservation strategy during the variation in proportion of customers
WIth NIGN Credit IQVEL.......eeiiiii s 110
Figure 4.7 Impact of request arrival rate variation....................cooeeeeeeeieciccnninieneenne, 112
Figure 4.8 Impact of proportion of upgrade requests variation.............cccccceeeeeennee 113
Figure 4.9 Impact of credit |eVeINGION .............ccuuiiiiie i 115
Figure 4.10 Impact of service initiation time variation............cccccceeeeeeeeeeieieee 116
Figure 4.11 Impact of penalty rate factor variation.............cccceevrvuvreeeeeeeiiiiiiiieee e 117
Figure 4.12 Impact of Future Interest Error (GR&IM)..........cooiiiiiiiiiiiieeeeeee 118
Figure 4.13 Impact of Future Interest Error (URGEEIM).........cooovvvviiiiiiiiiiiiiin, 118
Figure 5.1 Negotiation Framework High Level ArchiteCture...........cccccvvvveeeeiniinnnen. 128
Figure 5.2 Negotiation Rule Register Web FOrm............ccccc i 133
Figure 5.3 The Interacm between Components during Negotiation Process............ 135

Xi


file:///C:/temp/SLACloud-Thesis-2907.docx%23_Toc394941058
file:///C:/temp/SLACloud-Thesis-2907.docx%23_Toc394941059

Figure 5.4 Impact of Deadline Variation...............oooiiiiiiiiiiiiieeeeeeeeee e 142

Figure 5.5 Impact of Variation in Expected Margin..................oooieeeeiiicccccinniniiviennee, 143
Figure 5.6 Impact of Market Factor Variation............ccccuvveeeeeeieeiieiiieciieeceeeeeeeeee e, 145
Figure 6.1he SLAbased resource management system hig\el architecture.............. 149
Figure 6.2C1asSs diagram...........cooiiiiiiii i a e e 150
Figure 6.35equence diagram among eNtitiES...........uuviiiiiiiieiiieiiieriieeceee e 152
Figure 6.45equence diagram among resource level entities............cccccvviiviieeeennns 153
Figure 6.55tates diagram of requests in the SLARA syStem........c.ccccvvvvveveeeieenenn. 154
Figure 6.@mplementation TEChNOIOGIES........uuviiiiiiiiiiiiiiiieeeee e, 155
Figure 6. Aaritaion in Request Arrival Rate.............cevvieiiiiiiiiicee e 160
Figure 6.8/aritaion in User Request NUMDBDEL..........cuvvviiiiiiiiiiieeceeee e, 160

Xii



LIST OF TABLES

Table 2.1 Summary of SLA definitions classified by the.area...............cccoccvinieeeennne 20
Table 2.2 Mapping between two types of SLA lifecycle..........cccoocciveiiiiiiiiniieieeeeee, 23
Table 2.3 Comparison of SLA Management frameworks and Languages................. 32
Table 2.4 SLA Use Cases of the masoiss Cloud Provider and related characteristics in
T I PP PPPPPPPPPP 39
Table 25C N2 Y dza S NE SLA Lk KEisedDTibud @ ®viokows six steps SLA

11T 03V o] [T PP PP PPRRPR PPN 41
Table 3.1The summary of resource provider characteristics...............ccoeeeeeeeeiccinnnnns 67
Table 3.2 Summary of heuristics of comparison results (Profit)..............cccoeeiiiceinnnnns 81
Table 4.1The summary of penalty delay time according to request types................... 92
Table 4.2The summary afnapping between requests and resources........................... 93
Table 4.3The summary of best and worst results (cost) comparison.............cccccvvenes 119
Table 5.1 The Negotiation States and Description SUMMALY............ccoccvvireeeerrnnne 134
Table 5.2The MINCOSt HEUFISTIC .....ccuiiiiiiiiiiiee et e 136
Table 5.3TheMaXCSIHEUIISTIC. ......ccoiei e e e e e 136
¢F-ofS podn t NP OA RANSKA....5.5.QAAA.2.Y...a.l.1.Ay.3.137
Table 6.IMapper DEtallS..........uuuiiiiiiiiiiiiieiieeceeeeeee e 158

Xiii



1 Introduction

A vision for del i ver iwagintridocedirp 1069 by beonards a util
Kleinrock, the chief scientist of the original Advanced Research Project Agency (ARPA)
project.Kleinrocke nvi si oned that computer nHgljthtsomr ks woul
1969 Information and Communication Technology (ICT) has made many advances in

various areas to make this vision a reali®y. The advances in networked computing
environments have transformed computing to a model consisting of services that can be
commoditized and delivered simibatto utilities such as water, electricity, gas, and telephony

[3]. In the utility computing modelconsumersan access services-damand according to

their requirements regardless of whtreyare hosted.

The utility computing model can be used as a new outsourcing service timatdeanbring
extensive opportunities and benefits for ICT users. The foresalsintage is the decrease of
IT-related costs and complexitidgecausesnterprisesio longer need to invest heavily on or
maintain their own computing infrastructure, and are not constrained to specific computing
service providers. Furthermore, this mbbenefits small businesses lacking working capital
Hence utility computing provides businesses with greater flexibility and resiliandejore
efficient utilisation of resources at lower operating and maintenance costs. Indeed, enterprises

simply needto pay forresource usagas requiredhe computing service providers.

Today this outsourcing model has emerged in the fdr@aud computingwhich promises
elasticresources to theonsumersdqustomerk[4]. Cloud computing is considered a solution

for challenges, such as licensing, distribution, configuration, and operation of enterprise
applications associated with the traditional IT infrastinee, software sales, and deployment
models.A layeredarchitecturdor Cloudservicess shown inFigure 1.1 From bottom to top,
theInfrastructure as a Service (lad&yeris a resource provisiamy model where a provider
offersinfrastructure resousslike hardware, storage, servers, and networking compooants
demand to consumer$he Platform as a Service (Paal8yer offersa computing platform

and solution stack as a servide.includes application development tools and execution



managemengervicesThe Software as a Service (Sad&yerlicenses a software application
to customers as a service on demasihg PaaS layer functionalitiessuch as resource

managemendnd laaS layer resources
g 7'\_" - " e g, % =
S

Request Software ﬂies

\7 CRM A FRP /\ HPC y

cMS | Emali |, WEB APPé

Admission Control SLA Management
Request & Resource Resource Manageme
Mapping - g

DataCanter P Physical Machines
[ 1aas

Figure 1.1 A layered architecture for Cloud computing

1.1 SaaS Model

Prior to the Cloud, théCT administration tasks were comparatively easy since the single
important objective of resource provisioning was the performance, such as the time spent on
resource provisioning for wellased applicatiof115]. Over time, the complexity of
applications has grownincreaing the difficulties in their administration. Accordingly,
enterprises have realized that it is more efficient to outsource someifiplications to
third-party SaaS providers enabled by Cloud computirgyto the following reasoii$10]:
9 It reduces the maintenance cdmcause along with the growth in the complexity, the
level of sophistication required to maintain the system has increased dramatically.
1 By using SaaS, enterprises do not need to invest in expensive software licenses and
hardware upfronbeforeknowing thebusiness value of the solution.
Therefore, by moving to the SaaS model customers benefit from continuously maintained
software. The complexity of transitioning to new releases is managed transparently by SaaS
providers,who pursue profit maximizatioby minimizing cost aneknlargingmarket sharéy

accepting morgrofitablerequestandimprovingthe Customer Satisfaction Level (CSL).



There are two design patterns for SaaS layers. The first one is the one presented in Figure 1.1,
with three layered ardecture using virtualized resources. This is the focus of this thesis. The
second alternative utilizes dedicated software on physical servers that share resoueess bet
users. These two pattersisaring resources for multiple usarse callednulti-tenarcy.

However, aistomer satisfaction is a crucial success factor to excel in the service indsistry
highlighted by Yeo and Buyyg2]. The way to ensure the QoStasdefinea legal contract,
which is SLA (Service Level Agreement), between a service provider and a consumer [21]. In
general, a customer requests vibased application services from a SaaS provider by agreeing
with the QoS requirements specifiéd the SLA. Whenthe SaaS provider can guarantee the
SLA, the customer is satisfied. If thevel of serviceis betterthanthe specified inthe SLA,
thecustomer satisfaction levedill be more than satisfied

1.1.1 SaaS and Service Level Agreemesit

SLAs can be traced back to 1980s in telecommunication companies. As an example,
telecommunication companies includm SLA within the terms of their contracts with

customers to define the level(s) of service being sold in plain language terms. The SLA
typically identifies parties who engage in the business processes and specifies the minimum

expectations and obligations betwdleem[21].

In Cloud computing, generally service provisl@lefinea publically published common SLA
for all their customers.For ingance, Microsoft promises to guarantee at least 99.9%
availability in theSLA of the Microsoft Azurebackup serviceThe SLA is established and
commenced automaticallyhena customer requests service with confirmed paymérany
clauses irthe SLA areviolated, the penaltghould be enforcedguch aghe graning of more

credit for future servicgto the customer.

Two typical types of SLA argrovider predefined and negotiated SLAs. The povider
predefined SLAprovides a generic SLA template for all customeEar example, Amazon

EC2 has a predefined static SLA. However, customers may have special QoS requirements
which may not be included iapredefined SLA. In this casthe customer andhe provider

will go throughnegotiation processes to achieveutualy agreed SLA (Negotiated SLA). In

order to ensure the agreed SLA, SaaS providers require strategies to manage resources to

satisfythe QoS specified in SLA without deteriorating their profit.

Several researchersave satisfied these requirements by providing $Bla&ed resource
management mechanisnjg2][69] and negotiationstrategies[152][153]. There are still

several challenges for resource management, but the key issue for SaaS providers in Cloud is

3



how to optimize resource provisiomg, which aims at improving thetilization of cloud
systens in orderto achieve profit maximization and market share enlargerivbme details
on the SLAbased resource management are discussed along with their limitations in the

following section.
1.2 SLA-based Resource Management for SaaS

Resource management is a central #mel most challenging task in Cloud computing,
particularly when there ialegal document spedd in the form of SLAwhich contains QoS
requirementsThere are several problems to consider while managing resoweesSiiAs,
such as, type of resource required, mapping, provisioning, allocation, adagptatibn
brokering. The basic responsibility of a Resource Management System (RMS) is to accept
requests from customers and tmeapthemto the availableresourcesprovision the matched
resourcesand allocate them to the customer. In practicelue to theheterogeneous and
dynamic nature of Cloud environments, the RMS needdédoable toadaptto the
heterogeneityrom resource sidanddynamic changes fromustomersides. In general, there
are two types of resources for Sag#hysical and logicalFor example, dateentres physical
machines, network elements are physical resoumeshe other handyirtual Machines
(VMs) ard energy are logical resources

Research on SlLAased market driven resource management started in 193[)69].
However,the SaaS Cloud model has brought into vieew challenges that havetnbeen
addressed before. ABrofessor David Patterson of the University of California, Berkeley,
illustrates the challenges faced by software developers currehililere are dramatic
differences between developing software for millions to use as @eemfisus distributing

software for millions to run their PC$5].

One ofthechallenges is dealing witheterogeneougeographically distributed resources with
different usage policies, price models, availability and performance paitaingarying loasl
Moreover the SaaS service providers and customers have different goals, objectives,
strategies, and requirements. Resource sharing becomes further complicated in SaaS Cloud
due to the selinterested nature of customets. addition, each customer iocles multiple

user accouniswith different requestsTherefore, SLAbased resource management involved

in delivering softwares a servicéor millions of customersn Cloud environments much

more @mgdex compared to just distribusaftware[6].

As mentioned before, the goal of SaaS providerstwodold i.e. maximizing profit and



enlardng thecustomer base by offering better services. To achieve these goals, SaaS providers
employdifferenttechniquessuch asitilizing internal hosted resources mivatedata centres

or rentng resources fromralaaS provider to guarantéiee SLA. For example, Saleforce.com

[102] hosts resourcedut Animoto rents resources from Amazon EG2]. However, the

main challenge for SaaS providers to achieve these goals is how to manage these resources
efficiently ensuring SLA specified QoS requirements. Several research works havedaxplo

this topic toa certain degre€l21][122][127][42]. However, stillthere isa long way to go for
achievingSaas providers goals as depicted below.

1.2.1 Limitation of Existing Solutions

The current resource management techniques for SaaS in Cloud mainly focus on either
minimizing the number of VMs without considering SLA or only consider limited QoS
parameter such as availability only. In contrast, most of these resource managementaschni
need to be extended to include thynamic, diverseand competitive nature of participants

with conflicting Quality of Service (QoS) requirements in Cloud.

In a shared resource infrastructure such as Cloudyetexogeneousature of resources and

self-interested nature of customers can lead to problerhere every customer acquires as

many types of software as possible because there is no incentive for customers to back off

during times of high demand. The sgiferested customers, in turn, owploit the service

by degrading the SaaS providerodés ability to de
heterogeneousesources. Thereforegsource management ne¢al be SLAbased, which can

regulate the supply and demand of resources atyssaje time.

In order to meet the above requirements, most of the-l&lskd resource management
methods are either ngrofit based [6] or designed farfixed number of resources, such as
FirstPrice [48] and FirstProfit [70]. To resolve the problenseduby customedselfinterest

nature and conflicting interests between customer requests, admission control and scheduling
was proposed as a solutf@][90][91], such as learningased admissh control in Cloud

[67]. However, these works do not target prafiaximisationandan increase imarket share

simultaneously.

SaaS provideraim to optimally provision resources that service costs can be minimizied
general, SaaS provideutilize internal resources of its data centres or rent resources from a
specific laaS provider to guarantee SLA. For SaaS providehguse hosting resources can
generate administration and maintenance cost while renting resources from laaS providers can

impact the service quality offered to SaaS customers due to performeniedgility [103].

5



Several profidriven resource management solutionspaoposed by minimizinghe number
of resources[121][122][127][42]. However, theseworks did not consider custoen

satisfaction level related QoS parameters.

To satisfy the customer requirements, custone §0S parameters are essentiwever,

most ofthe current works consider provider side QoS parameters, such as pricd2705]
Although some work consider customer side QoS parameters, some SaaS layer related QoS
parameters are missing, such as software responsg 28j55].

Several projects are related at different degrees to theaSlate management of resources,
such as SLA@SQ[182], Claudia[176], BonFIRE[179], Optimis[177], 4CaaS{178] and
Cloud-TM [180]. However, 8A@SOI does not consider Cloudraputing infrastructures as
their taget platform, and hence it does not account for some specific ne¢dis area.
Claudia[176], BonFIRE and 4Caa3178] do not consider management béterogeneous
resources Although Optimis[177] does scheduling foresource management and PaaSage
[181] provides runtime monitoring and dynamic adaptation, they do not cover SaaS level

parameters, such as service response time.

Cloud-TM [180] cannot be gpied to general purpose Cloudroputing, since it is focused on
datacentric Cloud applications. In the context of the resource allocatgorithms for
enterprise applicationgvolutionary algorithms, such &enetic Algorithm (GA) havdeen
used [111]. Asevolutionaryalgorithms create a pqganning schedule, thegre not able to

deal with dynamic environmessuch as Cloud.

Therefore, these approaches are not suitable forl&iséd resource management in dynamic

Cloud environments to achieve theagjof maximizing profit and customer bdee SaaS.
1.3 Problem Statement and Objectives

This thesis focuses on the following problem:

How to aesignand develomlgorithms andechniques that help in maximizipgofit and

market shardor Cloud SaaS providers, who lease applications to customers byQlsing)
resources and simultaneously i dynamism and variations associated with SLAs and
available resources

In the context of the problenthe two keystakeholdersare (1) SaaS providers and (2) SaaS
customers. A model/architectutbat depics key components of SaaS Cloud is shown in

Figure 1.1 The model consists of application layer and platform layer functions. Customers



request the softwarservicewith their QoS requirements to application layer. The platform
layer is responsible for application development and deployment (séceteka [107]). In our
model, this layerincludes the admission contrédinction to analyse thee u st o Qusr 6 s
parameters and decideghetherto accept or reject the requestelrequest and resource
mapping function is responsible for translating the custanside QoS requirements to
infrastucture level parameters. aBed on admission control decisiothe resource
managementomponent is responsible fprovisioning andallocating resources. Furthermore,
the SLA management is required since we consider it customersFor somecustomes

with special requirements, which are differdrdm what is publically offeredby SaaS
providersanegotiation process is required SLA establishment

In dynamic Cloud environmesg)t severalissues thatneedto be addressed to solve the
problem are
1 Can a new request be accepted without impacting accepted requests using distributed
and heterogeneous resources, whose capabilities, availabilities aordnagide (such
as service time) can change very frequéntly
How to deal with the resource level heterogeneity (such as service initiation time)?
How to map various customer requests with different QoS parameters to the
resources?
1 How to manage dynamic customer demands? (such as upgrading from a standard
productedition to an advanced product edition or adding more accounts)
1 How to design the negotiatiorelated processes and decisioaking strategies to

fulfil special customer requests?
1.3.1 Challenges and Requirements

Answeringthe questions above is not trivial consideriting various dynamic and variety of
factors associated with Cloud environngeand actors. Cloud environmergive access to
heterogeneous resources having different price schemas and performance capabilkigts and t
can be dynamically expanded and contracbed demand Each customer has his own
requirement in terms of services and QoS which can also change dynamically. This brings
several challenges and requirementstiierSaaS providein orderto manage theiresources

in a profitable manner.

To accept any customer request, SaaS pravitesd to ensure the minimum level of service
specified in SLA is delivered to the customer udieterogeneouSloud resourcesCurrently,

most SaaS providers use VMs to host their software services and these VMs in general sharing



a common physical server with other VMs hosting similar or different software services. The
challenge comes from unpredictability of the software services penfmen which is
depenént on the unknown configuration of underline physical server and variation in other
VMs resource usage. This can lead to SLA violation or revenue loss tivheresource
performance degradatiorauses the breaabf the minimumlevel of servicerequiremerg
specified in the SLASaaS providers need to consider which customer redsiasbre
profitable to accept given thibeterogeneousature of Cloud resources. Therefore we need
new admission control and scheduling stratetiastakecareof these factors.

Oncea customerequestis accepted there is always a possibility of chamgeequirement

since the SaaS provider is expected to scale up andacuabrdingly When the customer
changeshis/herrequirement resources have to lnamically reallocated according to the

c ust omeemars reguitements. Moreover, while allocating/reallocating resotirees

SaaS provider has to minimiz#e impact on existing customers whikgatisfying the

c u st o mguireméntchanges. Thereforepew adaptivecustomer requirements driven

resource management algorithms considecustomer profile andhepr ovi der sé qual i

parameters are required.

As discussedSaaS providers want texpandtheir customer baseTherefore, they need to
provide more flexibility in terms of service to cater to variasassociated witlindividual
customer requirements This is generally donghrough a negotiation process between
customers andhe service providers. However, whilendertakingnegotiatiors, the sevice
provider needs to take into consideration not only what they can provide to customers but also
the competition with other SaaS providers. Thus, new negotiation frameworks are needed for
SaaS providerthat considethe dynamism inthe Cloud environmenwith time andmarket
factors to make best possible decisions. In supmee identified three subbjectives to
align with maximizing profit and market share for SaaS
9 To designSLA-based admission control and scheduling algorithms that differentiate
customer requests based on keterogeneousesource capabilityo minimize cost
and SLA violations by accepting more profitable requests
1 To investigate adaptive Sl-Based resourcerovisioning algorithms according to
customer requirememnichanges by considering more customer factors that provide
personalized attention to customeriich include considering customer profiles and

understandingustomerspecific needs.



I To investigatethe architectural model for automated SLA negotiation framework to
establish SLA between SaaS and customers, whose requirements are not covered by
existing SaaS predefined static SLA.

In this thesis, we proposesolution that meets these objectives

1.3.2 Proposed Solution

As discussed above, SaaS providers need to deal witiethegeneity andariety from both
theresourcep r o v isilleeandthéc u s t ogide.rTe $blve the problems stated inthe
previous section, we considéhne following example scenariosof SaaSto achieve the

specified objectives.

SaaS providers lease wbhsed software as services to customers and use either 3rd party
resources (such as Virtual Machines from Amazon) or in hbwsted resourceslake
Animoto as a SaaS examplecreates videos based on the customer uploaded pictures or
videos with selected themes. Three simple steps, 1) customers upload pictures or videos; 2)
customersselect style, text, music to generate video;c@stomersdownload or share
generated videdlD8g]. In this servicapplicationmodel, different customers will subntiteir

request at any time with different QoS parameters, such as different file size from customer
side impact the resource management for SaaS providers. Thettgotieesis focusson the
dynamism in terms of resource availability and capabdi@ysed by the variety of customer
requests and resource heterogeneifenission controllgorithms argropose employing
different strategies t@accept moreprofitable requestsfor minimal performance impact,
avoiding SLA penaltiedor existing customer requestiat decreasthe SaaS provi der &8s
profit and the customer satisfaction levelhe scheduling algorithms determine where and
which type of resourcshouldbe used by incorpotiag the heterogeneity of laaS providers in

terms of QoS factors, such as price, service initigtime, and data transfer time.

Another Saa%pplicationmodelis enterpriseapplication which is required for day to day
business.For instance, Microsofsales Office365 software packages with three product

editions (for example, small business, small business premium and midsize business) and

each product editiohasa fixed price. The existing customer may require an upgrade in their

service by adding adtibnal user accounts or an upgrade of the software edition at any time.

In practice, the SaaS provider has to handle thesieoand customer requestsline with

the SLA Hencet o achi eve Saa$S p moimizedatal coshaninprgvee ct i ves,
customersatisfaction leved in two ways: 1) minimizing SLA violationsand 2) improve

service quality. @r work further investigates trdynamic tianges in customer requirements

with the consideration of customer profile to pay more personalized attemtastbmers

9



In terms of SLA, the above two scenari@®nsiderpre-defined SLAs, however, in many
circumstancessomecustomes may request special services for special needs. For example,
the Department ofEducation requires the Office 365 withparticular type of template for
teachers and students to automatically provision the classes and lectures when they login the
portal. In this case, the poefined SLA listed on the web site will not suititheequirements.

Thus, our work proposes the antated SLA negotiation framewot& maximize profit and
enlargemarket share for Sad$/ corsidering two factors. Firstly, the dynamic nature of the
Cloud, as service cost and quality are constarthngingandcustomerdave varying needs.
Secondly, timeand market oriented resource allocation, as any delay incurred in waiting for a
resource assignment is perceived as an oveftiéag

1.4 Contributions

This thesis makes the following research contributions towards the understanditige and
advancemendf SLA-based resource management in Cloud environments to achieve the goal
of Cloud service providers:

1. It presents a compreheves taxonomy and survepn SLAs and their creation,
management, and usage in utility computing environments. It discusses existing use
cases from Grid and Cloud computing systems to identify the level of SLA
realization in stat®f-art systems and emerging challenges for futesearch. The
survey not only helps research@ysinderstangrimary design factors and issues that
are still outstanding and crucial but also provides insights for extending and reusing
components of existing markbased Resource Management Systems (RMSs
Therefore, the survey cdrelp inthe design and implementation of mopeactical
and enhanced Sl:Based Cloud resource managemsyatemsin the near future.

The SLAbased RMSs selected for the survey are primarily researcts asrthey
reflect the léest technological advances. The design concepts and architectures of
these researebased RMSs are also welbcumented in publications to facilitate
comprehensive comparisons, unlike commercially released products by vendors.

2. It proposesadmission control and scheduling algorithms for SaaS providers to
effectively utilise heterogeneou€loud resources to maximize proby accepting
moreprofitable customerequestaising the least cost resoura@sile minimizing the
SLA violations for exsting customex. It also conducts detailed performance analysis
using tracebased simulation to highlight the effectiveness of managing the risk of

inaccurate runtime estimates for various scenarios that includes varying workload,

10



deadline, budget, contriatength, service initiation time, performance degradation,
and inaccurate estimated high: low ratio.

3. Thesispr o p 0os e s reguirenentgnigen se€ource provisioning algorithms for
SaaS providers who lease enterprise applications to custoifiees.prgosed
provisioning algorithms consider customer
(e.g. response time) to handle dynamic customeguirement changes and
infrastructure level heterogeneiby minimizing infrastructure and penalty cokt.
also talescare of CSL by minimizingSLA violations and improving the quality of
service (e.g. response time) expected by the custdieralso take into account
customerside parameters (such as the proportion of upgrade requests), and
infrastructurelevel parameers (such as the service initiation time) to compare
algorithms. These algorithms are evaluated by extensive experimental study using
data fromareal Cloud.

4. It proposes a novel automated negotiation framework considering the SaaS Broker as
the onestopshop for customers to efficiently get required sersicEhe automated
negotiation framework performs adaptive and intefiigglateral bargaining of SLAs
between SaaS broleand SaaS providsincluding negotiation policies, protocols,
and strategies. Iproposes decisiemaking heuristics considering time, market
constraints, and trad®f between different issues as well. These negotiation
heuristics are evaluated by extensive experimental study of our prototypevirdme
using data from real Cloud astdiled in particular chapters.

5. It details an implementation of SLAvased Resource Management System

(SLARMS) to demonstratine usefulness athe algorithms proposed in the thesis.
1.5 Methodology

We primarily evaluatedhe proposed algorithmsising the CloudSim[80] simulator with

workloads from real Cloud software systems, such as CloudMinder
1.5.1 Workload

Fromthe customer requests perspectives adopted as workloagdata shared with us ke

cloud provider CA Technologies, whaifers a number of enterprise software solutions to
customers delivered as Safi®8]. The data provided includes the response, refresh and
processing times of an enterprise solution hosted on VMs, as measured by the quality

assurance team. As SaaS availability depends on the infrastructure availability, this

! CloudMinder is Software as a Service product from CA Technologies (Computer Associates).

11

F



information is collected fronthe CloudHarmony benchmarking syst¢b%6], which provides

real data from Cloud providers.

In order to analyse technicahallenges to manage resources, we performed experiments by
collecting real data from both public Cloud infrastructures, such as AmazoPEC&oGrid

[94], and private Clouslfrom industry, such as CA (Computer Associates) hosted private
Cloud.

We modelled and adapted the workload datméet the requirements of our experiments. In
order to evaluate the proposed algorithms under different loads, we rmaqdest arrival rate
usingPoisson distributiosimilar tomany previous workgLOO][101]. Similar as other works,
we use a normal distribution to model all thier parameters (standard deviation = JI¥2
mean)that arenot available from real workload

1.5.2 Experiment System

CloudSim Toolkit[80] is used to modehnd simulate the proposed algorithms for resource
management We simulated data centres with physical machines whose configuration
resembles public Cloud such as Amazon E&@®d image. We map a number of VMs of
different types to physical machines. The general scheduling policy is time shared scheduling.
We have extended the existing Cloud environment and added our algorithm fdyaSeé

resource management.

We also impleranted a prototype system calleéservice Level Agreement Resource
Management Syste(SLARMS) to validate and demonstrate the usefulness and prégtizfal
the proposed algorithms and techniquese detai of experiment settings of our works will
be explainedhroughouthe thesis.

1.6 Organization

The rest of this thesis is organizeas follows (Figure 1.2): Chapter 2 presents a
comprehensive survey of how SLAs are created, managed and used incatifiiyting
environments in practice. Chapter 3 proposes an admission control and scheduling algorithm
that utilizes multiple resources to minimize the penattyst of accepting a new request,
which may violate the SLA objectives. Chapter 4 proposes customer drivenb@kéd
resource provisioning foweb-based enterprise applications by minimizing the cost and the
number of SLA violations. The proposed provisioning algorithms consider customer profiles

andthepr ovi der s parameters to handle dynamic

12

c

u



heterogeneity. Chapter 5 proposes a novel automatecbassnl negotiation framework
considering the SaaS Broker as the -stopshop for customers to get required vies

efficiently. Chapter 6describesan implementation of SLAased Resource Management
System todemonstrate the usefulnesstbé proposed algorithmsChapter 7 concludes and

provides directions for future work.

Chapter 2
Taxonomy and Survey

Maximize profit by minimizing cost

Insastl:ﬁ:eD;ngEfd 777777777 Ad thpter g’ : wol | Enlarge market shareby accepting

Resources mission £-ontro more proftable requests in a way to
avoid SLA violations for existing
customers

Issue Dynamic Chapter 4: . Maximize profit by minimizing cost

Request Changes Customer Requrements ?nven Resource- ... Enlarge market shareby

anagemen minimizing SLA violations and

improving CSL

Issue Special | Chapter 5: Maximize profit by minimizing cost

customer requests SLA NegotiatonFramework | 7777 Enlarge market share by improving
CSL

Chapter 6
Prototype of SLAbased RMS

Chapter 7
Conclusions and Future Directions

Figure 1.2 Thesis Organizations

The core chapters are derived from various research workhatebeen published during

the course of candidature as detailed below:

AChapter 2is derived from:
Linlin Wu and Rajkumar BuyyaService Level Agreement (SLA) in Utility
Computing SystemsPerformance and Dependability in Service Computing:
Concepts, Techniques and Research Directi®tages: 25, V. Cardellini et al.
(eds), ISBN: 9781-60-9607944, IGI Global, Hershey, PA, USA, July 2011.

A Ch aig desved frdam:
Linlin Wu , Saurabh Kumar Garg, and Rajkumar Buy$iAbased Admission
Control for a Softwar@asa-Service Provider in Cloud Computing Environments
Journal of Computer and System Sciences, Volume 78, No. 5, Pagesl2B#B0
ISSN 00220000, Elsevier Science, Amsterdam, The Netherlands, September 2012.

AChapter4 is derived from:

13


http://www.buyya.com/papers/SLA-UtilityComputing2011.pdf
http://www.buyya.com/papers/SLA-UtilityComputing2011.pdf
http://www.buyya.com/papers/AdmissionControlInClouds-JCSS.pdf
http://www.buyya.com/papers/AdmissionControlInClouds-JCSS.pdf

Linlin Wu, Saurabh Kumar Garg and Rajkumar Buygl Abased Resource
Allocation for a Software as a Service Provider in Cloud Computing Environments
Proceedings of thélth IEEE/ACM International Symposium on Cluster, Cloud and
Grid Computing (CCGrid 2011, IEEE CS Press, USA), Los Angeles, USA, May 23
26, 2011.

Linlin Wu , Saurabh Kumar Garg Steve Versteeg, and Rajkumar B&ysbased
Resource Provisioning for Softwaas-a-Service Applications in Cloud Computing
EnvironmentsIEEE Transactions on Services Computing (TSC), ISSN: -1339,
IEEE Computer Society Press, USA (in press, accepted on Oct. 11, 2013).

AChapter Sis derived from:
Linlin Wu , Saurabh Kumar Gar&ajkumar Buyya, Chao Chen, and Steve Versteeg,
Automated SLA Negotiation Framework for Cloud Computirgceedings of the
13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing
(CCGrid 2013, IEEE CS Press, Los Alamitos, CA, USA),fDehe Netherlands,
May 1316, 2013.

14


http://www.buyya.com/papers/SLA-SaaS-CCGrid2011.pdf
http://www.buyya.com/papers/SLA-SaaS-CCGrid2011.pdf

2 Service Level Agreement (SLA) in Utility
Computing Systems

This chapter presentsc@mprehensivasurvey ofhow SLAs are created, managead usedn

utility computing environmest We discussexisting use cases from Grid and Cloud computing
systems with major emphasis on resource management to identify the level of SLA realization in
stateof-art systems and emerging challenfpeduture research.

2.1 Introduction

As discussed beforefility computing [62] offers computing services on demand, thus it makes

them consumed as other utilities, such as water, electricity, gas, and telephony. With this new

service model, users no longer have to ihvesavily on or maintain their own computing
infrastructures, and they are not constrained to any specific computing service provider. Instead,

they can outsource jobs to service providers and just pay for what they use. Utility computing has

been increasgly adopted in many fields including science, engineering, and bua@serid,

Cloud, and Serviceriented computing are some of the paradigtimat enableddelivery of

computing as a utility. In these computing systems, different Quality of Service (QoS) parameters

have to be guaranteed to satisfy userés request

formal contract between service prad@r and consumer to ensure service quility.

A typical utility computing system architecture is shown Rigure 2.1 with the following
components: the User/Broker, SLA Management, Service Request Examiner, and
Resource/Service Provider. User or Broker submits its requests via applications to the utility
computing system, which includdise bottom three layersThe Service RequésExaminer is

responsible for Admission Controlhe SLA Managemenincludes SLA establishment and

15



enforcementThe Resource Allocatiocomponenttakes care of resources scheduliRmally,

theResource or Service Provider offers resources or services.

User/Broker ﬁ User/Broker ﬁ User/Broker !ﬂ‘
>
A

e

Figure 2.1 A typical architectural view of utility computing system

N/ 4
| Web Applications | | Mobile Applications | | Desktop Applications |
$ 7/} A

""""""""" \ Al A
|
Service Request Examiner and Admission Control |

C
= A |
< 2 1
. |
8 SLAManagement and Resource Allocation |
3 " ! 4 ,
=3 \ 2 \ 2 \ 2 1
a Resource/Service Resource/Service Resource/Service | 1
0) Provider Provider Provider 1
ﬁ 7 7 7 1
g |
|
|

In the above architecture, SLAs are used to identify parties who engage in the electronic
business, computation, and outsourcing procemségo specify the minimum expectations and
obligations that exist between partii]. The most concise SLA includes both general and
technical pecifications, including business parties, pricing policy, and properties of the resources
required to process the servif@3]. According to Sun lérosystems Internet Data Center
Gr o u p 6 954]r eegpanl ISEA sets boundaries and expectations of service provisioning and
provides the following benefits:
1 Enhanced customer satisfaction levelA clearly and concisely defined SLiAcreases
the customersatisfaction level as it helps providers to focus on the customer
requirements and ensurteatthe effortis put on the right direction.
1 Improved Service Quality: Each item in an SLA corresponds to a Key Performance
Indicator (KPI) that specifies the customer service withior@ganization
1 Improved relationship between two parties A clear SLA indicategshe reward and
penalty policief aservice provisionThe @nsumer can monitor services according to
Service Level Objectives (SLSp which are QoS itemspecified in the SLA. Moreover,

the precise contract hapartiego resole conflicts more easily.

16



A clearly defined lifecycle is essential for effectik@alizationof an SLA. Ron, S. et a[51]

define SLA lifecycle in three high level phases, which argdtheation phagiperation phase

anddemoval phagi Sun Microsystems Internet Data Center Grfid) defines a practical SLA

|l ifecycle in six steps,rsdjchdafienédédbbAAdyvedesieatk

Omoni tor SLA violationbo, 6terminate SLAG, and Oce

The realization of an SLA can be traced back to 1980s in telecommunication companies.
Furthermore, the advent of Grid computingnferces the necessity of using SLI&2].
Specifically, in serviceriented commercial Grid computirjg2], resources are advertised and
traded as services based on an SLA after users specify various levels of service required for
processing their jobjgl9]. However, SLAs have to be monitored and assured proja2jySLA
management has been addrespadially by frameworks such as W&jreement[12] and

WSLA [40].

Recently, Cloud computing has emerged as a new platform for delivering utility computing
services. In Clouds, infrastructureagibrm and application services are availablelemand and
companies are able to access their business services and applications anywhere in the world
whenever they need. In this environment, massively scalable systems are made available to end
users as aervice[20]. In this scenario, where both request arrival rate and resources availability

continuously vary, SLAs are used to ensure that service quality is kept at acceptable levels.

This chapter re\ads key design factors and issues that are still significant in utility computing
platforms such as Grids and Clouds. It provides insights for extending and reusing components of
the existing SLA management frameworks and it aims to be a guide in designithg

implementing enhanceslLA-basednanagement systems

This chapter presents key use cases riiect the latest technological advances. The design
concepts and architectures of these works are-deelimented in publications to facilitate

comprehensivénvestigation
The rest of the chapter is orgamiz as follows: Utility architecture and SLA uindational

concepts are summarized in Sectioh th Section2.3, the key challenges and solutions for SLA

management are discussed. SLA use cases are proposed in 3ectibhe open problems

17



addressing some of the issues in current systems are pceseBectior2 5. Finally, the chapter

concludes with the open challengesSLA management in Secti@b.
2.2 Utility Architecture and SLA Foundations

In this section, initially, a typical utility computing architecture is presented. SLA definitions
from different areas are summarized in SectionZ2.8LA components are described in Section

2.2.3. In Section 2 4, two types of SLA lifecgle are presented and compared.
2.2.1 Utility Architecture

The layered architecture of a typical utility computing systeshi®vn inFigure 22. From top

to bottom it is possible to identify four layers,User or Broker submits its requests using
various applications to the utility computing system, tBervice Request Examineris
responsible for admission contr@lLA Management balances workloads, andResource or
Service Provideroffers resources or services User s or Brokers, who act
their service requestsf using applications, from anywhere in the world, to be processed by
utility computing systemsWhen a service request is submitted, the Service Request Examiner
(SRE) uses Admission Control mechanism to interpree g u €eX réquirements before
determining whther b accept or reject iafter interacting with SLA Management component
which is responsible for enforcing SLAhus, the SREnsures that there is no overloading of
resources whereby many service requests cannot be fulfilled successfullio dimited

availability ofresources/services.

The SLA Management component is responsible for resource allocation and consists of several
components: Discovery, Negotiation/Renegotiation, Pricing, Scheduling, Monitoring, SLA
Enforcement, Dispatching anéccounting. The Discovery component is responsible for
discovering service providers that can satisfy user requirements. In order to define mutually
agreed terms between parties, it is common to put in place price negotiation mechanisms or to
rely on qually metrics. The Pricing mechanism decides how service requests are charged. Pricing
serves as a basis for managing supply and demand of computing resources within the utility
computing system, and facilitates in prioritizing resource allocations. Onceethatiation
process is completed, the Scheduling mechanism uses algorithms or policies to decide how to
map requests to resource providers. Then the Dispatching mechanism starts the execution of

accepted service requests on allocated resources.

18



The Monitoring component consists of a Resource Monitoring mechanism and a Service Request
Monitoring mechanism. The Resource Monitoring mechanism keeps track of the availability of
Resource Providers and their resource entittements. On the other hand,vice Bequest
Monitoring mechanism keeps track of the execution progress of service requests. The SLA
enforcement mechanism manages violation of contract terms during the exebuioto the

SLA violation, sometimes Renegotiation is needed in order t@ kewoing trading. The
Accounting mechanism maintains the actual usage of resources by requests so that the final cost
can be computed and charged to the users. At the bottom of the architecture, there exists a
Resource/Service Provider that comprises ipleltservices such as computing services, storage

services and software services in order to meet service demands.

User/Broker ﬁ User/Broker q User/Broker\g’

I Web Applications I I Mobile Applications I I Desktop Applications I
N AN AN
[—==== Yoo o mmmm—_—=-—=-=- V= ==== 1

Service Request Examiner and Admission Control
- Userdriven Service Management
- Computational Risk Management
- Autonomic Resource Management

N

!
| B
b

- — 7 -
. s - -
W i
J - A - |
L - - - k

I |
1 |
| |
I |
c | 1
=l \ 2 |
i I SLA Management and Resource Allocation |
_% : Discovery Pricing Re/Negotiation Accounting :
s |l ) . . SLA L !
‘g 1 Scheduling Dispatching Enforcement Monitoring 1
o | A A A I
% : \ 4 \ 4 \ 4 :
3 . Resource/Service Resource/Service Resource/Service I
I Provider Provid’er - Provider I
I |
1 |
| |

Figure 2.2 SLA-basedUtility Computing System Architecture

2.2.2 SLA Definitions

Dinesh et al[27]d e f i ne a mn eldlick staesent ofi expectations and obligations that
exist in a business relationship between two organizations:eiivéce provider and custoner.

Since SLA has been used since 1980s in a variety of areas, most of the available definitions are
contextual and vary from area to area. Some of the main SLA definitions in Information

Technology related areas are summarinetable2.1.

19



Table 2.1 Summary of SLA definitions classified by the area

Area Definition Source
Web ASLA is an agreement wused HP Lab[36]
Services It defines the understanding and expectations from se

provider and service consul

Networking [AAn SLA is a contract bet w|Research
a customer that specifies, usually in measurable terms, | Project
services the network service provider will supply and w
penalties will assss if the service providaramot meet the
established goal so.

Internet ASLA constructed the | egal |Internet NG51]
All parties involved are users of SLA. Service consumer
SLA as a legally binding description of what provider promi
to provide. The service provider uses it to have a defil

binding record of what is It

Data Center | i S Lig\a formal agreement to promise what is possiblg Sun Microsystems
Management|pr ovi de and provide what i §Internet Data
Center grouf54]

2.2.3 SLA Components

An SLA defines the delivery ability of a provider, the performance targetcob n s umer s 6
requirement the scope of guaranteed availability, and the measurement and reporting
mechanism¢$50].
Jin et al.[36] provided a comprehensive description of the SLA components, includhiogtré
2.3):
Purpose Objectives to achieve by using an SLA
Restrictions: Necessary steps or actions that need to be takesngare that the
requested level of services are provided.
Validity period: SLA working time period
Scope Services thawill be delivered to the consumers, and serviceswvifiainot be
covered in the SLA
9 Parties: Any involvedorganizatios or individuals involvedandtheir roles (e.g. provider

and consumer).

20



9 Servicelevel objectives(SLO): Levels of services which both parties agree on. Some
service level indicators such as availability, performance, and reliability are used.

1 Penalties: If delivered ®rvice does not achievBLOs or is below the performance
measurement, some penaltig occur.
Optional services Services that are not mandatory but might be required.
Administration : Processes that are used to guarantee the achievement oa&i @

related organizational responsibilities for corltngl theseprocesses.

Purpose

Admin.

Restrict.

Optional
Services

Validity
period
SLA

Components

Penalty Scope

Parties

Figure 2.3 SLA Components
2.2.4 SLA Lifecycle

Ron et al[51] define the SLA life cycle in three phagq&sgure 2.4). Firstly, thecreation phase,

in which the customes find service provider who matches their service requiresaesgcondly,
the operation phase,in whichacustomer has reashly access to the SLAhirdly, theremoval
phase,in which SLAis terminatel and all associated configuration information is removed from

the service systems.

21



[ 1.Creation Phase]

SLA Lifecycle
Three Phases

[ 3. Removal Phase] 2. Operation PhasF

Figure 2.4 SLA high level lifecycle phases, according tthe description ofRon et al.[51]

A more detailed life cycle has been characterized by the Sun Microsystems Internet Data Center
Group[54] , which includes six steps for the SLAelicycle: the first stes discover - service
provi,deirnsbwhere service providers are. Theocated a:
second stefs definei S L Awhjch includes definition of services, parties, penalty policies and

QoS parametersin this step it is possible to negotiate between parties to reach a mutual
agreementThe hird stepis ¢establishi a g r e e nirewhichdanSLA template is established

and filled in by specific agreement, and parties are starting to comrttietagreemnt. The

fourth stepis dmonitor T SLA vi ginawhicho m&@ provi der s d&elivery
measured against to the contradte ffth stepis6 t e r mii SilaAiéewhich SLA terminates

due to timeoubr any parg Ovielation. The sxth stepis enforce-penal ti es f or SLA vi
if there isany party violating contract termtghe corresponding penalty clauses are invoked and

executedThese steps are illustratedrigure 2.5.

The mapping between three high level phases and six steps of SLA lifecycle is shbalbein
2.2 Mapping between two types of SLA lifecycEhe O6cr eati ond phase of th
maps to the first three step§ o t he ot her Il i fecycl e. I n addition

phase lifecycle is the same as the fourth step of the other lifecycle.

22



Table 2.2 Mapping between two types of SLA lifecycle

Three phases Six steps
1. 1.2.3

2. 4.

3. 5.6.

The six steps SLA lifecycle is more reasonable and provides detailed fine grain information,

because it includes important processes, such as re/negotiation and violation control. During the

service negotiation or renegotiation, a consumer exchanges a&nahdontract messages with a

provider in order to reach a mutual agreement. The result of these processes leads to a new SLA

[66]. In six steps |ifecycl

|l ifecycle does

e, steps 2 and 3 map

not i nclude t hem. Further mor e,

important because it motivates parties adhere to follow the contract. We believe that the six steps

formalization of the SLA life cycle provides a better characterization of the phenomenon and

from here onwards we will refer to this as SLA life cycle.

1.Discover Service
Provider
~N
6. Enforce Penalties for
SLA Violation
J
-
SLA Lifecycle
Six Steps
.
~N
5.Terminate SLA
J

2. Define SLA

3. Establish Agreement

4. Monitor SLA Violation

Figure 2.5 SLA life cycle six steps, as defined bgun Microsystems Internet Data Center Group54]

23

1



2.3 SLA in Utility Computing Systems

As highlighted by Pattersdb], there are many challenges involved in developing software for a
million users to use as a service via a data center as compared to distributing software for a
million users to run on theimdividual personal computerslsing SLAs to define service
parameters that are required by users, the service provider knows how users value their service
requestshenceit provides feedback mechanisms to encourage and discourage service request
submissias. In particular, utility models are essential to balance the supply and the demand of
computing resources by selectively accepting and fulfilling limited service requests out of many
competing service requests submitted.

However, in the case of servipeoviders making available a commercial offer to enable crucial
business operations of companies, there are other critical QoS parameters to be considered in a
service request, such as reliability and trust/security. In particular, QoS requirementsbeannot
static and need to be dynamically updated over time due to continuing changes in business
operations and operating environments. In short, there should be greater importance on customers
since they pay for accessing services. Therefore, the emphdiis séction is to describe SLA

management in utility computing systems.

2.3.1 SLA Management inUtility Computing Systems

SLA management includes several challenges and in this section we will discuss them as part of

the steps of the SLA life cycle.

Discover- Service Provider

In currentutility computing environments, especially Grid and Cloud, it is important to
locate resources that can satisip n s u me r s 0 efficiengfyuandroptimalyi32]. Such
computing environmestcontain a large collection of different types of resouredsch are
distributed worldwide. These resources are ownatlogerated by various providers with
heterogeneous administrative policies. Resources or services can join and leave a computing
environment atany time Therefore,their status changes dynamically and unpredictably.
Solutions for service provider discoverproblens must efficiently deal with scalability,

dynamic changes, heterogeneity and autonomous administration.

24



Define- SLA

Once service providers have been discovered, it is necessary to identify the various elements

of an SLA that will be signed bygeeeing metrics. These elements are called service terms

and include QoS parameters, the delivery ability of the provider, the performance target of

di versity component s of user 6s wor kl oads, t
performance, the meagment and reporting mechanisms, the cost of the service, the data set

for renegotiation, and the penalty terms for SLA violatiorthis stage of the SLA lifecycle,
measurement metrics and definition of each of these elements is done by a negotiation
process between both partid$][25].

Other challanges are related ttie negotiation process. Firstly, parties may use different
negotiation protocols or they may not have the common definition of the same §&®ice
Secondly, service descriptions, in an SLA, must be defined unambiguously and be
contextually specified by the means of its domain and actor. Therefor8LA language

must allow the parameterisation of service descrigd@h Moreover it should allow a high
degree of flexibility and enable a pise formalisation of what a service guarantee means.

Another aspect is how to keep SLA definition consistent throughout the entire SLA lifecycle.

Establish- Agreement

In this step an SLA template constructedA template has to includall aspectsof SLA
componentsln utility computingenvironmentsto facilitate dynamic, versatile, and adaptive

IT infrastructures, utility computing systems have to promply react to environmental
changes, software failures, and other events which may influence ynet e més behavi
Therefore,how to manageSLA-basedadaptive systemswhich exploit selfrenegotiaibn

after system failurebecomes an open iss[29]. Although most of the works recognise SLA
negotiation as a key aspect of SLA managemet, recent works only providangitjlet on

how negotiation (especially automated negotiation) can be realisgendmaltients provide

their QoS requirementshowever given the dynamic and hetergeneous nature of underline
computing system, it is not trivial for the service providers to reflect or gurantee the quality

aspects of SLA components & template.

Monitor - SLA Violation
SLA violation monitoringbegins once aagreemenhas beerestablishedlIt plays a critical

role in determining whether SLOs are achieved or violalé@re are three main concerns.

25

h

(0]



Firstly, which party should be in charge of this pro@efkere are two types of SLAS,

negotiable ad nornegotiable. When a nemegotiable SLA is offered, the provider

administers those portions stipulated in the agreement. In the case of PaaS, drifaa

usually the responsibility of the cethsaumer s ¢
residual services specified in the SLA, with some offset expected by the provider to ensure

basic quality of servicfl83]. In the case of SaasS, it is the custombBo monitorsthe quality

of service and SaaS provider will be responsible for the SLA violations, and this
responsibility might be transferred to the PaaS or laaS providers if SaaS using their services.
Secondly, how fairness can be assured between pditiedly, how the boundaries of SLA

violation are defined.

SLA vi ol atunfolfiimente amfs e r v i Aceordimgga teeePnireiplds .of
European Contr aawatf ul d& w,ls|defibed task defective pgerformance
(parameter monitored éower level than agreedlate performance (service delivered at the
appropriate level but with unjustified delayahdno performancdservice not provided at

all). There are threbroadprovisioningcategories based on the above definifid®)]. GAll-
or-Nothingd provisioning, characterizes the case in whithShOs must be satisfied or

del i ver ed byPartiald e p p 0o v éniifiessoma LOs as mandatory ones,

and must be met for the successful service delivery by both paitiesghted Partia
provisioning is the case in which thprovision of a service meets SLO if it has a weight
greater than a threshold (defined kthe clientd [48]. QAll-or-Nothingd pr ovisasedo ni ng
in most cases of SLA violatiomonitoring, becauseviolation leads to complete failureand
negotiation to create a new SLA. An SLA contamandatory SLOs that must be delivered

by the providerHence, indPartiald p r o v ialbpartesassiggthese SLOghe highest

priorityt o reduce violation r i siBusinedvVaw®d mac metalseir 8L O
of the importance of a particular St€rm?The more important the violated SLO, the more
difficult it is to renegotiate the SLA, because any party does not want to lose their

competitive advantages in the market.

Terminate- SLA

In terminating a SLA, a key aspect is to decide when it should be terminated, and once
decided, all associated configuration information is removed from the service systems.

If the termination iddue toa SLA violatia, two questions need to be answerglp is the

party that triggered this activigndwhat are the consequencestof

26



Enforce Penalties for SLA Violation
In order to enforce penalties for SLA violation, penalty clauses are need to be defined. In
utility computing systems, where consumersd gorovides are globally distributed, the

penalty clauses work differently in various countries.

This leads to two problems, which particular clause should be used and whether it is fair for
both sides. Moreover, due to the different types of violation, the penalty clauses need to be
comprehensive. Recently, some works used the linear model forypentdtcement of SLA
violations in simple contextg!2][63]. The linear model exhibits a poor performance, thus,
the selection of these best models for SLA violation penalty clauses enforcement is still an
open problem.

2.3.2 Solutions for SLA Management n Utility Computing Systems

This section introduces solutions for the problems presented in the previous section. Six SLA
management languages and frameworks are analyzed, because they can be used as solutions in

multiple steps of SLA lifecycle.

SLAManagement Frameworks and Languages

SLA can be represented by specialized languages for easing SLA preparation, automating
SLA negotiation, adapting services automatically according to SLA terms, and reasoning
about their composition. In this section wedaluce six languages for SLA specification and
managementAmong them, th&VS-AgreemeniandWeb Service Level Agreement (WSLA)

are the most popular and widely used in research and industry. The comparison among all of

these languages $hownin Table2.3.

Bilateral Protocol: Venugopalet al.[56] presented a negotiation mechanism for advanced

resource reservation. It is a protocol for negotiating SLAs based on Rubinsteins Alternating

Offers protocol for bargaining between partiesyAvarty is allowed to modify the proposal

in order to reach a mutualgreed contract. The authors implemented this protocol by using

the Gridbus Broker on the customero6s side and
enable platform independence daare therefore used to communicate between consumers

and providers because the Gridbus Broker is implemented in Java, and Aneka is a .Net based

27



enterprise Grid. The advantage of these high level languages is that they are object oriented
and web servicesnable semantic definition. Thus, this protocol supports SLA component

reuse, and type and semantic definition.

WS-Agreement: Open Grid Forum (OGF) has defined a standard for the creation and the
specification of SLAs called Web Services Agreement $ipation (WSAgreement)[12].

It is a language and a protocol for establishing, negotiating, and managing agreements on the
usage of serviceat runtime between providers and consumers. It uses an XYkded
language foispecifying the nature of an agreement template, which facilitates discovery of
compatible providers. Its interaction is based on request and response. Moreover, it helps
parties in exposing their status, so SLA violation can be dynamically managed digdi veri
Originally the language did not support negotiation and currently it has been complemented.
WS-Agreement Negotiation, which lies dhe top of WSAgreement and describes the
re/negotiation of the SLA. Its main feature is the robust signaling protimeoithe

negotiation.

Web Service Level Agreement (WSLA)WSLA [40] is a framework developed by IBM to
specify and monitor SLA for Web Servicels. provides a formal XML schema based
language to express SLAs, aadchitectureto interpret this language at runtime. It can
measure, and monitor QoS parameters and report violations to the party. It separates
monitoring clauses from contractual termsr foutsourcing purposes. It provides the
capability to create new metrics over existing metrics to implement multiple QoS parameters
[40]. However, the semantic of metrics is not formally defifemhce there are limitations

for the creation of new terms base on existing terms.

WSOL.: Web Service Offerings Language (WSOL) d e
interaction [53]. It provides template instantiation and reuse of definitions. WSOL and

WSLA support definition of management information and actions, such as violation
notifications. However, they are not defined by a formal semantic. WSOL and QML (Quality
Management Language) support type systems allowing the same SLA to be described either

in abstract or specific valués create a new SLALhe generalizatiorrelationships beveen

SLAs facilitate definitions of SLA types.

28



SLANg: Skene et al[55] propose Service Level Agreement Language (SLAng), which uses
Extensible Markup Language (XML) to define SLAs. It is motivated by the fact that
federated distributed systems must manage the quality of all aspects of their deployment.
SLANng is different fron other languages and framewark&rstly, it defines an SLA
vocabulary for Interneservices. Secondly, its structure is based onghecific industry
requirement, aiming to provide usable terms. Thirdly, it is modeled using Unified Markup
Language (UML)and defined according to the behavior of services and consumers involved
in service usage, unlike other languages, such as WSLA and WSOL, where QoS definition is
based on metrics. Moreover, it supports third party monitoring schemes. Howevers dflack

the ability to define management information, such as associated financial terms. Thus, it is

not suitable for commercial computing environments.

QML: QML [31] define a type system for SLAs, allowing uséo define their own
dimension types. Howeveit does not support extension of individual defined metrics
becausehe exchange of SLAs between parties requires a common understanding of metrics

QML definessemantic for both its type system and its notion of SLA conformance.

QUO: It is a CORBA specific framework for QoS adaption based on prg&B3sit includes

a quality description language used for describing QoS parameters, adaptations and
notifications. QUO properties are the response of invoking instrumentation methods on
remote ofects. Like WSLA, no formal constraints are placed on the implementation of these

methods.

Discover- Service Provider

In the Grid computing communityitzgerald[28] introduced theMonitoring and Discovery
System,Gong et al]32] proposed the VEGA Grid Project and also relevant is the work of
lamnitchi et al[35].

Monitoring and Discovery System (MDS) is the informatiorvee described in the Globus

project[28]. In its architecturelightweight Directory Access Protoc@LDAP) is used as

directory service, and infmation stored in information servers are organized in tree

topol ogy. In utility computing systems, resour

nature. However, in MDS, the relationship between information and information servers is

29



static. Inadi t i on, service provider6s i nfor mat.

changing environments, whilst LDAP is not designed for writing and updating information.

VEGA Infrastructure for Resource DiscoveMIRD) hasthreelevel hierarchy architecture.

The top level is a backbone, which is responsible for the-daterain resource discovery and
consists of Border Grid Resource Name Servers (BGRNS). The second level consists of
several domains and each domain consists al Basource Name Servers (GRNS). The
third level includes all clients and resource providers. There is no central control in this
architecture, thus resource providers register themselves to GRNS server within a domain.
When clients submit requests, GRNSpenses to them with requested resources. The
limitation of this architecture is that it only focuses on the issue of scalability and dynamic

environmental changes but not on heterogeneity and autonomous administration.

lamnitchi et al.[35] propose a resource discovery framework using -fepeer (P2P)
technologies in Grids. P2P architecture is fully distributed and all the nodes are equivalent.
However, one major limitation of their work is that every node has little knowledge about
resources distribution and their status. Specifically, when there is large number of resource
types or the worset is very large, the opportunity for inaccurate ltesncreases, because

the framework is not able to use history data to accurately discover resources.

Define- SLA and EstablishAgreement

6DefiiSLeAd and TAHsteaebreinghd are two dependent
facilitate their development. For example, WSLA and-A{Beement are the most widely
used languages in these steps. Creation and Monitoring of Agreements (CREMONA) is a
WS-Agreemen framework implemented by IBM[26]. It proposes a Commitment
Agreement and architecture for the Wg§reement. All of these agreements are normat WS
Agreements, following a certain naming convention. This protocol basically atirsolving
problems related to the creation of agreements on multiple sites. However, it is unable to
solve limitations when service providers and consumers have different standards, policies,
and languages during negotiations. For example, if a consusesrWSLA but a provider

uses W&Agreement, the interaction is actually not possible. In order to solve this, Brandic et
al. [19] proposed a Metdlegotiation Architecture for SLAware Grid Services based on

metanegotiation documents. These documents record supported protocols, document

30

st

€



languages, and the prerequisites for starting negotiations and establishing agreements for all

participants.

SLA-basedResource Management Systems (RMS) have been developed for addressing
negotiation problems in Grids, for exampMjurman et al.[61] state a st of auction
parameters and a pritased negotiation platform, which serves as an auction server for
humans and software agents. Nevertheless, their solution only suppettnr@msional
auction (only focus on price), but not multiglenensional auctiag) which are important in

utility computing environments.

31



Table 2.3 Comparison of SLA Management frameworks and Languages

Na me Type Domai n|Dynami c|Negoti alMetric|Deyne Suppol Provide [DefingCope
Establi ManagemReus g Type Semantwith
Managem Actions Systems i fec
Bilateral Java, Origin|Yes Yes Yes Yes Yes. Yes SupponStep
Protocol and for r € We b Step
Servic|lreseryv Ser vi ¢
based Gri ds.
protoc
WS XML Any do|Establi|Re/ nego|Do nYes Yes Yes Not Step
Agreernl angua manage |with -|define formalstep
Framew dynami clAgreemelspeci f def i ne
A prot Negoti ajof me
associ
wi t h
agreem
par ame
WSLA Provid|{Origin|lEstabli|Re/ nego/All ows|Yes Yes N A Not Step
|l angual|for manage creati formalstep
Framew|servic|dynamic new me def i ne
runtim
archit
QML |l angual|Any Do|Yes Yes Al l ows|Yes Yes Yes, Yes Step
creati al |l ow step
new me def i n
of M

32



type

syste
WS OL XML Origin|Yes OriginaNA Ye s Ye s Ye s N o Step
for not sup step
Servic
QUO CORBA Any do|Yes Yes NA Yes Yes Yes N o Step
speciy step
framew
SLAng | XML Origin|NA Yes N o N A Yes Yes Yes Step
Langua|for But ba Step
I ntern behavi
enviro SLA pa

33




Monitor - SLA Violation

Monitoring infrastructures are used to measure the difference between thgreed and
actual service provision between partigd8]. There are three types of monitoring
infrastructures, which are trusted third party (TTP), trusted module on the provide side, and
trusted modie on the client side. Nowadays, TTP provides most of functionalities for

monitoring in most typical situations to detect SLA violation.

Terminate- SLA

There are two scenarios in which an SLA may be terminated. The first is termination due to

normal timeout. The second one is termination because any party violated its contract terms.

Normally, in Clouds, this step is conducted by customers and termination typically is caused

by nor mal ti me out or the providerrigate SLA vi ol
SLAs depending on the task priorities. If the reason for SLA termination is violation, then the
O0Enforce Penalties for SLA Violationd step of

is normally performed manually.

Enforce Penalties for SL¥iolation

A penalty clause can be applied to the party who violates SLA td¥ired. is a direct
financial deposit being negotiated and agreed between p&tesnd isa decrease in price

along with the extra compensation for any subsequent interalctiother words, this option

is according to the value of loss caused by the violation. In this case, TTP is usually used as a
mediator. The workflow for this option is that clientansfer theirdeposit, bond, and any

other fees ito the Third Part§ s oant and then if the SL®have been met, the money is

paid to provider via TTP. Otherwise, the TTP returns the amount of fees back to the
consumer as compensation for SLA violatiolibe SLA violation has two indirect side
impacts on providersThe firstis that consumers use less service from the provider in the
future.The second isthgt r ovi der 6 reputation decreases and
to choose this provider subsequently. The major indirect influence on consumer is future

request wi be rejected due to bad credit record.

A major issue, in the above discussion, is the variety of laws enforced in different countries.
This probl em c¢ ahoiceboklawsclals,e dwhbiyc ha idnhdi cates expl
countryo | aws aarcendpplied aplpeanat teniplatedi2den par ti

can be used to refine these claygd&s.

34



2.4 SLA Use Casesn Utility Computing Systems

Utility computing provides access to -demand delivery of IT capabiliseto the consumer
according tocosteffective pricing schemaypically, a resource in a Data Center is idle during

85% of time[63]. Utility computing provides a way for enterprises to lease this 85% of idle
resource or to use outsourcing to pay for resources according to their usage. Two approaches of
utility computing hat achieve above goals are Grid and Cloud. In the rest part of this section, we

present use cases in Grid and Cloud computing environments.
2.4.1 SLA in Grid Computing Systems

In this section we introduce the definition of Gadmputing, and some recesignificant Grid

computing projects that have focused on SLAs and enabled them in their frameworks.

According t o BAG@ridaatype ofpdrallel an@dsWiiuted sfistem that enables

the sharing, selection, and aggregation of geographjcalldi st ri but ed déaut onomol
dynamically at runtime depending on their avail
guality-of-service requirement$22].6 Gr i d computing i s a paradigm
typically used for access to NPC and scientific resources, even though it has been also used in the

industry.

SLA has been adopted in @rcomputing, and many Grid projects are SLA oriented. We classify
them into three categories, which are SLA for business collaboration, SLA for risk assessment,

and SLA renegotiation supports dynamic changes.

SLA for Business Collaboration: GRIA (The GRIAProject)is a serviceoriented infrastructure

designed to support B2B collaborations across organizational boundaries by providing services.
The framework includes a service manager with the ability to identify the available resources
(e.g. CPUs and apphtions), assign portions of the resources to consumers by SLAs, and charge
for resource usage. Furthermore, a monitoring service is responsible for monitoring the activity

of services with respect to agreed SLOs.

The BREIN consortium(The BREIN Project,20062009) defines a business framework
prototype for electronic business collaborations. Some capabilities of this framework prototype

include Service Discovery with respect to SLA capabilities, SLA negotiation in a -sogie

35



phase, system monitorirend evaluation, and SLA evaluation with respect to the agreed SLA.
The WSLA/WSAgreement specifications are suggested for SLAs management. The project
focuses on dynamic SLAs. This initiative shows that the industry is demonstrating their interest

in SLA management.

In the work of Joita et al[37], WSAgreement specification is used as a basis to conduct
negotiation between two parties. Agentbased infrastructure takes care of the agreement offer
made by the requesting party. In this scenario, manyt@oae negotiations are considered in
order to find the service that best matches the offer.

Risk AssessmentThe AssessGrifll5] project focuses on risk management and assessment in
Grid. It aims at providing service providers with risk assessment tools, which help them to make
decisons on the suitable SLA offer by assigning, mapping, and associating the risk of failure to
penalty fees. Similarly, erdsers get knowledge about the risk of an SLA violation by a resource
provider that helps them to make appropriate decisions regaadogptable costs and penalty
fees. A broker is the matchmaker between-esers and providers. W&greemeniNegotiation

protocol is responsible for negotiating SLAs with external contractors.

SLA renegotiation supporting dynamic changesludwig et al.[44] propose an extension of
WS-Agreement allowing a rutime SLA renegotiation. Some modifications are proposed in

t he ©6Guar ant e ehkagraadentsehentaiarmdrna newf section is added to define
possible negotiations, to be agreed by parties before the offer is submitted. The limitation is that

it does not support rutime renegotiation to adapt dynamic operational and environmental
changeshecause after the agreementds acceptance,
and the consumer. Sakellariou et[&B] specify the guargtee terms of an agreement as variable

values rather than fixed values. This work aims at minimizing the numberngigmiations to

reach consensus with agreement terms. BabelNet, is a Protocol Description Language for

automated SLA negotiation, has bgeoposed34] to handle multipledimensional auctions.

2.4.2 SLA in Cloud Computing

Cloud computing is paradigm of service orientedility computing.In this sectia we introduce
a definition of Qoud computing and SLA use cases in industry and academia. Finally, we

compare SLA usage difference between Cloud computing and traditional web services.

36



Cloud Computing

Based on the observation of taesence of what Clouds are promising to be, Buyya et al.
(2009) propose t hAaCldudisdtypevdf paglleldmdfdistibitead system A
consisting of a collection of intaronnected and virtualized computers that are dynamically
provisionedand presented as one or more unified computing resource(s) based on-service

level agreements established through negotiation between the service provider and
consumdl2].0 Hence, Clouds fit wel/l into the defini

Figure 26 shows the layered design of Cloudntputing architecture. Physic&loud
resources along with core middleware capabilities from the bottom for delivering laaS. The
userlevel middleware aims at providing PaaS capabilities. The top layer focuses on
application services (SaaS) by making use of services provided by theldyeeservices.
PaaS/SaaSs services are often provided by 3rd party service providers, who are different from
laaS provider$23].

User-Level Applications: this layer includes the software applications, such as social
computing applications and enterprise applications, which be deployed by PaaS providers

renting resources from laaS providers.

Core Middleware: this layer provides runtimesnvironment enabling Capabilities to
application services built using Uskevel Middleware. Dynamic SLA management,
Accounting, Monitoring and Billing are examples of core services in this layer. The

commercial example suit this layer are Google App Egind Aneka.
System Level: physical resources including physical machines and virtual machines sit in

this layer. These resources are transparently managed by higher level virtualization services

and toolkits that allow sharing of their capacity amomntue instances of servers.

37



Applications Social computing, Enterprise, ISV, Scientific, CDNs, ..

Cloud programming: environments and tools
User-level Web 2.0 Interfaces, Mashups, Concurrent and Distributed
Middleware . . : AT
Programming, Workflows, Libraries, Scripting

User Cloud applications
Saas

PaasS .- vomommas - . Apps Hosting Platforms
QoS Negotiation, Admission Control, Pricing, SLA Management,
Monitoring, Execution Management, Metering, Accounting, Billing

_ Core
Middleware Virtual Machine (VM), VM Management and Deployment

laas l Cloud resources = P
System level '_'\.~.‘ gl i i

Figure 2.6 Layered Cloud computing architecture[23]

juawabeuepyy aandepy
Awouods3 pnojd / dlwouoiny

Use Cases
In this section, we present industry and academic use cases in Cloud computing

environments.

Industry Use Cases In this section, we present how Cloud providers implement.SLA
Important parameters asgmmarizedn Table24. All elements inTable2.4, are original
from formal publishedSLA documentsof AmazonEC2and S3 (laaS provider), and

Microsoft Azuré ComputeandStorage (laaS/PaaS provider).

A Characterization of studied systems following the six steps of SLA lifecycle model is
summarized inTable 25. From the usersdé perspective, t he
lifecycle with Amazon and Microsoft is simple because the SLA has beatepined ly the

provider. According to SLA lifecycle, the first step is to find the service providers according

to usersdé requirements. For exampl e, users fi
and then explore the pr ovirdfmaton MostilClowli t e f or
service providers offer preéefined SLA documents. In this case, the second step and third

step are prelefined and always be entwined together. The check for SLA violation

monitoring can be done by third party tools, such as @iatch, Cloudstatusvonists

38



Nimsoft. Developers are able to develop their own monitoring systems by taking use of these

tools.

For what concerns the termination of a SLA we can consider laaS services as a reference
example. In this case three scenanbay occur. The normal termination of a SLA is
constituted by the release of Cloud release of Cloud resources by the user. An SLA can also
be actively terminated by a provider if the resource usage lasts beyond the predefined expire
time. A termination wi penalty may occur in case the resource is unable to provide
resources according to the expected Quality of Service. The last step of SLA lifecycle will be
invoked if any party violates contract terms. Currently most of service providers give service
credt to customer if they violate SLA.

Table 2.4 SLA Use Cases of the most famous Cloud Provider and related characteristics in SLAs

Cloud Service Commitment Effective | Monthly Uptime | Service Credits
Provider Date Percentage (MUP)% | Percentage (%)
Name

Amazon | AAWS will use| 01 June| 99%=<MUP<99.9%| 10%

AWS EC2 | commercially ~ reasonabl 2013
efforts to make Amazo
EC2 and Amazon EBS ea(
available with a Monthly
Uptime Percentage (defing MUP%<99% 30%
below) of at least 99.95%, i

each case during arn
monthly billing cycle (the
nService Com
the event AmazorEC2 or
Amazon EBS does not me
the Service Commitmen
you will be eligible to
receive a Service Cred
A(AWS EC2 Se¢
Agreement)

Amazon NAWS will use| 01 June, 99%=<MUP<99.9%| 10%

39



AWS S3 | commercially reasonabl 2013 MUP<99 25%
efforts to make Amazon S
available with a Monthly
Uptime Percentage (define
below) of at least 99.99
during any monthly billing
cycl e (the
Commi t ment 0)

Amazon S3 does not me
the Service Commitmen
you will be eligible to
receive a Service Credit ¢
described belowi{AWS S3

Service Level Agreement).

Microsoft | fiFor Cloud Services, w{ NA <99.95% 10%

Azure guarantee that when you depl <99% 25 %
two or more role instances i
different fault and upgrad
domains, your Internet facin
roles will have externd
connectivity at least 99.95% (
the time.

For all Internet facing Virtua
Machines that have two ¢
more instances deployed in t
same Availability Set, wp¢
guarantee you Wi have
external connectivity at leag
99.95% of the time.

For Virtual Network, we
guarantee a 99.9% Virtug
Network Gateway availability.
(Windows Azure Service Leve

Agreement)

1.The formula used to calculate MontiBpnnectivity Uptime Percentage (MCUP) is depending
Maximum Connectivity Minutest (MCM), Connectivity Downtime (CD) and Maximum Connecti

Minutest (MCM) The equation is giveas follows MCUP=(MCM- CD)- MCM Source
Windows Azure Service Levjreement




Table25Fr om

user s 06SLA ldse Gapes of Cloud Brovidefollows six steps SLA lifecycle

Cloud Service | Step 1: Step 2: Step 3: Step 4: Step 5: Step 6:
Service Type Discover-Service Define-SLA Establish- Monitor -SLA Terminate- Enforce
Provider Provider Agreement Violation SLA Penalties  for
SLA Violation
Amazon laaS Discover manually | Predefined Predefined Can use third By wuser, or| Service Credit
EC2 (Computi | (e.g. via web site) | SLA SLA document| party monitor| provider given by
ng) terms and Qo{ by provider systems programmaticall| provider
parameters (e.0. y or manually
CloudWatch)
Amazon laaS Discover manually | Predefined Predefined Can wuse third By user, or| Service Credit
S3 (Storage) SLA terms| SLA document| party monitor| provider given by
and QoS| by provider systems programmaticall| provider
parameters (e.g. CloudStatus) y or manually
Microsoft | PaaS Discover manually | Predefined Predefined Can use third By wuser, or| Service Credit
Azure (e.g. via web site) | SLA SLA document| party monitor| provider given by
Compute termsand QoS| by provider systems programmaticall| provider
parameters (e.g. Monitis) y or manually
Microsoft | PaaS Discover manually | Predefined Predefined Can wuse third By user, or| Service Credit
Azure SLA terms| SLA document| party monitor| provider given by
Storage and QoS| by provider systems programmaticall| provider
parameters (e.g. Monitis) y or manually

41



Academy Use CaseslIn this section, we presel@LA-basedprojects and algorithms as

academy use cases.

SLA-basedResource Allocation for Data Centers and Cloud Computing System3he

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, at the University of
Melbournehas proposed the use of markesed resource management to support utility
based resource management for cluster compUyéistj64]. The initial work successfully
demonstrated that markieised resource allocation strategies are able to deliver better utility
for users than traditiohasystemcentric strategies. However, early research focused on
satisfying only two static Quality of Service (QoS) parameters: the deadline for completing a
service request and the budget that the consumer is willing to pay for completing the request
befae the deadline. In the commercial computing environment, there are other critical QoS
parameters to consider in a service request, such as reliability and trust/security. In particular,
QoS requirements cannot be static and need to be dynamically updatetime due to

continuing changes in business operations and operating environments.

SLA based Management and Schedulind:ee et al[42] propose profidriven SLA based
scheduling algorithms in Clouds to maximize the profit for service providieesgplication

model used in this work can be classified as SaaS and PaaS. The service types supported by
their algorithm are dependent servicedich mean one sukervice can not start until the
prerequired services complete. However, their work does not support multiple providers and
full simulation configuration is not availabléVe recommend possible future research
direction is SLA managemé with multiple providers, since it is required for emerging
research in InterCloud. We define InterCloud as multiple Cloud providers with peer

agreement to support collaborative activities.

Several projects in the last years are related at differenteeego the SLAaware
management of resources, such as Clalid®#, BonFIRE[179], Optimis[177] and 4CaaSt
[178].

Claudia: is atoolkit aims to provide dynamic provision and scalability of B®¥ in laaS
Clouds. BonFIRE is a European project provides a unified federation environment for
developers to manage Cloud deployments. In addition, European project 4CaaSt targets to

provide a platform for the deployment, management and trade of Cloudese It allows

42



providers to federate their resources in a common marketplace and enables users to compose
services. However these works neither consider dynamic management of resources nor

considerQoS parameters, so SH#ased resource management isiméeir scope.

Optimis: A European project aimed to enable private Cloud to automatically interact with
public Cloud providers, optimizing the usage of resources by means of Cloud federation; it
does scheduling operations by deciding the best provider to host resources. It allows
specifying requirements at laaS level and constraints in Cloud services. However, this work
does not cover SaaS level requirements and only considers cost but not customer satisfaction

level.

SLA@SOI: The SLA@SOI project has developed a methodology fer $hA-aware
management of infrastructures and services, and encompasses activities such as dynamic
service discovery and composition, service monitoring and assessment, infrastructure
planning and optimization etc. However thisjpct does not consider @ld mmputing
infrastructures as their target platform, and hence it does not account for some specific needs

of this area.

Cloud-TM [180]: a European project aimed to providelata centrid®aaS middleware for
the development of distributed Cloud applications. However, this work does not cover SaaS
level. The SLA system is based on SLA@SOI. However this project does not covradse
and SaS levels of Cloud amputing, and is focused amata centricCloud applications,

instead of the general purpose Cla@othputing.

PaaSagg181] : another recent Eapean project providing runtime monitoring and dynamic
adaptation, intelligent metadata retrieval, multi provider support, etc. Although this project
covers several topics dealing with QoS assessment and dynamic management of resources, it
does not use SAs for the definition of resources or QoS requirememts,cover SaaS Level

of Cloud @mputing.

SLA related difference between Cloud and Web Service
In this section we compare the differermween SLAs applied in cloud computing and

traditional web services as follows:

43



QoS Parameters Most web services focus on parameters such as response time, SLA
violation rate for the task, reliability, availability, levels of user differentiation, and cost of
service. In Cloud computing more Q@&rameters than traditional web services need to be
considered, for example, energy related QoS, Security related QoS, Privacy related QoS,
trust related QoS. More than 20 QoS parameters are defined by the SMI (Service
Management Index) consortium to besed in the industry and academy as standard
benchmark.

Automation: The whole process of SLA negotiation and provisioning, service delivery and
monitoring need to be automated for highly dynamic and scalable service consumption.
Researches in traditionalelv services explored this topic, for example, Jin L.J ¢86l
proposed a model for SLA analysis of Web Services. Nevertheless, SLA automadion is
rapidly growing area in Cloud computing. In fact there are some research projects starting to
focus on it, such as CLOUDS Lab at the University of Melbourne and SLA@SOI.

Resource Allocation: SLA oriented resource allocation in Cloud computing is possible
different from allocation in traditional web services, because web services have a Universal
Description Discovery and Integration (UDDI) for advertising and discovering between web
services However, in Clouds, resources are allocated and distributed globally without central
directory, so the strategy and architecture for SLA based resource allocation in such

environment are different from traditional web services.

2.5 Open Problems

SLA managenent must provide ways for reliable provisioning of services, monitoring of SLA

violations and detection of any potential performance decokageg service executioid1][45].

The goal of SLA management is to establish a scalable and automatic SLA management

framework for automatically adapting to dynamic environmental changes by considering

multiple QoS parametsr In addition, an SLA has to be suitable for multiple domains with

heterogeneousesourcesThe VIRD architecture is a thrdevel hierarchy focused on scalability.

Wurman et al.[61] state a set of auction parameters and grased negotiation platform.

Nevertheless, this solution only suppoxnedimensional auction, thus could not handle

44



multiple-dimensional auctions, which are important iitytcomputing environments. Recently,

BabelNet handles multipldimensional auctions.

Nevertheless, somehow consumers still need to be involved in the management process to some

extent. Moreover, multiple QoS parameters have been investigated by GOUDa b dés i ni ti a
work. Whilst that work only focused on the most common QoS parameters (price and deadline),

there are other critical QoS parameters that should be considered in a service request, such as
reliability and trust/security. In particular, Qo8rpmeters are must be updated dynamically over

time due to continuing changes in business operations environments. Thus, multiple QoS

parameters should be investigated in the future research work.

More specifically, there are some open challenges for-Baged resourcemanagement. First

and foremost, different SLA negotiation protocols and processes constraint the negotiation for
establishing SLAs, the modification of an implemented SLA, and SLA negotiation between
distinct administrative domains. Secotkde SLA has to be established between providers and
consumers from different esid-end viewpoint. For example, if the system service has been
outsourced from one provider to another, there should be SLA agreement between them as well
Similar to Businesso Consume(B2C) models and Business to BusindB2B) models, there

will be different types of SLAs that needs to be establishedndiémg on entities involved.

Third, admission control policies, because decision on whggrrequestto accept affectshe
performance, profit, and reputation of the resource provider. Moreover, the resource allocation
management has to be considered carefully, because it addresses which resource is best suitable
for current admitted r e gewelsadditonmamageménpof QoSparti es
metrics, different parties usindifferent parameters, and the failure managentetomea
challengeespecially for the automatic handling, such as cause analydigutomatic problem
resolution. We can also mention, performance foratastagement is another open question in

utility computing environments because it enabtee recommendation for performance

improvement.

2.6 Summary

This chapter presesd the literature survey, issues and solutions of SLA management in utility
computing systems and how SLAs have been used in these systems. An SLA is a formal contract

between service providers and consumers to guarantee that the service quality is delivered

45



satisfypreagr eed consumersd expectations. SLA manager
systems because it helps to improve @#. andto define clear relationship betwebnsiness

parties. In this chapter, we summarized the main fundamentamsnaf SLA and analyzed two

types of SLA lifecycle. One is the three phase high level lifecycle, which includes creation phase,

operation phase and removal phase; the other is more specific lifecycle including six steps, which

ar e O dsergce provgrr 6, -dldARf ehement-afdr edmsnta®Ai 6 Mmoni t o
violationBLA®tandi 68L& violation control 6. The
comprehensive, and introduces the characterization of SLA violation that is a foundation in

utility computing environments where services are consumed onrasgay-go basis.

The analysis carried out in this chapter identified four major goals in case eb&shlutility
computing. First, supporting custorrgniven service management based on custoprofiles

and requested service requirements. Second, defining computational risk management tactics to
identify and manage risks involved in the execution of applications with regards to service
requirements and customer needs. Third, deriving apptteprinarkebased resource
management strategies encompassing custdmesn service management to sustain Siased
resource allocationFourth how to incorporae adaptive resource managememhodels and
dynamic changes in service requiremeriis order tosatisfy both new service demands and

existing service obligations.

To achieve these goals, the main challenges and solutions eb&te¥d resource managemient

utility computing environmentare discussethy following the steps of SLA lifegje. In the

6di sseveirce provider 6, the main issues are scal
autonomous administration. Some architectures and algorithms have been proposed to cope with

them, such athe MDS and VIRD architectuse To desgn an automatioegotiationframework
isachallengeduringt h e 63lleA G neen d -adgerseteanbel nitséh st eps, because
to negotiate befe they agree on the ternts be included in SLAs. SLA frameworks and

languages are used as solutidbsrrently the most widely used languages are WSLA and WS

Agreement. However, there are not many effective solutions for the automatic negotiation
framework for SLAbased resource managemeéitius, the automatic negotiation is still an open

issue. Regardijn t he O moni t ctep, tBelmbst poputal saldti@oesmg@dThird Party

(TTP) who provides most of functionalities for monitoring a service in most typical situations to
detect SLA violations. The mai n Aiés sauneds & eonrf otricee

penal ties f or aBtamatic failu®managernentpsuch asrcause analysis, penalty

46



clauses invocation, and automatic failure resolution. Some penalty strategiepresented.
However,resource management with penalty modal antomatic problem resolution still are

open challenges and more investigation is needed in the future.

In conclusion SLA in utility computing systems is a rapidly moving target although some works
have been explored in the paBte rest of this thesisill explore three major challenges listed in
the Chapterl. In addition, the nextla@apter will investigateadmission control and scheduling
algorithms for SaaS providers to effectively utilise public Cloud resources to maximize profit by

minimizing costand improving customer satisfaction level

a7



48



3 SLA-based Admission Control for Software-as-
a-Service Providers

This chapter preseniisnovative admission control and scheduling algorithms for SaaS providers

to effectively utiliseheterogeneou€loud resources to maximize profit by minimizing cost and
enlargingmarket share by accepting more user requests winilgnizing the SLA violations for

existing customesx Then, an extensive evaluation study is conducted to analyse algmfithm

suits best in which scenario tachieve SaaSoftwareasa-Service)pr ovi der s.6 obj ect
Simulation results show that our proposed algorithms provide substantial improvement (up to

40% cost saving) over reference ones across all ranges atiavain QoS parameters.

3.1 Introduction

The general objective dbaaS providers is tmaximize profitand enlarge market shard.o

maximize profit, Saa$Softwareasa-Service)providersneed tominimize the infrastructure cost,
administration operatiocost and penalty cost caused by SLA violatidvisrket sharecan be
enlarged byaccepting more user requestghich also increasahe profit Market sharean also
be improved by satisfying more customef® satisfy the customer, SaaS provideerd to

guarantee Quality of Service (QoS) specified in SLAs.

In general, SaaS providers utilize internal resources of its data centres or rent resources from a
specific laaS provider. For example, Saleforce.qaf?] hosts resources but Animoto rents
resources from Amazon EQ22]. In-house hosting can generate administration and maintenance
cost while renting resources from a single laaS provider can impact the service quality offered to

Saa$S customers due to the ahle performancpl03].

49



To overcome the above limitations, multiple laaS providers and admission control are considered
in this chapter Procuringfrom multiple laaS providers brings huge amount of resources, various
price schemas, and flexible resource performance to satisfy Service Level Objectives, which are
items specified in Service Level Agreement (SLAJmission control has been used as regal
mechanism to avoid overloading of resources and SLA satisfd@fiorowever, current SaaS
providers do not have admission control &oev they conduct scheduling is not publicly known.
Therefore, the following questions need toamswered to allowefficient use of resources ithe
context ofSaaS providers using multiptesourcesrom laaS providerswhere resourcesan be
dynamically expanded and contracted on demand:

1 Can a newserrequest be accepted without impacting accepted requests?

1 How to map varios user requests with different QoS parameters to VMs?

1 What available resource should the request be assigned to? Or should a new VM be

initiated to support the neuserrequest?

This chapterprovidesanswerso the above questions by proposing an innovatogteffective

admission control and scheduling algoritiimsiaximiztheSaa r ovi d eandG@SL@ur o f i t
proposed solutions are able meaximize the number of accepted users through the efficient
placement of requesbn VMs leased from multiple laaS providers. We take into account various
customerd6s QoS requirements and infrastructure
chapterare twofold 1) it proposs the system and mathematical modéis SaaS preiders to

satisfy customersand 2) it proposesthree innovative admission control and scheduling

algorithms for profitand market shammaximizationby accepting as many new user requests

possiblewith guaranteed SLA and minimized cost

3.2 System Model

In this section, we introduce model, whichconsists of actora n d 6admi ssi on contrr
schedul i (ag depictey sFig@wa.1). The actors are usécastomersSaaS providers,

and laaS providers. The system consists of application layer and platform layer furicikms.

Animoto.com as an example of SaaS provider, who leases video generation software to users.

There are three steps for users to generate vislag Animoto.com: 1) upload pictures or videos;

2) select themes, music and styles for the video; 3) download or share thdrvitéoexample,

customers expedtideo to be generated withiteadlineand budgetWe extended this application

model byfocusing more on customer requiremesasisfaction Thus usersrequest the software

50



servicefrom a SaaS provider by submitting th€ioS requirementsuch as service deadlinad

budget The QoS model considered is adapted from utility models proposed in previoubjvork

In generalbudgetis computed byclientsthrough owntheir market researcand strategic plans

The platform layer usesdmission controlt o i nt er pr et and analyse the u
decides whether to accept or reject the request based on the capability, availadbilitsiceof

VMs. Then, theschedulingcomponent isesponsible for allocating resources based on admission

control decision. Furthermore, in this section we design two SLA layers with both users and

resource providers, which ag A (U) and SLA(R) respectively.

3.2.1 Actors

The patrticipating actors involved the process are discussed below along with their objectives
and constraints:
User
On wusersb6 side, a request for application is
QoS constraintssuch as, deadline, budget and penalty. relen, the platforntayer utilizes
the 6dadmi ssion control and schedulingd algorit
can be accepted, a formal agreement (SisAsigned between both partiesduarantee the
QoS requirementSLA with Usersi SLA (U) includes e following properties:
1 Deadline: Maximum time user would like to wait for the result.
1 Budget: How much user is willing to pay for the requested services.
1 Penalty Rate Ratio:A r ati o for consumersd compensation i
deadline.
1 Input File Size: The size of input file provided by usekdsess upload the file, and the size is
calculated by the application layer function.
1 Request Length:How many Millions of Instructions (MI) are required to be executed to

serve the requéeafThisvalue is predefined in the SL@J) by the SaaS provider.

51



Users

L Ky g f

n fi
1. Request Software Service 6. Response Accept | Reject
SaaS ¥ ]
Provider Application Layver -\

{ Software Application

Platform Laver

S 2. Analyze
P:“_* { Admission Control 1 — Scheduling
Provider 5. Decision /

e
i n

3. Request | 4. Response VMs 7. 5chedule on VM=
¢

Figure 3.1 A high level system model for application service scalabilitior in laaS providers.

IaaS
Providers

SaaS provider

A SaasS provider rents resources from laaS providers and leases software as services to users.
SaaS providers aim at minimizing their operational cost by efficiently using resources from
laaS providers, andnproving CSL by satisfying SLAs, which are used guarantee QoS
requirements of accepted usdfst om SaaS providerd6s point of
SLA with both users and resource providers, which are described in Section A and Section C.
It is important to establish two SLA layers, because 8lith user can help the SaaS provider

to improve theCSLby gai ni ng u QeSS SLA with resosirte providers dare
enforce resource providers to deliver the satisfied service. Iparticipants in the contract
violateits terms, the defaulteial to pay for the penalty according to the clauses defined in the
SLA.

laaS Provider
An laaS resourceprovider RP), offers VMs to SaaS providers ans responsible for
dispatching VM imagedo run on their physical resourceBhe platform layer of SaaS

52



provider uses VM images to create instanttds important to establish SLA with a resource
provideri SLA (R), because it enforces the resource provider to guarantee service quality.
Furthermore, it provides a risk transfer for SaaS providers, whetertims are violated by
resource provider. In this work, we do not consider the compensation given by the resource
provider because 85% resource proviahy not really provide penalty enforcement for SLA
violation currently{93]. The SLA (R) includes the following properties:
1 Service Initiation Time: How long it takes to deploy a VM.
i Price: How much a SaaS provider has to pay per hour for using a réM &
resource provider?
1 Input Data Transfer Price: How much a SaaS provider has to pay for data transfer
from | ocal machine (their own machine) to r
1 Output Data Transfer Price: How much a SaaS provider has to pay for data
transferfom r esource providerbés VM to | ocal ma c h
1 Processing SpeedHow fast the VM can process? We use Machine Instruction Per
Second (MIPS) of a VM as processing speed.
1 Data Transfer Speed How fast the data is transferred? It depends on the location

distanceand also the network performance.
3.2.2 Profit Model

In this section we describe mathematigglatiors used in our work. Letssumeaat a given time
instantt, | be the number of initiated VMs, adde the total number of laaS providers. Let laaS
providerj providesN, types of VM, where each VM tygehasP; price. The prices/GB charged
for data transfem andi out by the laaS provid¢rareinPri; and outPrj respectively.Let (iniTy)

be the time taken for initiating VMof typel from providerj.

Let anewuser submit a service request at submission inhd *"to the SaaS Provider. Tihew
user offers a maximum prid8™" (Budget) to SaaS provider with deadlib&"*"and Penalty
Rat"g Ldét inDS™ andoutDS®" be theuser requests requidransfer in and transfer out

data

Let Cost;"™" be the total cost incurred to the SaaS provider by processing the user request on

new

VM i of typel usesresource providej Then, the profiProfy ™" gained by the SaaS provider is

defined as:

53



Profy®"' = B™"- Cosff™" I [ 1,50 3,11 N

J- (3.2)

The total cost incurred to SaaS provider for a
processing costPC;""), datatransfer cost@®TC,"*"), VM initiation cost (C;;""), and penalty

delay cost PDGC;" (to compensate for miss deadline). Thus, the total cost is given by

processing the request on Mf typel on laaS providey.

Cosf"=PG". DTCI®" . IcI*" PO i1 1,}1 3,11 N, (32)
The processing costPC;"™") for serving the request i s depe
processing timepfocT; ") and hourly price o¥/M; offered by laaS providgr. Thus,PC;""is
givenas
PG®"= proc™s B, " il 1,jI 31T N; (33)
Data transfer cost as describedEmuation(3.4) includes cost for both datia and dateout.
DTC;*"=inDS™"s inPri; +outDS*"s oupri, " jT J,IT N, (34)

The initiation costIC;"") of VM i (typel) is dependent on the type of VM initiated in the data

center of laaS provider.

Ic;=ini 2 P il 1L jT J0T N, (35)

In Equation(3.6), penalty delay costPDC;"") is how much the service provider has to give
discount to users for SLA(U) violation. It is dependent on the penalty bdi% and penalty
delay time PDT;") period.We model tle SLA violation penalty asrear function which is
similar to other related work§5][48][68].

PDG"=5""s PDT ™" il 1,ji 3,11 N,

ijl i (3-6)
To process any new request, SaaS provider either can allocate a new VM or schedule the request
on an already initiated VM. Kervice provider schedules the new request on an already initiated

VM; the newrequest haso wait until VM i becomes available. The time for which the new

K
request has to wait until it stagprocessingon VM i isk'a'l1 prochlk , Where K is the number of

new

request yet to be processed before the new redquass,PDT; ™" is given by:

sony Ut ka procT, +procTijr;eW- DL™", "QRQ 6 QR ¢ Bt Q0 VOO Q %7
Al € QY QE QYOYY 0D h'Q®Q b 0'QIQE QO QOO QQ

DTT;"™" is the data transfer time which is the summation of time taken to upload the input

(inDT"™" and download the output dawutDT;"*") from the VM, on laaSProviderj. The

data transfer time is given by:

54



DT =D outD ™" i 1,j1 3,11 N, (38)

il il
Thus, the respongame (T;;"*") for the new request to be processed on,\4¥llaaS Providey is

calculatedin Equation(3.9) and consists o¥/M initiation time (niT;"*), r equest 6 s ser vi
processingtime (procT;"®"), data transfertime (DTT;"®"), and penalty delay timePDT;"").

new . R N T

L, QQMINQE £€BE QO Qo QQ

il (3.9)

Nl € O°Y Q8 QYOYY h'QRQMIQIQE QO QOO QQ

K

. k

a procT, +procT,
k:]_p il P |

The investment returmrét;"*") to accept new user request per hour on a partiviNay on laaS
Providerj is calculated based on tpeofit (prof;"") andresponséime (T;;""):

ro‘ne’\N B ; ;
ret“qewz%"n Ll 3,01 N,
-rijl

(3.10)

3.3 Algorithms and Strategies

In this section, we present four strategies to analysgher a new request can be accepted or not

based on the QoS rdgements and resource capabilitiddhen, we propose three algorithms

utilizing these strategies to allocate resourdeseach algorithm, the admission control uses

different strategies tdecide which user requests to accept in order to cause minimal performance

i mpact, avoiding SLA penalties that decrease Sa
algorithms determines where and which type of VM will be used by incorporating the
heterogeneity of l1aaS providers in terms of their price, service imitigime, and data transfer

time.
3.3.1 Strategies

In this section, we describe four strategies for request accepégringiate new VM, b) queue

up the new user request at the end of scheling queue of a VM, c) insert (prioritize) the

new user request at the proper position before the accepted user requests and, d) delay the

new user request to wait all accepted users to finishnputs of all strategies ar®oS
parameters of the new reqges and resource providersodo related
strategies are admission control and scheduling related information, for example, which VM and

in whichresource provider the request can be schedAletlow charts in this section are in the

context of each VM in each resource provider.

Initiate New VM Strategy

55



Figure32i I l ustrates the fl ow chart of Ainitiate
each type of VMs in each resource provider in ordedteterminewhether the deadline of
new request is long enough comparing to the estimated finish time. The estimated finish time

depends on the estimated start time, request processing time, and VM initiation time.

If the new request can be completed within thedtiee, the investment return is calculated
(Equation3.10). If there is value added according to the investment return, and then all
related information (such as resource provider ID, VM ID, start time and estimated finish
time) are stored into the poteadti schedule list. This strategy is represented as

canlnitiateNewVM () in algorithms.

equest can comple No

within deadline

Calculate Investment Return

4

Investment Returp 0 No » Return False

Store Related Info Return True

Figure 32Fl ow Chart of o6l nitiate new VM strate;q
Wait Strategy

Figure 3.3 illustrates thewait strategy which first verifies each VM in each resource
provider if the flexible time T;™") of the new request is enough to wait all accepted
requests invm, to complete. ThdT;""is given byEquation(3.11), in whichK indicates
total number of all accepted naepts| indicates all VMs,J indicates all resource providets,

indicates VM type, and Nhdicates all VM types provided by resource provider

(3.11)

K L. L. . .
f®'=DL™"- & procTy - subT™ il I,ji J,ki KT N,
k=1

If new request can wait for all accepted requests to complete, and then the investment return
is calculated and the remaining steps are the same as those in initiate new VM $thasegy.

strategy is called asanWait ()in algorithms.

56



Request can wait a No

cepted requests to fini

Calculate Investment Return

A

Investment Returp O No Return False

Store Related Info e» Return True

\ 4

Figure 33F 1l ow Chart of Owait strategyé
Insert Strategy
Figure 34s hows t he fil roswve rcth awhich facitf ehgdksverifies if any
accepted request according to latest start time ¥m, can wait the newequest to finish. If
the flexible time of accepted requefsTi,-.(‘) is enough to wait for a new user requesbe¢o
completel then the new request is inserted before regueBhefT;* indicates the duration
of request wait time with deadline and itgiven byEquation(3.12), in whichDL*indicates
the deadline of accepted requesindicates the position of acceptertjuestandK indicates
the total number of accepted user requéstgjicates the VM type and;Mdicates all VM
types provided by resource proviger

K L L. L, .
fT =Dl - & procTy - T~ subT"i{ I,ji J,ki K,IT N,
n=1,

il il i (3.12)

n, k
If there is an already accepted requéSthat is able to wait for the new user request to
complete, thestrategy checks if thhnew request can complete before its deadline. 1653,
gets priority ovens, then the algorithm calculates the investment return and the remaining
steps are the same as thoseinitiate new VM strategyThis strategy is presented as

canlinsert ()in algorithms.

57



No

ny accepted reques
wait for new reques

Calculate Investment Return

Investment Returm O No

Store Related Info e» Return True

A

Return False

A 4

Figure 34F1 ow Chart of O6insert strategyd
Penalty Delay Strategy
Figure35descri bes the flow chart of fApenalty del a
user requestods budget is enough to wait for al
its deadline. Equation(3.1) is used to check whether budget is enoughotopensate the
penalty delay loss, and then the investment return is calculated and the remaining steps are
the same as those in initiate new VM strategy. This strategy is presented as funciton

canPenaltyDelay() in algorithms.

Budget is enough t No

ompensate delay pe

Calculate Investment Return

4

Investment Returp 0 No » Return False

Store Related Info e» Return True

Figure35F1 ow Chart of Openalty delay strategy

58



3.3.2 Proposed Algorithms

A service provider caimcreasehe profit by reducing the infrastructure cost, which depends on
the number and type of initi dheefdreodrMigorithrms | aaS pr
are designed to minimize the number of VMs by maximizing the utilization of already initiated
VMs. The assumption heretisatSaaS providewill offer propersecurity protection for business
data, especially when datadepiedto VMs that are already createbh this section, bsed on
above strategies we propose three algorithms, whicRrafeinVM, ProfRSandProfPD:
1 Maximizing the profit by minimizing the number of VMBrofminVM).
1 Maximizing the profit by rescheduling’{ofRS.
1 Maximizing the profit by exploiting the penalty deldr¢fPD).

Maximizing the Profit by Minimizing the number of VMs (ProfminVM)
Algorithm 1 describes the ProfminVM algorithm, which involves two main phases: a)

admission control and b) scheduling.

In admission control phase, the algorithm analyses if the new request can be accepted either
by queuing it up in an already initiated VM or by initiating a new VM. Hence, firstly, it
checks if the new request can be queued up by waiting for all acaejfeelsts on any
initiated VM - using Wait Strategy (Step 3). If this request cannot wait in any initiated VM,
then the algorithm checks if it can be accepted by initiating a new VM provided by any laaS
provider- using Initiate New VM Strategy (Step 8).a SaaS provider does not make any
profit by utilizing already initiated VMs nor by initiating a new VM to accept the request,
then the algorithm rejects the request (Step 9). Otherwise, the algorithm gets the maximum
investment return from all of the gsible solutions (Step 13). The decision also depends on

the minimum expected investment return (explnvRetijinew) of the SaaS provider. If the

new
investment return " i s more than the SaaS providerdés e>

accepts the new request (Step 14, 15), otherwise it rejects the request (Step 16, 17). The
expected investment return ratio w is customized by SaaS providers. The expected
investment return ¢g@lnvRetijinew) is given byequation(3.13):

, Cosfpev ) ) )
L O TP B R I B\

il

expinvRety™ = w

(3.13)

59



The scheduling phase is the actual resource allocation and scheduling based on the admission
controlresult; if the algorithm accepts the new request, the algorithm first finds out in which
laaS Provider rpj and which VM vmi a SaaS provider can gain the maximum investment
return by extracting information from PotentialScheduleList (Step 20). If the maxim
investment return is gained by initiating a new VM (Step 22), then the algorithm initiates a
new VM in the referred resource provider (rpj), and schedule the request to it. Finally, the
algorithm schedules the new request on the referred VM (vmi) (&3p The time
conplexity of this algorithm is O(KI+Kl), whereK indicates the total number atcepted
requests| indicates the total number of initiated matched type of \&vd J indicates the

number of resource providers.

Algorithm 1. Pseudeode fo ProfminVM algorithm

I nput: New userdés request parameters (un
Output: Boolean
Functions:

admissionControl( ) {

1. If ( there is any initiated VM ) {

2. For each vmi in each resource providg {
3. If (! canWaitnewy vmi ) ) {

4. continue;

5. }

6. }

7. }

8. Else If (! canlnitiateNew(unew, rpj))

9. Return reject

10. If (PotentialScheduleList is empty)

11. Retueject

12. Else {

13. Get the max[retijnew, SDij ] in PotentialScheduleList
14.

15. Return accept

16. Else

17. Return reject

18. }

60



19, ]

}
schedut () {
20. Get the [retmaxnew, SDmax ] in maxRet(PotentialScheduleList)
21. If ( SDmax is initiateNewVM)
22. intgNewVM in rpj
23. Schedule the unew in VMmax in rpmax according to SDmax.
}

Maximizing the Profit by Rescheduling (ProfRS)

In ProfminVMalgorithm, a new user request does not get priority over any accepted request.
This inflexibility affects the profit of a SaaS provider since many urgent and high budget
requests will be rejected. ThuBrofRS algorithm reschedules the accepted requests to
accommodate an urgent and high budget request. The advantage of this algorithm is that a
Saas provider accepts more users utilizing initiated VMs to earn more profit.

Algorithm 2 describedrofRS algorithm In the admission control phase, the algorithm
analyses if the new request can be accepted by waiting in an already initiated VM, inserting
into an initiated VM, or initiating a new VM. Hence, firstly it verify if new request can wait

all accepted requests in any already initiat#d - invoking Wait Strategy(Step 3). If the
request cannot wait, then it checks if the new request can be inserted before any accepted
request in an already initiated VMsingInsert Strategy(Step 4). Otherwise the algorithm
checks if it can be acceptéy initiating a new VM provided by any laaS providansing

Initiate New VM StrateggStep 5). If a SaaS provider does not make sufficient profit by any
strategy, the algorithmejectsthis user request (Step 10, 11). Otherwise the algorithm gets
the maxmum return from all analysis results (Step 1%he remaining steps are the same as
those inProfminVM algorithm. The time complexity of this algorithms @ (KIJ+IK?),

where K indicates the total number of accepted requests, | indicates the total miimbe

initiated matched type of VMs and J indicates the number of resource providers

Algorithm 2. Pseud@ode forProfRSalgorithm

Input: New user 6s r edV)ephvRgldr amet ers (

Output: Boolean

61



Functions:

admissionControl( X

1. If (there is any initiated VM) {

2. For eachvm in each resource providgg; {

3. (f canWait( u™", vm) ) {

4. (Mcanlnsert(u™", vm) ) {

5. (IfcaninitiateNew(u™", rp))) {
6. continue;

7. }

8. }

9. }

10. Els€!ItaninitiateNew(u™", rp)))

11. Retuejpect

12. If (PotentialScheduleList is empty)

13. Return reject

14. Else{

15. Get themaxret;"", SO ] in  PotentialScheduleList
16. If (max(ret;"®")  ex@invRef")

17. Return accept

18. Else

19. Return reject

20. }

}
schedule (){
21. Get the[retna " SDhax] i maxRetPotentialScheduleList)
22. If ( SDhaxis initiateNewVM)
23. initiateNewVM inrp;
24. Schedule th&™"in VMin rpmaxaccording taSDhax
}

Maximizing the Profit by exploiting penalty delay (ProfPD)
To further optimize the profit, we design the algoritRmofPD by considering delaying the

new requests to accept more requests.

62



Algorithm 3 describe®rofPD algorithm. In theadmission controlphase, we analyse if the

new user request can be processedquruing it up at the end of an already initiated VM, by
inserting it into an initiated VM, or by initiating a new VM. Hence, firstly the algorithm
check if the new request can wait all accepted requests to complete in any initiated VM
invoking Wait Strategy(Step 3). If the request cannot wait, then it checks if the new request
can be inserted before any accepted request in any already initiateelsfiMy Insert
Strategy(Step 4). Otherwise the algorithm checks if the new request can be accepted by
initiating a new VM provided by any resource providarsing Initiate New VM Strategy
(Step 5) or by delaying the new request with penalty compensatisimg Penalty Delay
Strategy(Step 7). If a SaaS provider does not make sufficient profit by anygjrathe
algorithmrejectsthe new request (Step 14). Otherwise, the request is accepted and scheduled
based on the entry iRotentialScheduleLisvhich gives the maximum return (Step 23). The
rest of the steps are the same as tho&afminVM The timecomplexity of this algorithms

is O (KIJ+IK %), where K indicates the total number of accepted requests, | indicates the total

number of initiated matched type of VMs and J indicates the number of resource providers

Algorithm 3. Pseud@ode forProfPD algarithm

Input: New user 6s r edV)ephvRgldr amet er s (
Output: Boolean
Functions:

admissionControl( X

1. If (there is any initiated VM) {

2. For eachvm in each resource providgg; {

3. (ffcanWait( u™", vm) ) {

4, (Ifcaninsert( u™", vm) ) {

5. ('leaninitiateNew(u™", rp;))
6. continue;

7. ('ltanPenaltyDelagu™", rp;))
8. continue;

9. }

10. }

11. }

12. }

13. Else [t canlnitiateNew(u™", rp)))

63



14. Returnreject

15. If (PotentialScheduleList mmpty)

16. Return reject

17. Else{ Getthemaxret;"®", SO ]in PotentialScheduleList
18. If (max(ret"™  ex@nvRef®")

19. Return accept

20. Else

21. Return reject

22. }

}

schedule (){

23. Get the[retna " SDhax] i MaxRetPotentialScheduleList)
24, If ( SDhaxis initiateNewVM)

25. initiateNewVM inrp;

26. Schedule th&™"in VMyaxin rpmaxaccording taSDay

}

3.4 Performance Evaluation

In this section, we first explain the reference algorithms and then describe our experiment
methodology, followed by performance evaluation results, which includes comparison with

reference algorithms and among our proposed algorithms.

As existing algothms in the literature are designed to support scenarios different to those
considered in our work, we are comparing proposed algorithms to reference algorithms exhibiting
lower and up bound#linResTimandStaticGreedy.

1 TheMinResTimealgorithm selectthe laaS provider where new request can be processed
with the earliest response time to avoid deadline violation and profit loss, therefore it
minimizes the response time for users. Thus, it is used to know how fast user requests
can be served.

1 The StatidGreedy algorithmassumes that all user requests are known at the beginning of
the scheduling process. In this algorithm, we select the most profitable schedule obtained
by sorting all the requests either basedBaiiiget or Deadlineand then usind’rofPD
algorithm. Thus, the profit obtained frof@taticGreedyalgorithm acts as an upper bound

64



of the maximum profit that can be generated. It is clear that assumption taken in

StaticGreedylgorithm is not possible in reality as all the future requests are aotkn

3.4.1 Experimental Methodology

We use CloudSini80] as a Cloud environment simulator and implement our algorithms within

this environment . We observe the performance

of

SaaS provi derFréomp eurssepresct i pesspecti ve, we obser\y

accepted and how fast user requests are processed (we call it average response time). From SaaS
providersb6 perspective, we oOobserve how much
Therefoe, we use four performance measurement metrics: total profit, average request response
ti me, number of initiated VMs, and number of

and | aaS providersd side usedvingsnbsdctiores: si mul at i

Usersodé side

We examine our algorithms with 5000 usdfsom the user side, five parameters (deadline,
service time, budget, arival rate and penalty rate factor) are varied to evakiatmpact on

the performancef our proposedlgorithms. Request arrival rate follows poisson distribution
as many previous workd00][101] model arrival rate as poisson distribution. Similar as
other works, we use aormal distribution to model all parameters (standard deviation
=(1/2)xmean), because there is no available workload specifiying these paraBwiatzn
3.14 is used to calculate thdeadline (DL;™"). ais the factor which is usetb vary the
dead!l ine fr oar0.f5v)e rtyo ti vgehjtesgipro¢®"f iadicates the new

service requestods .estimated processing ti me

pDLNew_

i (3.14)

as estproc:ljﬁ‘e"‘#es,tprocIj Vi, il 3,00 N,
Service timeis estimated based on the Request Leniglh) &nd the Millions of Instruction

per SecondRS of a VM. The mean Request Lengths are selected betw@dil10 ( iver y
smal | 0 )PMIt o( Bwelr0y M@ vgleedoj eachiM hypel isefixed.

In common economic modelsudget is generated by random numb§s$§]. Therefore, we

follow the same random model for budget , a

pro

a C (

on

nd

Avery | arged (mean=1%$). We choose budckget factc

65



not show any change afterRive differenttypes ofrequest arrival rate are used by varying
the mean from 1000 to 5000 users pecond.The penalty raté (the same as iEquation
3.1) is modelled byEquation3.15. It is calculated in terms of how lomguser is willing to

wait (1) in proportion to the deadline when SLA is violated. In order to vary the penalty rate,

wevarythemeanaoff r om fivery small o (4) to Avery |l argeo
ghew
b=———"il I,ji J (3.15)
DLN®Ws ¢

Resource Providerso side

We consider five resouce provideis laaS providers, which are Amazon H@2,
GoGrid94], Microsoft Azurg96], RackSpad®5] and IBM[97]. To simulate the effect of
using different VM types, MIPS ratings are used. Thus, a MIPS value of an equivalent
processor is assigned to the request processing capability of each VM typeicErschema

of VMs follows the price schema of GoGrj@4] , Amazon EC2[92], RackSpacd95],
Microsoft Azure[96], and IBM[97]. The detail resource characteristics which are used for
modelling laaS providers are shownTale 3.1. The three different types of average VM
initiation time are used in the experiment, and the mean initiation time varies from 30
seconds to 15 minutes (standard deviation= (1/2)xmean). The mean of initiation time is
calculated by conducting real eqiments of 60 samples on GoGf##] and Amazon EC2

[92] done for four days (2 week days and 2 weekend days).

3.4.2 Performance Results

In this section, we first compare our proposed algorithms with reference algorithms by varying
number of users. Then, the impact of QoS parameters on the performance metrics is evaluated.
Finally, robustness analysis of our algorithm is pre=gnAll of the results present the average
obtained by 5 experiment ruris. each experiment we vary one parameter, and others are given
constant mean vaule. The constant mean, which are used during experiment, are as follows:
arrival rate=5000 requeststsaleadline=2*estprocT, budget=1 $, requst lengtki’MI, and

penalty rate factor (r) =10.

66



Table 3.1 The summary of resource provider characteristics.

Provider VM Types VM Price ($/hour)
Amazon EC2 Small / Large 0.12/0.48

GoGrid 1 Xeon / 4 Xeon 0.19/0.76
RackSpace Windows 0.32

Microsoft Azure Compute 0.12

IBM VMs 32-bit (Gold) 0.46

Comparison with Reference Algorithms

To observe the overall performance of our algorithms, we vary the numheses from
1000 to 5000 without varying other factors such as deadline and b&idget 3.6 presents
the comparison of our proposed algorithms wigierence algorithmstaticGreedyand
MinResTimen terms of the four performance metrics. When tlienberof user requests
varies from1000 to 5000for each algorithnhe total profit and average response time has

increasedbecaus®f more user requests

Figure 3.6shows thaProfPD earns 8% less profit (Requests = 5000) for SaaS provider than
StaticGreegl which is used as the upper bound. That is because in the casdioGreedy

all the user requests are already known from the beginning to the SaaS provider. The base
algorithmMinResTimenas smaller (two third dbtaticGreedyresponse time, but eartess

profit (approximately half ofProfPD). These observations indicate the traffebetween

response time and profit, which SaaS provider has to manage while scheduling requests.

Figure 3.6ashows that th€rofPD achieves (1%) more profit overProfRSand (17%) over
ProfminVM by accepting 10%, 15%) more userrequess and initiating (19%40%) less
number oflVMs, whermumber of users changes from 1000 to 58B8ennumber of users is

1000 ProfPD earns4% and15% more profit overProfminVM and ProfRSrespectively.

When the user number is increased from 1000 to 5000, the profit difference bEhwieD

and other two algorithms became larger. This is because when the number of requests
increased, the number of users being accepted increased by utilizing initiated VMs. If all
requests are known before scheduling, tBeaticGreedyis the best choice for aximizing

profit, however, in the real Cloud computing market, these are unknown. TheeefBaaS

provider should usérofPD, however,ProfRSis a better choice for a SaaS provider in

67



comparison withProfminVM In addition, theProfPD is effective in maimizing profit in

heavy workload situations.

8000 900
7000 g 800
+ 6000 N 2 oo
= O ¢ 600 ||
9 5000 ::: o e 500
0. 4000 i 8 o L
= X E @ f
T 3000 | S a0 ||
2 2000 | S w |
1000 N - < 100 |
0 | 0
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Variation in User Requests Number Variation in User Request Number
[ @ProfminVm SProfRS TProfPD = StaticGreedy DMinResTime] [ BProfminVm 8ProfRS OProfPD = StaticGreedy DMinResTime]
(a). Total profit (b). Average response time
120 5000
B o
o
9 Q. 3500
(_U 8 3000
-+
E O 2500
- f 2000
= QO 1500
> 8 1000
500
. o : :
1000 2000 3000 4000 5000 1000 2000 3000 4000 5000
Variation in User Request Number Variation in User Request Number
BProfminVm SProfRS OProfPD = StaticGreedy ] [ BProfminVm SProfRS OProfPD ™ StaticGreedy DMinResTime]
(c). Number of initiated VMs (d). Number of accepted users
Figure3.60v er al | algorithmsdéd performance during variat

Figure 3.6bshowsthabur al gori thmsdé trends of response t
5000 users because of increasing in processing of user requests per VM. When there is

smal |l er number of request s, the difference be
becomes significant. For example, with 1000 requeBtefPD gives users 16% lower

regonse time thafrofminVMand ProfRS,and even accept more requests. This is because
ProfPDschedul ed | ess number of users per V M, t hu
scenarios the reason for lower response time is smaller initiationRiofnin\M provides

the lowest response time compared to others, because it can serve a new user with new VMs.
Impact of QoS parameters

In the following sections, we examine various experiments by varying both user and resource

provider si de danalySelthd impactofpe@ch paiareeser. t o

1) Impact of variation irarrival rate

68



To observe the impact of arrival rate in our algorithms, we vary the arrival rate factor, while

keeping all other factors such as deadline, budget as the same. All expearearasducted

with 5000 usergquests. It can be seen fréfigure 3.7 thatw h e n

arrival

rate is

the performance dProfminVM ProfRS andProfPD are affected significantlyThe overall

trend of profit is decreasing and the response timecie@ising because when there is more

user arrival per second, the service capability is decreased due to fewer new VM

instantiations.

Figure 3.7ashows that thérofPD achieves the highest profit (maximutb% more than

ProfminVM and ProfRS by accepting45%) more users and initiating thieeast number of

VMs (19% less tharProfminVM 28% less thaProfRg when arrival rate increasé®m
s mal | 0. Thisois bcaus@rofPD lacezaptgusets with existing machines

nvery

with penalty delay. In the s scenarioProfminVMandProfRSachieve similar profit, but

ProfRSaccepts 4% more requests with 13% more VMs ®iaiminVM Therefore, in this

scenarioProfPDi s t he best

choi ce

for a Saas

provider.

| ar ge o0, umben of VM ik lemited ProfRSis a better choice compared RoofminVM

because although it provides similar profitR®fminVM it accepts more requests, leading

to market share expanding.

8200

7200 ()
B3 %]
+— 6200 c -
= o
© 5200 o @
@ 4200 8 g
E 3200 CK =
O 2200 2
. 1200 <

200 — Y

very low low medium high very high
Variation in Arrival Rate
BEProfminVm SProfRS OProfPD
(a). Total profit

120 6000
o 0 [3 § § g 5000
% 80 § § %4000 NN
S S |
'§ 60 § § éi) 3000
S . N\ \ o
S \ \ D 2000

N | N\ =
20 § 1000

very low low

Variation in Arrival Rate

medium high very high

HProfminvVm SProfRS OProfPD

(c). Number of initiated VMs

900
800

700 N
§ 600 - | o
500 |
a00 | |
300 |}
200 | |
100 ||

DY,

very low low

Variation in Arrival Rate

medium high very high

mProfminVm B ProfRS OProfPD

very low low

(b). Average response time

very high

medium high

Variation in Arrival Rate

BProfminvm

SProfRS OProfPD

(d). Number of accepted users

Figure 3.7 Impact of arrival rate variation

69



Figure 3.7bshows that th@rofPD achieves in the smallest response time and accepiss

number of userwith less number of VMexcept when arrival rate is very high. Even in the

case of high arrival rate, the difference between response timeProffD and its next

competitor is just 3%.ProfminVMandProfRShave similar response times. However, there

is a drastic increase iegponse time when the arrival rate is very high because more requests

are accepted per VM which delays the processing of requests. It is safe to conclude that even

considering the response time constraints from users, the first choice for a SaaS wovider i
still the ProfPD.

2) Impact of variation imleadline

To investigate the impact of deadline in our algorithms, we vary the deadline, while keeping

all other factors such as arrival rate and budget fikéglre 3.8a shows that thdé>rofPD

achieved the higest profit (45% oveProfminVMand 41% oveProfRS by accepting 33%

more userequest (Figure 3.89 and initiating 52% less VM6 F i ¢ . In sBroe)seéenarios,

ProfminVM provides higher profit thaRrofRS,f o r

exampl e, when

deadl ine

becaise ProfRS accepted requestith larger service time, which occupy the space for

accepting other requests.

Total Profit ¢

VM Initiated

E:
g

very tight tight medium relax
Variation in Deadline

BProfminvVm N ProfRS OProfPD

100
90
80
70

60 |

50
40
30
20

10 :

(a). Total profit

very tight tight medium relax very relax

Variation in Deadline

BProfminVm B ProfRS OProfPD ]

(c). Number of initiated VMs

Avg. Response

T|me (Sec))

1600
1400
1200
1000
800
600
400
200

very tight tight medium relax very relax

Variation in Deadline

BProfminVm SProfRS OProfPD

(b). Average response time

very tight tight medium relax very relax

Variation in Deadline

BProfminVm SProfRS BProfPD

(d). Number of accepted users

Figure 3.8 Impact of deadline variation

70



Figure 3.8bshows that when deadline is relaxé&tpfPD results in 4% higher average
response time than in the casePobfminVM and ProfRS The ProfPD has larger response
time because of the two factors governing
initiation time. It can be seen frofigure 38d that ProfPD always requires less VMs, to
process more requests. Thus, when service time is comparable to the VM initiation time, the
response time will be lower. When the VM initiation time is larger than the service time, the
response time is affectéy the number of initiated VMs.

3) Impact of variation iftbudget

Figure 3.9 shows variation of budget impacts our algorithms, while keeping all other factors
such as arrival rate and deadline fix€@gure 3.9ashows that when budget is varies from
Avery small 6 to Avery | argeo, in average
and response timeasdecreased since less requests are processed using more VMs. From
Figure 3.9a it can be observed thBrofPD gains the highest profit for SaaS provider except

rescg

he

when budget iis Al argeo. | n dPeobnmVMprfovidesahenar i o wk

highest profit (20%) over other algorithms by accepting similar numbeemqfess while
initiating more VMs without penalty delay. This is due to an increase irP#malty Delay
R at e(Equdiigri5) with the budgetaise BetweenProfminVMand ProfRS ProfminvVM
provides more profit in all scenarios. Therefore, in this scenario a SaaS provider should

considerProfPD, ProfminVMcompared wittProfRS

In the case of response timeigure 3.9, ProfPD on average delayed the processing of

request for the | ongest time (e.g. 33% bigger

even though it processed marser requests and initiated less VMs. However, when budget
is Al argeo, t he r ersfmionvVimis ¢he Ibngasteevep thaughiit dazapts b y
similar number of users &ofPD. This anomaly caused by the contribution of VM initiation

time which becmes very significant wheRrofRSinitiated large number of VMs.

71



4500 1400

1200

=
o
<}
S

@
=}
S

Total Profit

Avg. Response
TimE(s )
5 g
o o

N
=}
o

1500

E [@W

500 -
o\

very small small medium large very large very small small medium large very large

Variation in Budget Variation in Budget
EProfminVm SProfRS OProfPD EProfminVm SProfRS OProfPD
(a). Total profit (b). Average response time
90 6000

80
70
60
50
40
30
20
10

VM Initiated

%7

very small small medium large very large very small small medium large very large
Variation in Budget Variation in Budget
@ProfminVm SProfRS OProfPD | @ProfminVm SProfRS OProfPD ]
(c). Number of initiated VMs (d). Number of accepted users

Figure 3.9 Impact of budget variation

4) Impact of variation irservice time

Figure 3.10 shows how service time impacts our algorithms, while keeping all other factors

such as arrival rate and deadline as the same. In order to vary the service time, five classes of
requestlengthMl) are chosen fiMMIm fivermywes™hll ladg gedDO ( 5x1

Figure 3.10ashows that the total profit by all algorithms has slightly decreased but response

time increased rapidly when the requksigthv ari es from fAvery small o
ProfPDac hi eves the highest profit among other al
| argeo reques tProfP2 gegerated abaue 30% r noe , profit than other

algorithms by accepting 24% morequess (Figure 3.10d and initiating 32% Kigure

3.100 less VMs. In additionProfminVM and ProfRSachieve similar profit in most of the

cases. Therefore, tiirofPDis the best saokion for any size of requests.

In addition, it can be observed from Fig. 10b tRavfPD provides only a slightly higher
response time (almost 6%) than others except when the request size is very small. When

72



request size is very small, the response time providder@fPD becomes 27% bigger than
others, because it accepts 63% more usguess with 22% more VMs, leading to me

requests waiting for processing on each VM.

8200 1200
- 7200 % 1000
+ 6200 c .
D 5200 8_ § 80
Q@ 4200 | $ g 600
T*E ll D: = 400
O 2200 %
et >
1200 < 200
200 0
very small small medium large very large very small small medium large very large
Variation in Request Length Variation in Request Length
BProfminVm SProfRS OProfPD @ProfminVm 8 ProfRS OProfPD ]
(a). Total profit (b). Average response time
80 5000
20 4500
- D 4000
% 60 Q. 3500
= P O 3000
= 4 2500
s w = 2000
T2 E§W S
1000
10
. 500
, AN | ;
very small small medium very large very small small medium
Variation in Request Length Variation in Request Length
BProfminvm SProfRS OProfPD ] [ BProfminVm SProfRS OProfPD |
(c). Number of initiated VMs (d). Number of accepted users

Figure 3.10 Impact of request length variation

5) Impact ofvariationin penalty rate

In this section, wénvestigate how penalty raté)(impacts our algorithms. The penalty rate
(Equation3.15) depends on how long user is willing to waiy, (which is defined apenalty
rate factorin ourchapter Therefore, when the penalty rate facrig large, thegpenalty rate

is small. All he results are presentedrigure 3.11.

In can be observed frofigure 3.11that only ProfPD shows some effect of variation in
penalty rate since this is the only algorithm which uses Penalty Delay strategy to maximize

the toal profit. The total profitlfigure 3.114 and average response tinfiegure 3.110 are

only slightly decreased whenth@ ( i s varied from fAvery | owodo to
scenariosProfPD achieves 29% more profit over others by accepting 22%e meguests
and initiating 30% | ess VMs. I n addition, wh e

very higho, the response t iPméPDacteptgalttleé bt decr e a:

73



less requests with similar number of VMs. Thus, the humbegqfests waiting in each VM

becomes smaller, leading to faster response time for each request.

_ 20 g 800 =
% zzz “ﬁ% N §_ g 600
& o iii%§ . 8e o |
g o N\ - F oo
O 2200 . :\ - gn oo |
" im0 N\ N\ T w
Very\(}v;iriatit:vr: in P(ren;;rty Ratz Fact:)erry ’ Very\;;riatic;mrvl in Pr:nuglty Ralie Fa(;:/)rlg
[ ®ProfminVm SProfRS TProfPD ] @Profminvm SProfRS OProfPD |
(a). Total profit (b). Average response time
« N N Y N
E 50 1155§ ZZZ::§ § :511§
] . .
o ::::\ :::”% ::111\ ::55\
el TR Nl
i R
v -\ ;;;ZZ§ ZZ;;;§ ZZ;;§ :
Variation in Penalty Rate Factor Very\o/wariatigvr; in Pg;;r;ty Ratz Factéerry ’
[ @ProfminVm SProfRS OProfPD ] l BProfminVm SProfRS OProfPD ]
(c). Number of initiated VMs (d). Number of accepted users

Figure 3.11 Impact of penalty rate factor variation

6) Impact of variation irnitiation Time

In this section, we analyse the variation of initat time impacts our algorithm$igure
3.12a illustrates that with increase in initiation time the total profit achieved by all the
algorithms decreases slightly while response time has increased a littlaébiio icrease in
initiation time, the number of initiated V8AFigure 3.12¢9 has decreased rapidly due to the
contribution of initiation time in SaaS providers cost (spending). In all the scerfradBD
achieves highest profit over others lpceptingl7% more request$igure 3.12d) and with
37% less initiated VMs. Therefor@rofPD is the best choice for a SaaS provider in this

scenario.

The response time offered ByofPD is slightly higher than others in most of cases, because
it accepted more usewith less number of VMs, in other word, a VM required to serve more
number of users, leading to delay in request processing. The response Broéaf is the

lowest in this scenario; because of large initiation time of VM, the response time is also

74



increased with each initiated VM. However, the contribution to delay in processing of

requests, due to more number of requests per VM also increases. This leads to higher

response time in the scenario when the initiat
8200 900
7200 () 800 | oy
f 6200 2 0
= O g 600
o 5200 § Q ¢
5 N Zo
= N =
9 3200 \ . 300
O 2200 | \ <
= I \ 3: 200
1200 \ 100 |
200 - 0
very short short medium long very long very short short medium long very long
Variation in VM InitiationTime Variation in VM Initiation Time
[ @ProfminVm SProfRS OProfPD ] @ProfminVm SProfRS OProfPD ]
(a). Total profit (b). Average response time
70
= 60 §
=40 \
- 20 :::\
= :;:\
> §
" i;i§
0 Z;Z\
very short short medium long very long very short short medium long very long
Variation in VM Initiation Time Variation in VM Initiation Time
[ BProfminvm SProfRS OProfPD | [ BProfminVm SProfRS OProfPD |
(c). Number of initiated VMs (d). Number of accepted users

Figure 3.12 Impact of initiation time variation

Robustness Analysis

In order to evaluate the robustness of our algorithms, we run some experiments by reducing

the actual performance of VMs in the SLA(R) promised by laaS provideisp&Hormance

degradation has been observed by previous research study in Cloud computing environments

[98]. This experiment is conducted also tstjfy the inclusion of compensation (penalty)
clauses in SLAs which i s abP3.nWe modelledthe r ent | a
reduced perfonance using a normal distribution with average variation between mean varies

0% and 50%.

75



500 3000

B 450 % 2500
+— . c
W= 400 "§ N N O § 2000
o N o ¢
a 30 "‘“§ § § 3 OE) 1500
o =
g 300 § § § : c)|_ 1000
= 250 § § § . <>( 500
L\ N | EN ;
0 0% 10% 20% 30% 40% 50% ’ 0% 10% 20% 30% 40% 50%
Variation in Performance Degradation Variation in Performance Degradation
[ BProfminVm SProfRS OProfPD ] [ BProfminVm &ProfRS OProfPD ]
(a). Total profit (b). Average response time
80 4400
70 ) N
S § § B 4200
T 5 § § 84000
E 4018 § § § 3800
S 30| :EE§ :EEE§ E
> - :55\ 155% . @ 0
2 8§ N | )
o i § § . 3400
° 0% 10% zo% . 30% . 40% 50% 500 0% 10% 20% - 30% 50%
Variation in Performance Degradation Variation in Performance Degradation
[ =ProfminVm SProfRS OProfPD ] [ BProfminVm SProfRS OProfPD ]
(¢). Number of initiated VMs (d). Number of accepted users

Figure 3.13 Impact of performance degradation variation

Figure 3.13shows that during the degradation of VM performance, the average total profit
(Figure 3.133 has reduced 11% and average response kigarg 3.13) has doubled with

the increase in performance degradation of initiated VMs. This is because of the gec®rm
degradation of VMs has not been accounted in SLA(R). Therefore, a SaaS provider does not
consider this variation during their scheduling, but it impacts significantly on the total profit

and average user requests response time.

Two solutions to handl this VMs performance degradation are: first, utilization of the
penalty clause in SLA(R) to compensate for profit loss; second, considering the degradation
as a potential risk. Thereforduring the scheduling process a (300 seconds) slack time is
addedn estimated service processing tiema it can be seen froRigure 314, that the latter
solution reduces considerably (from 0% to 50%, profit decreased only by 2%). Thus, if there
is a risk for a SaaS provider to enforce SLA violation with an laaS gvah alternative

solution to reduce risk is by considering a slack time during scheduling.

76



550 3000

2500

e A
.E 450 g S 2000
O .o % quj
o o Q ¢ 150
4_9 300 Dc:.’; 1000
P 250 3: 500
Vaoriation ;n Perf:)rman(;e Deg;adationn Variation in Performance Degradation
[ @ProfminVm SProfRS OProfPD ] [ @ProfminVm S ProfRS OProfPD |
(a). Total profit (b). Average response time
2 N N N | J .
g- N RN B 2= @i\ || n N\
o N N R 0N 0\ N
c | - b 2500 o - L
— 30 :5\ 55:\ < -::\ \ §
=l N N\ g N\ N\ N\
> 20 | \ \ f 150 .”§ \ §
ol B 55\ 555\\ 2 1000 \ § \

0% 10% 20% 30% 40% 50% 0% 10% 20% 30% 40% 50%
Variation in Performance Degradation Variation in Performance Degradation
[ EProfminvm SProfRS DProfPD | [ BProfminVm SProfRS DProfPD |
(¢). Number of initiated VMs (d). Number of accepted users

Figure 3.14 Impact of performance degradation variation after considering slack time

3.5 Related Work

Research on market driven resource allocation and admission control has started as early as 1981
[72][69]. Most of the markebased resource allocation methods are eitheiprioing-based6] or

designed for fixed number of resources, such as Firsf@8¢and FirstProfi{70]. In Cloud, laaS
providers focusing on maximize profit andany works[89][6][42] proposed market based
schedulig approaches. For instance, Ama®?| introduced spot instance way for customers to

buy those unused resources at bargain prices. This is afvegyimizing resource allocation if
customers are happy to be terminated at any time. However, our goal is not only to maximize

profit but also satisfy the SLA agreed with the customer.

At platform category, Projects such laserCloud[77], Sky Computind79], and Reservoif78]
investigated the technological advancement that is required to aid the deployment of cloud
services across multiple infrastructure providetswever, research at the SaaS provider level is

still in its infancy, because mamyorks do not consider maximizing profit and guaranteeing SLA

77



with the leasing scenario from multiple laaS providers, where resonatededynamically

expanded and contradten demand.

As we focus on developing admission control and scheduling algorithms and strategies for SaaS
providers in Cloud, we divide related work into two @dstions: admission control and

scheduling.

3.5.1 Admission Control

Yeo and Buyya presented algorithtas handle penalties in order to enhance the utility of the
cluster based o&LA [65]. Although they have outlimea basic SLA with four parameters in
cluster environment, multiple resources and multiple QoS parameters from both user and provider

sides are not explored.

Bichler and Setzer proposed an admission control strategy for media on demand services, where
the duration of service is fixeld4]. Our approach allows a SaaS provider to specify its expected
profit ratio according to the cost, for examplbe tSaaS provider can specify that the service

request which can increase the profit in 3 times will be accepted.

Islam et al. investigated policies for admission control that consider jobs with deadline constraints
and response time guarant¢@6][91]. The main difference is that they consider parallel jobs
submitted to a single site, whereas we utilize multiple VM from multiple IaaS providers to serve

multiple requests.

Jaideep and Varmaroposed learningased admission contrisi Cloud computing environments
[67]. Their work focuses on the accuracy of admission control but datesonsider software

service providerso6 profit.

Reig G. et al contributed on minimizing the resource consumption by requests and executing them
before their deadline with a prediction systg#6]. Both the works use deadline constraint to
reject some requests for more efficient scheduling. However, we also consider the profit constraint

to avoid wastage of resources on low profit requests.

78



3.5.2 Scheduling

Chun et al. buila prototype clusteof time-sharing CPU usage to seruserrequesty75]. A
marketbased approach to solve traffic spikes fimsting hternet application®n Clusterwas
studied by Coleman et aJ76][75]. Leeet al. investigateda profitdriven servicerequest
scheduling for workflow$42]. These related workkecus on scenarios with fixed resources, while

we focus on scenarios with variable resources.

Liu et al. analysed the problem of maximizing profit ita@nmerce environment using web
service technologies, where the basic distributed system is dBGteKumar etal. investigated

two heuristics, HRED and HRED, to minimize business value but they studied only the
minimization of cosf{99]. Garg et al. also proposed time and cost based resource allocation in
Grids on multiple resources for parallel applicatig88]. However, ar current study uses
different QoS parameters, (e.g. penalty rate). In addition, our current study focuses on Clouds,
where the unit of resource is mostly VM, which may consist of multiple processors.

Menasce et al. proposed a priority schema for regussteduling based on user status. The
algorithm assigns higher priority to requests with shopping status during scheduling to improve

the revenug84]. Nevertheless, their work is not Stased and response time is the only concern.

Xiong et al. focused on Sl-Based resource allocation in Cluster computing systems, where QoS

metrics considred are response time, Cluster utilization, packet loss rate and Cluster availability

[87]. We consider different QoS parameters (i.e., budgeiilihe, and penalty rate), admission

control and resource allocation, and multiple laaS providers. Netto et al. considered deadline as

their only QoS parameter for badrtask applications in utility computing systems considering

multiple providerd88]. Popovi ci et al . mai nly focused on Qo
side such as price and offered |¢@€@]. However, our work differs on QoS parameters from both

usersdé6 and SaaS providerso6é point of view, such a
In summary, thishapteiis unique in thdollowing aspects:

1 The utility function is timevarying by considering dynamic VM deploying time (aka

initiation time), processing time and data transfer time.

79



1 Our strategies adapt to dynamic resource pools and consistently evaluate the profit of adding a
new instance or removing instances, while most previous work deal with fixed size resource

pools.

3.6 Summary

We presented admission control and scheduling algorithms for efficient re soamegemento
maximize profitand market share by accepting mapedfitable user requestsvith minimum
number ofresourcedor SaaS providersThrough simulation, we showed that the algorithms
work well in a number of scenarios. Simulation results show that in averagrafieD
algorithm gives the maximum profit (in avegesave about 40% VM cost) among all proposed
algorithmsin all scenariosvarying all types of QoS parameters. If a user request needs fast
response timeRrofRSandProfminVMcould be chosen depending on the scenario. The summary
of algorithms and their ability to deal with different scenarios is showialote 3.2.

In this work, we assumed that the estimated service time is accurate since existing performance
estimation techniques (e.g. analytical modellrgor! Reference source not found, empirical,

and historical dat§83]) can be used to predict service times on various types of VMs. However,

still some error can exist in this estimated servicefpBgd ue t o vari able VMsd pe
Cloud. The impact of error could be minimized by two strategies: first, considering the penalty
compensation clause in SLAs with laaS provider and enfStok violation; second, adding

some slack time during scheduling for preventing risk.

The next chaptegeneralizes the problem apdesentsustomer requirementlriven algorithms
to achieve Saa$S pdedoatingbersosalivedatentiemtdustomersrhesey
algorithms take into account customer profiles (suctihag credit level) and multiple Key

Performance Indicator (KPI) criteria.

80



Table3.2 Summary of heuristics of comparison results (Profit)

Algorithm Time Overall Performance
Complexity | Arrival Deadline | Budget Request | Penalty | VM Data
Rate Length Rate Initiation | Transfer
Factor | Time
ProfminVM | O(KIJ+KI) Good (low| Good Good Good No Okay Good
-high) (low-high) (very low | effect (very low
& very & very
high) high)
ProfRS Okay Okay Okay Okay No Good Okay
O(KIJ+IK?) (very (very (very low) effect (low-
high) high) high)
ProfPD O(KIJ+IK?) | Best Best Best Best Best Best Best

81




82



4 SLA-based Resource Provisioning for SaaS
Applications

This chapter proposes u s t o raguiresnéntglriven resource provisioning algorithrts

achieve SaaS providers' objectivd$ie poposed provisioning algorithms consider customer
profiles and providersod qual it ylyngnarclangestier s (e.
customer requirementand infrastructure level heterogeneity fS8aaS providerghat lease
enterprisesoftware We also take into account custorséle parameters (such as the proportion

of upgrade requests), and infrastructienes| parameters (such as the service initiation time) to

compare algorithms. Simulation results show that our algorithms reduce theosttapdo 54%

and the number of SLA violations up to 45%, compared with the previously proposed best
algorithm.

4.1 Introduction

Research related t&LA-based costminimization and Customer Satisfaction Level (CSL)
maximizationfor SaaS providerare still in their preliminary stagesand currentresearch on
Cloud computind42][6][89] focus maostly onmarket oriented models for laaS providers. Many
authorsdo not consider customer driveresourcemanagement, where resowsdeave to be

dynamically reall ocat edenmamdecequiraimemsg t o t he cust ome

CSL can be reduced by SLA violatiowsile it also can be improgkby delivering services better
than expected. For example, if actual service response timghsrthanthe one specified in SLA,
it causes SLA violatiogand customer will be unsatisfied. On the other hand, if the response time

is smallerthan the one specified in the SLA, the customer satisfaction level will be improved.

This chapteiproposes customer driveiigorithmsto minimize the total cosind maximize CSL

by resourcerovisioning. These algorithnadso take into account custommofiles (such agheir

83



credit level)and multiple Key Performance Indicator (KPI) critedaholistic way to quantify the
customer experience is by considering KPIs from seven categories: Financial, Agility, Assurance,
Accountability, Security and Privgc Usability and Performancfl15]. To improve a SaaS
applicationés performance quality rati nsg, we cCcoO
perspecti ve: cost (part of the Financi al catego
response time (part of the Performance category) and SLA violations (related to Assurance):
1 Cost: the total cosif resource usagacluding VM and penalty cost.
9 Service response time: how long it takes for users to receive a response.
9 SLA violations: the possibility of SLA violations creates a risk for SaaS providers. In
this chapter SLA violations are caused by elapse ia #xpected response time, and
whenever a SLA violation occurs, a penalty is charged.

To satisfy customer requests in order to minimize the total cost and SLA violations for SaaS
providers, the following key questions are addressed:
1 How to manage dynamicustomer demands? (such as upgrading from a standard
product edition to an advanced product edition or adding more accounts)
1 How to reserve resources by considering the customer profiles and multiple KPI
criteria?
How to map customer requirements to infinasture level parameters?
How to deal with infrastructure level heterogeneity (such as different VM types and
service initiation time)?
The key contributions of thishapterare:
9 Design of a resource provisioning model for SaaS Clouds considering cugtofiles
and multiple KPI criteria. These considerations are important for resource reservation
strategies to improve the CSL.
1 Development of innovative scheduling algorithms to minimize the total cost and
number of SLA violations.
1 Extensive evaluationf the proposed algorithms with new QoS parameters such as

credit levels.

84



4.2 SystemM odel

The SaaS model for serving customers in the Cloud is shoWwigime 4.1. The SaaS provider

uses a three layered Cloud model, namely the application layer, the rpld#iper and the
infrastructure layer, to satisfy theserrequests. Thapplication layermanages all the secured
application services, such as the Customer Relationship Management (CRM) or Enterprise
Relationship Package (ERP) applications, that areeuffey customers by the SaaS provider. The
platform layeris responsible for application development and deployment (such as Aié&ka
Google AppEngine [135], Spring framework). In our model, the function of this layer also
includes mapping and scheduling policies for translating the customer side QoS requirements to
infrastructure level parameters. The mapping policy considers customer profiles and K@l criter
to measure the SaaS providerdés Qo0S.

The infrastructure layerincludes the virtualization VM management services (such as VMWare
[137], HyperV [136]) and controls the actual initiation and termination of VMs resources, which
can be leased froraaS providers, such as Amazon EC2, BB6] or own private virtualized
clusters. In both cases, the minimization of the number of VMs wilvetebavings for the

providers.

85



4.2.1 Actors

o +
CUOSWJITICTOS

é;)‘ .»E ! B %
. J w

Requeﬂt Service

/ \ SaaSDrovider‘
App

lication Layer (e.g. CRM, ERP)

ProvidHAccess Info.

[ Application Service} [ Application Service]

Platform Layer ¢.gAneka, Googlé\pp Engine, Spring)

Application Application Deployment
Development and Execution
Environment and Tools Management Services

Infrastructure Layer (e.d¢dyperV, EC2, S3)

Virtualization and VM
Management Services

Data
Centre
Resources

Figure 4.1 A system model of SaaS layer structure

The actors involved in our system model are described below along with their objectives, activities

and constraints.

SaaS Providers

SaaS providers lease wbhsed enterprise software as services to customers. The main
objective of SaaS providers is to minimize cost and SLA violations. We achieve this objective
by proposing customalriven SLAbased resource provisioning algorithms for VWelsed

enterprise apations. In our context, a SaaS service proviieffers CRM or ERP software

packages with three product editions (for example, Standard, Professional and Enterprise) and

each
use a similar service moddl07]. In this service model, when a custor@@mpany Ysubmits
6first ti me r eeditioch Stargaygy and additiwmalt number ofpr odu c t

accounts,the SaaS provideneeds toallocate resources and then provides the login

information to the customeCompany Ymay require an upgrade in their service by adding

ts

product edition with a fi x@odthpeperERR e .

86

The

c





























































































































































































































































































