

i

SLA-based Resource Provisioning for Management of
Cloud-based Software-as-a-Service Applications

by

Linlin Wu

Submitted in total fulfillment of

the requirements for the degree of

Doctor of Philosophy

Cloud Computing and Distributed Systems Laboratory

Department of Computing and Information Systems

The University of Melbourne, Australia

March 2014

ii

iii

SLA-based Resource Provisioning for Management of
Cloud-based Software-as-a-Service Applications

PhD Candidate: Linlin Wu

Principle Supervisor: Professor Rajkumar Buyya

 Co-Supervisor: Dr. Saurabh Kumar Garg

Abstract

 The Cloud computing Software-as-a-Service (SaaS) model has changed the sales model for

software providers. The SaaS model transforms the traditional license based model to a

subscription model, which allows customers to access applications over the Internet without

software and hardware upfront costs and provides reduced maintenance costs. However, the

key for sales is still customer satisfaction which is at the heart of the selling process. To

guarantee Quality of Service (QoS) for customer satisfaction therefore, the Service Level

Agreement (SLA) is implemented between customers and SaaS providers, where the main

objectives are profit maximization and increased market share.

 To achieve these objectives, there are several challenges due to the dynamic nature of the

Cloud environment. Firstly, the SaaS provider utilizes shared infrastructure and various types

of request loads which can lead to unpredictability in performance and availability of

resources. Secondly, there is a possibility that existing customers may make changes in

requirements, which can lead to resource reallocation. As such, resource allocation may cause

SLA violations which could reduce the SaaS providersô profit margin and reputation, meaning

a possible loss of existing customers and potential new customers. Thirdly, SaaS providers

need to attract customers with special needs and consider market competition from other

providers in order to increase profit and market share.

 To overcome the above challenges, most proposed solutions are focused on the resource

management with the aim of minimizing cost without sufficiently consideration of customerô

needs. Therefore, to address these challenges, this thesis proposes algorithms and techniques

for optimal provisioning of Cloud resources with the aim of maximizing profit and customer

base by handling the dynamism associated with SLAs and heterogeneous resources.

The key contributions of the thesis are:

¶ A comprehensive survey of how SLAs are created, managed and used with case

examples drawn from both academy and industry with a major emphasis on the SLA-

based resource management systems.

¶ The admission control and scheduling algorithms assist in identifying which request

is more acceptable based on profitability, reducing the probability of SLA violations

given the heterogeneous nature of Cloud resources.

¶ The customer requirements driven resource provisioning algorithms can help in

adapting to changes in the requirements. The proposed algorithms provide

personalized attention to the customer and are also able to understand specific

customer needs.

¶ A new negotiation framework to enlarge a SaaS providerôs customer base that

considers dynamism in the Cloud environment with time and market factors to make

the best possible decisions for negotiation.

¶ A prototype of the customer requirements driven SLA-based resource management

system to prove the usefulness of our proposed strategies using the latest

technologies.

iv

This is to certify that

(i) the thesis comprises only my original work,

(ii) due acknowledgement has been made in the text to all other material used,

(iii) the thesis is less than 100,000 words in length, exclusive of table, maps,

bibliographies, appendices and footnotes.

 Signature

 Date

v

ACKN OWLEDGMENTS

Throughout my PhD journey, I received guidance, support and motivation from

amazing people whom I wish to acknowledge. First and foremost, I would like to

express my sincere gratitude to my supervisors Professor Rajkumar Buyya and Dr.

Saurabh Kumar Garg for their continuous support, advice, and guidance throughout

my candidature. These individuals have built and directed an environment that

granted me the opportunity to learn and practice research skills, meet and collaborate

with brilliant researchers, and transfer the long journey of the PhD into an immensely

rewarding experience. This was especially so when I encountered personal issues, and

they supported me as a family.

I also wish to extend my gratitude to the members of the PhD committee: Prof. Rao

Kotagiri and Dr. Rodrigo N. Calheiros for their encouragement and insightful

comments in relation to my research. In particular, it has been consistently beneficial

to discuss initial research ideas with Dr. Rodrigo. Dr. Rodrigo has also generously

assisted both in preparing for my experiments and in the proof-reading of my papers

and thesis.

I would also like to thank the past and present members of the CLOUDS Laboratory

at the University of Melbourne. They include Mohsen Amini, Anton Beloglazov,

Atefe Khosravi, Sare Fotouhi, Deepak Poola, Mohammed Alrokayan, Yaser

Mansouri, Marco Netto, Mustafi zur Rahman, Mukaddim Pathan, Suraj Pandey, Rajiv

Ranjan, Christian Vecchiola, and Marcos Dias de Assuncao. I would also like to

thank Dr. Steve Versteeg and Mr. Bevan Mailman for proof-reading this thesis, and

for their extensive comments.

It has been a great pleasure and a privilege to work with you all. I wish to

acknowledge the Australian Federal Government, the University of Melbourne, the

School of Engineering, the Australian Research Council (ARC), Computer Associates

(CA), IEEE Victoria, Google, and CLOUDS Laboratory for granting scholarships and

the travel support which enabled me to pursue doctoral study and attend international

conferences.

Finally, I would like thank my family members including parents, my sister and my

parents-in-law for their support and love.

Linlin Wu

Melbourne, Australia

March 2014.

vi

vii

CONTENTS
1 Introduction ... 1

1.1 SaaS Model ... 2

1.1.1 SaaS and Service Level Agreements .. 3

1.2 SLA-based Resource Management for SaaS... 4

1.2.1 Limitation of Existing Solutions ... 5

1.3 Problem Statement and Objectives ... 6

1.3.1 Challenges and Requirements ... 7

1.3.2 Proposed Solution ... 9

1.4 Contributions ... 10

1.5 Methodology ... 11

1.5.1 Workload ... 11

1.5.2 Experiment System ... 12

1.6 Organization .. 12

2 Service Level Agreement (SLA) in Utility Computing Systems 15
2.1 Introduction ... 15

2.2 Utility Architecture and SLA Foundations ... 18

2.2.1 Utility Architecture .. 18

2.2.2 SLA Definitions .. 19

2.2.3 SLA Components ... 20

2.2.4 SLA Lifecycle .. 21

2.3 SLA in Utility Computing Systems .. 24

2.3.1 SLA Management in Utility Computing Systems ... 24

2.3.2 Solutions for SLA Management in Utility Computing Systems 27

2.4 SLA Use Cases in Utility Computing Systems ... 35

2.4.1 SLA in Grid Computing Systems .. 35

2.4.2 SLA in Cloud Computing .. 36

2.5 Open Problems .. 44

2.6 Summary ... 45

3 SLA-based Admission Control for Software-as-a-Service Providers 49
3.1 Introduction ... 49

3.2 System Model .. 50

3.2.1 Actors .. 51

3.2.2 Profit Model .. 53

viii

3.3 Algorithms and Strategies ... 55

3.3.1 Strategies ... 55

3.3.2 Proposed Algorithms ... 59

3.4 Performance Evaluation .. 64

3.4.1 Experimental Methodology ... 65

3.4.2 Performance Results ... 66

3.5 Related Work .. 77

3.5.1 Admission Control ... 78

3.5.2 Scheduling ... 79

3.6 Summary ... 80

4 SLA-based Resource Provisioning for SaaS Applications 83
4.1 Introduction ... 83

4.2 System Model .. 85

4.2.1 Actors .. 86

4.2.2 Mathematical Models ... 89

4.2.3 Mapping of products to resources .. 93

4.2.4 Problem description .. 93

4.3 Resource Provisioning Algorithms ... 96

4.3.1 Base Algorithm: Maximizing the profit by minimizing the cost by sharing the

minimim available space VMs (BestFit). ... 97

4.3.2 Proposed Algorithms ... 99

4.3.3 Lower Bound ... 105

4.4 Performance Evaluation .. 107

4.4.1 Experimental Methodology ... 107

4.4.2 QoS parameters .. 108

4.4.3 Results Analysis ... 110

4.5 Related Work .. 119

4.5.1 Grid .. 120

4.5.2 Cloud ... 121

4.6 Summary ... 122

5 Automated SLA Negotiation Framework.. 125
5.1 Introduction ... 125

5.1.1 Motivations ... 126

5.1.2 Contribution .. 127

5.2 Automated Negotiation Framework .. 127

ix

5.2.1 Framework Components ... 127

5.2.2 System Scenario .. 129

5.3 Negotiation Objectives .. 130

5.3.1 Mathematical Models ... 130

5.4 Negotiation Policy Specification ... 132

5.4.1 QoS Model ... 132

5.4.2 Policy Specification .. 132

5.5 Negotiation Protocol ... 133

5.6 Decision Making System .. 136

5.6.1 Broker .. 136

5.6.2 Provider ... 137

5.7 Negotiation Strategy .. 138

5.8 Performance Evaluation .. 140

5.8.1 Reference Heuristic ... 140

5.8.2 Experimental Methodology ... 140

5.8.3 Result Analysis ... 141

5.9 Related Works ... 145

5.10 Summary ... 146

6 An SLA-based Resource Management System for SaaS Providers 147
6.1 Motivation and Requirements ... 147

6.2 System Architecture .. 148

6.2.1 Details .. 149

6.3 System Implementation Technologies .. 153

6.3.1 Design Considerations ... 154

6.3.2 Implementation Details ... 155

6.4 Case Study: CA (Computer Associates) Directory ... 157

6.4.1 System Details ... 157

6.5 Performance Evaluation .. 159

6.5.1 Experiment Setup .. 159

6.5.2 Scheduling algorithms evaluate .. 159

6.5.3 Admission control algorithms evaluate .. 160

6.6 Related Work .. 161

6.7 Summary ... 161

7 Conclusions and Future Directions .. 163
7.1 Summary ... 163

x

7.2 Lessons Learned and Significance .. 165

7.3 Future Directions ... 167

7.3.1 Providing Services with Different Pricing Models .. 167

7.3.2 Using Resources with Different Pricing Models ... 167

7.3.3 Resource Provisioning for Multi-tier Applications ... 168

7.3.4 Resource Provisioning for Network and Data-Aware Application 168

7.3.5 Customer Usage Model for Customer Driven Resource Management 168

References .. 169

xi

LIST OF FIGURES

Figure 1.1 A layered architecture for Cloud computing .. 2

Figure 1.2 Thesis Organizations .. 13

Figure 2.1 A typical architectural view of utility computing system 16

Figure 2.2 SLA-based Utility Computing System Architecture .. 19

Figure 2.3 SLA Components .. 21

Figure 2.4 SLA high level lifecycle phases, according to the description of Ron et al. [51] 22

Figure 2.5 SLA life cycle six steps, as defined by Sun Microsystems Internet Data Center

Group [54] ... 23

Figure 2.6 Layered Cloud computing architecture [23] .. 38

Figure 3.1 A high level system model for application service scalability for in IaaS providers.

 ... 52

Figure 3.2 Cƭƻǿ /ƘŀǊǘ ƻŦ ΨLƴƛǘƛŀǘŜ ƴŜǿ ±a ǎǘǊŀǘŜƎȅΩ ... 56

Figure 3.3 Cƭƻǿ /ƘŀǊǘ ƻŦ Ψǿŀƛǘ ǎǘǊŀǘŜƎȅΩ .. 57

Figure 3.4 Cƭƻǿ /ƘŀǊǘ ƻŦ ΨƛƴǎŜǊǘ ǎǘǊŀǘŜƎȅΩ .. 58

CƛƎǳǊŜ оΦр Cƭƻǿ /ƘŀǊǘ ƻŦ ΨǇŜƴŀƭǘȅ ŘŜƭŀȅ ǎǘǊŀǘŜƎȅΩ ... 58

CƛƎǳǊŜ оΦс hǾŜǊŀƭƭ ŀƭƎƻǊƛǘƘƳǎΩ ǇŜǊŦƻǊƳŀƴŎŜ ŘǳǊƛƴƎ ǾŀǊƛŀǘƛƻƴ ƛƴ ƴǳƳōŜǊ ƻŦ ǳǎŜǊ ǊŜǉǳŜǎǘǎ 68

Figure 3.7 Impact of arrival rate variation .. 69

Figure 3.8 Impact of deadline variation .. 70

Figure 3.9 Impact of budget variation ... 72

Figure 3.10 Impact of request length variation .. 73

Figure 3.11 Impact of penalty rate factor variation ... 74

Figure 3.12 Impact of initiation time variation ... 75

Figure 3.13 Impact of performance degradation variation .. 76

Figure 3.14 Impact of performance degradation variation after considering slack time 77

Figure 4.1 A system model of SaaS layer structure ... 86

Figure 4.2 Mapping between VMs and a Host .. 93

Figure 4.3 Best Fit Strategy ... 97

Figure 4.4 The Reservation Strategy ... 100

Figure 4.5 The Reschedule Strategy .. 102

Figure 4.6 Impact on reservation strategy during the variation in proportion of customers

with high credit level ... 110

Figure 4.7 Impact of request arrival rate variation .. 112

Figure 4.8 Impact of proportion of upgrade requests variation .. 113

Figure 4.9 Impact of credit level variation .. 115

Figure 4.10 Impact of service initiation time variation .. 116

Figure 4.11 Impact of penalty rate factor variation ... 117

Figure 4.12 Impact of Future Interest Error (Over-Claim) ... 118

Figure 4.13 Impact of Future Interest Error (Under-Claim) ... 118

Figure 5.1 Negotiation Framework High Level Architecture ... 128

Figure 5.2 Negotiation Rule Register Web Form .. 133

Figure 5.3 The Interaction between Components during Negotiation Process 135

file:///C:/temp/SLACloud-Thesis-2907.docx%23_Toc394941058
file:///C:/temp/SLACloud-Thesis-2907.docx%23_Toc394941059

xii

Figure 5.4 Impact of Deadline Variation ... 142

Figure 5.5 Impact of Variation in Expected Margin .. 143

Figure 5.6 Impact of Market Factor Variation ... 145

Figure 6.1 the SLA-based resource management system high level architecture 149

Figure 6.2 Class diagram ... 150

Figure 6.3 Sequence diagram among entities ... 152

Figure 6.4 Sequence diagram among resource level entities ... 153

Figure 6.5 States diagram of requests in the SLARA system ... 154

Figure 6.6 Implementation Technologies ... 155

Figure 6.7 Varitaion in Request Arrival Rate ... 160

Figure 6.8 Varitaion in User Request Number .. 160

xiii

LIST OF TABLES

Table 2.1 Summary of SLA definitions classified by the area .. 20

Table 2.2 Mapping between two types of SLA lifecycle.. 23

Table 2.3 Comparison of SLA Management frameworks and Languages 32

Table 2.4 SLA Use Cases of the most famous Cloud Provider and related characteristics in

SLAs ... 39

Table 2.5 CǊƻƳ ǳǎŜǊǎΩ ǇŜǊǎǇŜŎǘƛǾŜ SLA Use Cases of Cloud Provider follows six steps SLA

lifecycle .. 41

Table 3.1 The summary of resource provider characteristics. .. 67

Table 3.2 Summary of heuristics of comparison results (Profit) .. 81

Table 4.1 The summary of penalty delay time according to request types 92

Table 4.2 The summary of mapping between requests and resources 93

Table 4.3 The summary of best and worst results (cost) comparison 119

Table 5.1 The Negotiation States and Description Summary ... 134

Table 5.2 The Mincost Heuristic .. 136

Table 5.3 The Maxcsl Heuristic ... 136

¢ŀōƭŜ рΦп tǊƻǾƛŘŜǊΩǎ 5ŜŎƛǎƛƻƴ aŀƪƛƴƎ Heuristic .. 137

Table 6.1 Mapper Details .. 158

1

1 Introduction

A vision for delivering ñcomputing as a utilityò was introduced in 1969 by Leonard

Kleinrock, the chief scientist of the original Advanced Research Project Agency (ARPA)

project. Kleinrock envisioned that computer networks would be used as a ñutilityò [1]. From

1969, Information and Communication Technology (ICT) has made many advances in

various areas to make this vision a reality [2]. The advances in networked computing

environments have transformed computing to a model consisting of services that can be

commoditized and delivered similarly to utilities such as water, electricity, gas, and telephony

[3]. In the utility computing model, consumers can access services on-demand according to

their requirements regardless of where they are hosted.

The utility computing model can be used as a new outsourcing service model that can bring

extensive opportunities and benefits for ICT users. The foremost advantage is the decrease of

IT-related costs and complexities, because enterprises no longer need to invest heavily on or

maintain their own computing infrastructure, and are not constrained to specific computing

service providers. Furthermore, this model benefits small businesses lacking working capital.

Hence utility computing provides businesses with greater flexibility and resilience, and more

efficient utilisation of resources at lower operating and maintenance costs. Indeed, enterprises

simply need to pay for resource usage as required the computing service providers.

Today this outsourcing model has emerged in the form of Cloud computing, which promises

elastic resources to the consumers (customers) [4]. Cloud computing is considered a solution

for challenges, such as licensing, distribution, configuration, and operation of enterprise

applications associated with the traditional IT infrastructure, software sales, and deployment

models. A layered architecture for Cloud services is shown in Figure 1.1. From bottom to top,

the Infrastructure as a Service (IaaS) layer is a resource provisioning model where a provider

offers infrastructure resources like hardware, storage, servers, and networking components on

demand to consumers. The Platform as a Service (PaaS) layer offers a computing platform

and solution stack as a service. It includes application development tools and execution

2

management services. The Software as a Service (SaaS) layer licenses a software application

to customers as a service on demand using PaaS layer functionalities, such as resource

management and IaaS layer resources.

Figure 1.1 A layered architecture for Cloud computing

1.1 SaaS Model

Prior to the Cloud, the ICT administration tasks were comparatively easy since the single

important objective of resource provisioning was the performance, such as the time spent on

resource provisioning for web-based application [115]. Over time, the complexity of

applications has grown, increasing the difficulties in their administration. Accordingly,

enterprises have realized that it is more efficient to outsource some of their applications to

third-party SaaS providers enabled by Cloud computing due to the following reasons [110]:

¶ It reduces the maintenance cost, because along with the growth in the complexity, the

level of sophistication required to maintain the system has increased dramatically.

¶ By using SaaS, enterprises do not need to invest in expensive software licenses and

hardware upfront before knowing the business value of the solution.

Therefore, by moving to the SaaS model customers benefit from continuously maintained

software. The complexity of transitioning to new releases is managed transparently by SaaS

providers, who pursue profit maximization by minimizing cost and enlarging market share by

accepting more profitable requests and improving the Customer Satisfaction Level (CSL).

IaaS

PaaS

SaaS

SLA ManagementAdmission Control

Resource Management

ERP

CMS Email WEB APPé

CRM HPC

Customers

Request Software Services

DataCanter

VMs

Physical Machines

Request & Resource

Mapping

3

There are two design patterns for SaaS layers. The first one is the one presented in Figure 1.1,

with three layered architecture using virtualized resources. This is the focus of this thesis. The

second alternative utilizes dedicated software on physical servers that share resources between

users. These two patterns sharing resources for multiple users are called multi-tenancy.

However, customer satisfaction is a crucial success factor to excel in the service industry, as

highlighted by Yeo and Buyya [62]. The way to ensure the QoS is to define a legal contract,

which is SLA (Service Level Agreement), between a service provider and a consumer [21]. In

general, a customer requests web-based application services from a SaaS provider by agreeing

with the QoS requirements specified in the SLA. When the SaaS provider can guarantee the

SLA, the customer is satisfied. If the level of service is better than the specified in the SLA,

the customer satisfaction level will be more than satisfied.

1.1.1 SaaS and Service Level Agreements

SLAs can be traced back to 1980s in telecommunication companies. As an example,

telecommunication companies include an SLA within the terms of their contracts with

customers to define the level(s) of service being sold in plain language terms. The SLA

typically identifies parties who engage in the business processes and specifies the minimum

expectations and obligations between them [21].

In Cloud computing, generally service providers define a publically published common SLA

for all their customers. For instance, Microsoft promises to guarantee at least 99.9%

availability in the SLA of the Microsoft Azure backup service. The SLA is established and

commenced automatically when a customer requests service with confirmed payment. If any

clauses in the SLA are violated, the penalty should be enforced, such as the granting of more

credit for future services to the customer.

Two typical types of SLA are provider predefined and negotiated SLAs. The provider

predefined SLA provides a generic SLA template for all customers. For example, Amazon

EC2 has a predefined static SLA. However, customers may have special QoS requirements

which may not be included in a predefined SLA. In this case, the customer and the provider

will go through negotiation processes to achieve a mutually agreed SLA (Negotiated SLA). In

order to ensure the agreed SLA, SaaS providers require strategies to manage resources to

satisfy the QoS specified in SLA without deteriorating their profit.

Several researchers have satisfied these requirements by providing SLA-based resource

management mechanisms [72][69] and negotiation strategies [152][153]. There are still

several challenges for resource management, but the key issue for SaaS providers in Cloud is

4

how to optimize resource provisioning, which aims at improving the utilization of cloud

systems in order to achieve profit maximization and market share enlargement. More details

on the SLA-based resource management are discussed along with their limitations in the

following section.

1.2 SLA-based Resource Management for SaaS

Resource management is a central and the most challenging task in Cloud computing,

particularly when there is a legal document specified in the form of SLA, which contains QoS

requirements. There are several problems to consider while managing resources given SLAs,

such as, type of resource required, mapping, provisioning, allocation, adaptation, and

brokering. The basic responsibility of a Resource Management System (RMS) is to accept

requests from customers and then map them to the available resources, provision the matched

resources, and allocate them to the customer. In practice, due to the heterogeneous and

dynamic nature of Cloud environments, the RMS needs to be able to adapt to the

heterogeneity from resource side and dynamic changes from customer sides. In general, there

are two types of resources for SaaS - physical and logical. For example, data centres, physical

machines, network elements are physical resources, on the other hand, Virtual Machines

(VMs) and energy are logical resources.

Research on SLA-based market driven resource management started in 1980s [72][69].

However, the SaaS Cloud model has brought into view new challenges that have not been

addressed before. As Professor David Patterson of the University of California, Berkeley,

illustrates, the challenges faced by software developers currently, "There are dramatic

differences between developing software for millions to use as a service versus distributing

software for millions to run their PCs" [5].

One of the challenges is dealing with heterogeneous geographically distributed resources with

different usage policies, price models, availability and performance patterns and varying loads.

Moreover, the SaaS service providers and customers have different goals, objectives,

strategies, and requirements. Resource sharing becomes further complicated in SaaS Cloud

due to the self-interested nature of customers. In addition, each customer includes multiple

user accounts, with different requests. Therefore, SLA-based resource management involved

in delivering software as a service for millions of customers in Cloud environments is much

more complex compared to just distribute software [6].

As mentioned before, the goal of SaaS providers are twofold i.e. maximizing profit and

5

enlarging the customer base by offering better services. To achieve these goals, SaaS providers

employ different techniques, such as utilizing internal hosted resources of private data centres

or renting resources from an IaaS provider to guarantee the SLA. For example, Saleforce.com

[102] hosts resources, but Animoto rents resources from Amazon EC2 [92]. However, the

main challenge for SaaS providers to achieve these goals is how to manage these resources

efficiently ensuring SLA specified QoS requirements. Several research works have explored

this topic to a certain degree [121][122][127][42]. However, still there is a long way to go for

achieving SaaS providers goals as depicted below.

1.2.1 Limitation of Existing Solutions

The current resource management techniques for SaaS in Cloud mainly focus on either

minimizing the number of VMs without considering SLA or only consider limited QoS

parameter such as availability only. In contrast, most of these resource management techniques

need to be extended to include the dynamic, diverse and competitive nature of participants

with conflicting Quality of Service (QoS) requirements in Cloud.

In a shared resource infrastructure such as Cloud, the heterogeneous nature of resources and

self-interested nature of customers can lead to problems, where every customer acquires as

many types of software as possible because there is no incentive for customers to back off

during times of high demand. The self-interested customers, in turn, over exploit the service

by degrading the SaaS providerôs ability to deliver the required service to all customers using

heterogeneous resources. Therefore, resource management needs to be SLA-based, which can

regulate the supply and demand of resources at peak usage time.

In order to meet the above requirements, most of the SLA-based resource management

methods are either non-profit based [6] or designed for a fixed number of resources, such as

FirstPrice [48] and FirstProfit [70]. To resolve the problem caused by customersô self-interest

nature and conflicting interests between customer requests, admission control and scheduling

was proposed as a solution[70][90][91], such as learning-based admission control in Cloud

[67]. However, these works do not target profit maximisation and an increase in market share

simultaneously.

SaaS providers aim to optimally provision resources so that service costs can be minimized. In

general, SaaS providers utilize internal resources of its data centres or rent resources from a

specific IaaS provider to guarantee SLA. For SaaS providers, in-house hosting resources can

generate administration and maintenance cost while renting resources from IaaS providers can

impact the service quality offered to SaaS customers due to performance variability [103].

6

Several profit-driven resource management solutions are proposed by minimizing the number

of resources [121][122][127][42]. However, these works did not consider customer

satisfaction level related QoS parameters.

To satisfy the customer requirements, customer side QoS parameters are essential. However,

most of the current works consider provider side QoS parameters, such as price [105][127].

Although some work consider customer side QoS parameters, some SaaS layer related QoS

parameters are missing, such as software response time [128][65].

Several projects are related at different degrees to the SLA-aware management of resources,

such as SLA@SOI [182], Claudia [176], BonFIRE [179], Optimis [177], 4CaaSt [178] and

Cloud-TM [180]. However, SLA@SOI does not consider Cloud computing infrastructures as

their target platform, and hence it does not account for some specific needs in this area.

Claudia [176], BonFIRE and 4CaaSt [178] do not consider management of heterogeneous

resources. Although Optimis [177] does scheduling for resource management and PaaSage

[181] provides runtime monitoring and dynamic adaptation, they do not cover SaaS level

parameters, such as service response time.

Cloud-TM [180] cannot be applied to general purpose Cloud computing, since it is focused on

datacentric Cloud applications. In the context of the resource allocation algorithms for

enterprise applications, evolutionary algorithms, such as Genetic Algorithm (GA) have been

used [111]. As evolutionary algorithms create a pre-planning schedule, they are not able to

deal with dynamic environments such as Cloud.

Therefore, these approaches are not suitable for SLA-based resource management in dynamic

Cloud environments to achieve the goal of maximizing profit and customer base for SaaS.

1.3 Problem Statement and Objectives

This thesis focuses on the following problem:

How to design and develop algorithms and techniques that help in maximizing profit and

market share for Cloud SaaS providers, who lease applications to customers by using Cloud

resources and simultaneously handle dynamism and variations associated with SLAs and

available resources.

In the context of the problem, the two key stakeholders are (1) SaaS providers and (2) SaaS

customers. A model/architecture that depicts key components of SaaS Cloud is shown in

Figure 1.1. The model consists of application layer and platform layer functions. Customers

7

request the software service with their QoS requirements to application layer. The platform

layer is responsible for application development and deployment (such as Aneka [107]). In our

model, this layer includes the admission control function to analyse the customerôs QoS

parameters and decide whether to accept or reject the request. The request and resource

mapping function is responsible for translating the customer side QoS requirements to

infrastructure level parameters. Based on admission control decision, the resource

management component is responsible for provisioning and allocating resources. Furthermore,

the SLA management is required since we consider SLA with customers. For some customers

with special requirements, which are different from what is publically offered by SaaS

providers, a negotiation process is required for SLA establishment.

In dynamic Cloud environments, several issues that need to be addressed to solve the

problem are:

¶ Can a new request be accepted without impacting accepted requests using distributed

and heterogeneous resources, whose capabilities, availabilities and performance (such

as service time) can change very frequently?

¶ How to deal with the resource level heterogeneity (such as service initiation time)?

¶ How to map various customer requests with different QoS parameters to the

resources?

¶ How to manage dynamic customer demands? (such as upgrading from a standard

product edition to an advanced product edition or adding more accounts)

¶ How to design the negotiation related processes and decision-making strategies to

fulfil special customer requests?

1.3.1 Challenges and Requirements

Answering the questions above is not trivial considering the various dynamic and variety of

factors associated with Cloud environments and actors. Cloud environments give access to

heterogeneous resources having different price schemas and performance capabilities and that

can be dynamically expanded and contracted on demand. Each customer has his own

requirement in terms of services and QoS which can also change dynamically. This brings

several challenges and requirements for the SaaS provider in order to manage their resources

in a profitable manner.

To accept any customer request, SaaS providers need to ensure the minimum level of service

specified in SLA is delivered to the customer using heterogeneous Cloud resources. Currently,

most SaaS providers use VMs to host their software services and these VMs in general sharing

8

a common physical server with other VMs hosting similar or different software services. The

challenge comes from unpredictability of the software services performance which is

dependent on the unknown configuration of underline physical server and variation in other

VMs resource usage. This can lead to SLA violation or revenue loss when the resource

performance degradation causes the breach of the minimum level of service requirements

specified in the SLA. SaaS providers need to consider which customer request is more

profitable to accept given this heterogeneous nature of Cloud resources. Therefore we need

new admission control and scheduling strategies that take care of these factors.

Once a customer request is accepted there is always a possibility of changes in requirement,

since the SaaS provider is expected to scale up and out accordingly. When the customer

changes his/her requirement, resources have to be dynamically reallocated according to the

customerôs on-demand requirements. Moreover, while allocating/reallocating resources the

SaaS provider has to minimize the impact on existing customers while satisfying the

customersô requirement changes. Therefore, new adaptive customer requirements driven

resource management algorithms considering customer profile and the providersô quality

parameters are required.

As discussed, SaaS providers want to expand their customer base. Therefore, they need to

provide more flexibility in terms of service to cater to variations associated with individual

customer requirements. This is generally done through a negotiation process between

customers and the service providers. However, while undertaking negotiations, the service

provider needs to take into consideration not only what they can provide to customers but also

the competition with other SaaS providers. Thus, new negotiation frameworks are needed for

SaaS providers that consider the dynamism in the Cloud environment with time and market

factors to make best possible decisions. In summary, we identified three sub objectives to

align with maximizing profit and market share for SaaS:

¶ To design SLA-based admission control and scheduling algorithms that differentiate

customer requests based on the heterogeneous resource capability to minimize cost

and SLA violations by accepting more profitable requests.

¶ To investigate adaptive SLA-based resource provisioning algorithms according to

customer requirements changes by considering more customer factors that provide

personalized attention to customers which include considering customer profiles and

understanding customer specific needs.

9

¶ To investigate the architectural model for automated SLA negotiation framework to

establish SLA between SaaS and customers, whose requirements are not covered by

existing SaaS predefined static SLA.

In this thesis, we propose a solution that meets these objectives.

1.3.2 Proposed Solution

As discussed above, SaaS providers need to deal with the heterogeneity and variety from both

the resource providersô side and the customersô side. To solve the problem as stated in the

previous section, we consider the following example scenarios of SaaS to achieve the

specified objectives.

SaaS providers lease web-based software as services to customers and use either 3rd party

resources (such as Virtual Machines from Amazon) or in house hosted resources. Take

Animoto as a SaaS example, it creates videos based on the customer uploaded pictures or

videos with selected themes. Three simple steps, 1) customers upload pictures or videos; 2)

customers select style, text, music to generate video; 3) customers download or share

generated video [108]. In this service application model, different customers will submit their

request at any time with different QoS parameters, such as different file size from customer

side impact the resource management for SaaS providers. Therefore, this thesis focuses on the

dynamism in terms of resource availability and capability caused by the variety of customer

requests and resource heterogeneities. Admission control algorithms are proposed employing

different strategies to accept more profitable requests for minimal performance impact,

avoiding SLA penalties for existing customer requests that decrease the SaaS providerôs

profit and the customer satisfaction level. The scheduling algorithms determine where and

which type of resource should be used by incorporating the heterogeneity of IaaS providers in

terms of QoS factors, such as price, service initiation time, and data transfer time.

Another SaaS application model is enterprise application, which is required for day to day

business. For instance, Microsoft sales Office365 software packages with three product

editions (for example, small business, small business premium and midsize business) and

each product edition has a fixed price. The existing customer may require an upgrade in their

service by adding additional user accounts or an upgrade of the software edition at any time.

In practice, the SaaS provider has to handle these on-demand customer requests in line with

the SLA. Hence, to achieve SaaS providersô objectives, we minimize total cost and improve

customer satisfaction levels in two ways: 1) minimizing SLA violations and 2) improve

service quality. Our work further investigates the dynamic changes in customer requirements

with the consideration of customer profile to pay more personalized attention to customers.

10

In terms of SLAs, the above two scenarios consider pre-defined SLAs, however, in many

circumstances; some customers may request special services for special needs. For example,

the Department of Education requires the Office 365 with a particular type of template for

teachers and students to automatically provision the classes and lectures when they login the

portal. In this case, the pre-defined SLA listed on the web site will not suit their requirements.

Thus, our work proposes the automated SLA negotiation framework to maximize profit and

enlarge market share for SaaS by considering two factors. Firstly, the dynamic nature of the

Cloud, as service cost and quality are constantly changing and customers have varying needs.

Secondly, time and market oriented resource allocation, as any delay incurred in waiting for a

resource assignment is perceived as an overhead [145].

1.4 Contribution s

This thesis makes the following research contributions towards the understanding and the

advancement of SLA-based resource management in Cloud environments to achieve the goal

of Cloud service providers:

1. It presents a comprehensive taxonomy and survey on SLAs and their creation,

management, and usage in utility computing environments. It discusses existing use

cases from Grid and Cloud computing systems to identify the level of SLA

realization in state-of-art systems and emerging challenges for future research. The

survey not only helps researchers to understand primary design factors and issues that

are still outstanding and crucial but also provides insights for extending and reusing

components of existing market-based Resource Management Systems (RMSs).

Therefore, the survey can help in the design and implementation of more practical

and enhanced SLA-based Cloud resource management systems in the near future.

The SLA-based RMSs selected for the survey are primarily research works as they

reflect the latest technological advances. The design concepts and architectures of

these research-based RMSs are also well-documented in publications to facilitate

comprehensive comparisons, unlike commercially released products by vendors.

2. It proposes admission control and scheduling algorithms for SaaS providers to

effectively utilise heterogeneous Cloud resources to maximize profit by accepting

more profitable customer requests using the least cost resources while minimizing the

SLA violations for existing customers. It also conducts detailed performance analysis

using trace-based simulation to highlight the effectiveness of managing the risk of

inaccurate runtime estimates for various scenarios that includes varying workload,

11

deadline, budget, contract length, service initiation time, performance degradation,

and inaccurate estimated high: low ratio.

3. Thesis proposes customersô requirements driven resource provisioning algorithms for

SaaS providers who lease enterprise applications to customers. The proposed

provisioning algorithms consider customer profiles and providersô quality parameters

(e.g. response time) to handle dynamic customer requirement changes and

infrastructure level heterogeneity by minimizing infrastructure and penalty cost. It

also takes care of CSL by minimizing SLA violations and improving the quality of

service (e.g. response time) expected by the customer. We also take into account

customer-side parameters (such as the proportion of upgrade requests), and

infrastructure-level parameters (such as the service initiation time) to compare

algorithms. These algorithms are evaluated by extensive experimental study using

data from a real Cloud.

4. It proposes a novel automated negotiation framework considering the SaaS Broker as

the one-stop-shop for customers to efficiently get required services. The automated

negotiation framework performs adaptive and intelligent bilateral bargaining of SLAs

between SaaS brokers and SaaS providers including negotiation policies, protocols,

and strategies. It proposes decision-making heuristics considering time, market

constraints, and trade-off between different issues as well. These negotiation

heuristics are evaluated by extensive experimental study of our prototype framework

using data from real Cloud as detailed in particular chapters.

5. It details an implementation of SLA-based Resource Management System

(SLARMS) to demonstrate the usefulness of the algorithms proposed in the thesis.

1.5 Methodology

We primarily evaluated the proposed algorithms using the CloudSim [80] simulator with

workloads from real Cloud software systems, such as CloudMinder
1
.

1.5.1 Workload

From the customer requests perspective, we adopted as workload data shared with us by the

cloud provider CA Technologies, who offers a number of enterprise software solutions to

customers delivered as SaaS [108]. The data provided includes the response, refresh and

processing times of an enterprise solution hosted on VMs, as measured by the quality

assurance team. As SaaS availability depends on the infrastructure availability, this

1
 CloudMinder is Software as a Service product from CA Technologies (Computer Associates).

12

information is collected from the CloudHarmony benchmarking system [156], which provides

real data from Cloud providers.

In order to analyse technical challenges to manage resources, we performed experiments by

collecting real data from both public Cloud infrastructures, such as Amazon EC2 [92], GoGrid

[94], and private Clouds from industry, such as CA (Computer Associates) hosted private

Cloud.

We modelled and adapted the workload data to meet the requirements of our experiments. In

order to evaluate the proposed algorithms under different loads, we model request arrival rate

using Poisson distribution similar to many previous works [100][101]. Similar as other works,

we use a normal distribution to model all the other parameters (standard deviation = (1/2) x

mean) that are not available from real workload.

1.5.2 Experiment System

CloudSim Toolkit [80] is used to model and simulate the proposed algorithms for resource

management. We simulated data centres with physical machines whose configuration

resembles public Cloud such as Amazon EC2 large image. We map a number of VMs of

different types to physical machines. The general scheduling policy is time shared scheduling.

We have extended the existing Cloud environment and added our algorithm for SLA-based

resource management.

We also implemented a prototype system called Service Level Agreement Resource

Management System (SLARMS) to validate and demonstrate the usefulness and practicality of

the proposed algorithms and techniques. The details of experiment settings of our works will

be explained throughout the thesis.

1.6 Organization

The rest of this thesis is organized as follows (Figure 1.2): Chapter 2 presents a

comprehensive survey of how SLAs are created, managed and used in utility computing

environments in practice. Chapter 3 proposes an admission control and scheduling algorithm

that utilizes multiple resources to minimize the penalty cost of accepting a new request,

which may violate the SLA objectives. Chapter 4 proposes customer driven SLA-based

resource provisioning for web-based enterprise applications by minimizing the cost and the

number of SLA violations. The proposed provisioning algorithms consider customer profiles

and the providersô parameters to handle dynamic customer requests and infrastructure level

13

heterogeneity. Chapter 5 proposes a novel automated web-based negotiation framework

considering the SaaS Broker as the one-stop-shop for customers to get required service

efficiently. Chapter 6 describes an implementation of SLA-based Resource Management

System to demonstrate the usefulness of the proposed algorithms. Chapter 7 concludes and

provides directions for future work.

Figure 1.2 Thesis Organizations

The core chapters are derived from various research works that have been published during

the course of candidature as detailed below:

Å Chapter 2 is derived from:

Linlin Wu and Rajkumar Buyya, Service Level Agreement (SLA) in Utility

Computing Systems, Performance and Dependability in Service Computing:

Concepts, Techniques and Research Directions, Pages: 1-25, V. Cardellini et al.

(eds), ISBN: 978-1-60-960794-4, IGI Global, Hershey, PA, USA, July 2011.

Å Chapter 3 is derived from:

Linlin Wu , Saurabh Kumar Garg, and Rajkumar Buyya, SLA-based Admission

Control for a Software-as-a-Service Provider in Cloud Computing Environments,

Journal of Computer and System Sciences, Volume 78, No. 5, Pages: 1280-1299,

ISSN 0022-0000, Elsevier Science, Amsterdam, The Netherlands, September 2012.

 Å Chapter 4 is derived from:

Chapter 2

Taxonomy and Survey

Chapter 3:

Admission Control

Chapter 4 :

Customer Requirements Driven Resource

Management

Chapter 5:

SLA Negotiation Framework

Chapter 6

Prototype of SLA-based RMS

Chapter 7

Conclusions and Future Directions

Maximize profit by minimizing cost

Enlarge market share by

minimizing SLA violations and

improving CSL

Maximize profit by minimizing cost

Enlarge market share by accepting

more profitable requests in a way to

avoid SLA violations for existing

customers

Issue: Dynamic

nature of Cloud

Resources

Issue: Dynamic

Request Changes

Issue: Special

customer requests

Maximize profit by minimizing cost

Enlarge market share by improving

CSL

http://www.buyya.com/papers/SLA-UtilityComputing2011.pdf
http://www.buyya.com/papers/SLA-UtilityComputing2011.pdf
http://www.buyya.com/papers/AdmissionControlInClouds-JCSS.pdf
http://www.buyya.com/papers/AdmissionControlInClouds-JCSS.pdf

14

Linlin Wu , Saurabh Kumar Garg and Rajkumar Buyya, SLA-based Resource

Allocation for a Software as a Service Provider in Cloud Computing Environments,

Proceedings of the 11th IEEE/ACM International Symposium on Cluster, Cloud and

Grid Computing (CCGrid 2011, IEEE CS Press, USA), Los Angeles, USA, May 23-

26, 2011.

Linlin Wu , Saurabh Kumar Garg Steve Versteeg, and Rajkumar Buyya, SLA-based

Resource Provisioning for Software-as-a-Service Applications in Cloud Computing

Environments, IEEE Transactions on Services Computing (TSC), ISSN: 1939-1374,

IEEE Computer Society Press, USA (in press, accepted on Oct. 11, 2013).

Å Chapter 5 is derived from:

Linlin Wu , Saurabh Kumar Garg, Rajkumar Buyya, Chao Chen, and Steve Versteeg,

Automated SLA Negotiation Framework for Cloud Computing, Proceedings of the

13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing

(CCGrid 2013, IEEE CS Press, Los Alamitos, CA, USA), Delft, the Netherlands,

May 13-16, 2013.

http://www.buyya.com/papers/SLA-SaaS-CCGrid2011.pdf
http://www.buyya.com/papers/SLA-SaaS-CCGrid2011.pdf

15

2 Service Level Agreement (SLA) in Utility

Computing Systems

This chapter presents a comprehensive survey of how SLAs are created, managed, and used in

utility computing environments. We discuss existing use cases from Grid and Cloud computing

systems with major emphasis on resource management to identify the level of SLA realization in

state-of-art systems and emerging challenges for future research.

2.1 Int roduction

As discussed before, utility computing [62] offers computing services on demand, thus it makes

them consumed as other utilities, such as water, electricity, gas, and telephony. With this new

service model, users no longer have to invest heavily on or maintain their own computing

infrastructures, and they are not constrained to any specific computing service provider. Instead,

they can outsource jobs to service providers and just pay for what they use. Utility computing has

been increasingly adopted in many fields including science, engineering, and business [66]. Grid,

Cloud, and Service-oriented computing are some of the paradigms that enabled delivery of

computing as a utility. In these computing systems, different Quality of Service (QoS) parameters

have to be guaranteed to satisfy userôs request. A Service Level Agreement (SLA) is used as a

formal contract between service provider and consumer to ensure service quality [21].

A typical utility computing system architecture is shown in Figure 2.1 with the following

components: the User/Broker, SLA Management, Service Request Examiner, and

Resource/Service Provider. User or Broker submits its requests via applications to the utility

computing system, which includes the bottom three layers. The Service Request Examiner is

responsible for Admission Control. The SLA Management includes SLA establishment and

16

enforcement. The Resource Allocation component takes care of resources scheduling. Finally,

the Resource or Service Provider offers resources or services.

Figure 2.1 A typical architectural view of utility computing system

In the above architecture, SLAs are used to identify parties who engage in the electronic

business, computation, and outsourcing processes and to specify the minimum expectations and

obligations that exist between parties [21]. The most concise SLA includes both general and

technical specifications, including business parties, pricing policy, and properties of the resources

required to process the service [63]. According to Sun Microsystems Internet Data Center

Groupôs report [54], a good SLA sets boundaries and expectations of service provisioning and

provides the following benefits:

¶ Enhanced customer satisfaction level: A clearly and concisely defined SLA increases

the customer satisfaction level, as it helps providers to focus on the customer

requirements and ensures that the effort is put on the right direction.

¶ Improved Service Quality: Each item in an SLA corresponds to a Key Performance

Indicator (KPI) that specifies the customer service within an organization.

¶ Improved relationship between two parties: A clear SLA indicates the reward and

penalty policies of a service provision. The consumer can monitor services according to

Service Level Objectives (SLOs), which are QoS items specified in the SLA. Moreover,

the precise contract helps parties to resolve conflicts more easily.

User/BrokerUser/BrokerUser/Broker

Service Request Examiner and Admission Control

SLA Management and Resource Allocation

Web Applications Mobile Applications Desktop Applications

Resource/Service

Provider

Resource/Service

Provider

Resource/Service

Provider

U
tility

 C
o

m
p

u
tin

g
 S

y
s
te

m

17

A clearly defined lifecycle is essential for effective realization of an SLA. Ron, S. et al. [51]

define SLA lifecycle in three high level phases, which are the ócreation phaseô, óoperation phaseô,

and óremoval phaseô. Sun Microsystems Internet Data Center Group [54] defines a practical SLA

lifecycle in six steps, which are ódiscover service providersô, ódefine SLAô, óestablish agreementô,

ómonitor SLA violationô, óterminate SLAô, and óenforce penalties for violationô.

The realization of an SLA can be traced back to 1980s in telecommunication companies.

Furthermore, the advent of Grid computing reinforces the necessity of using SLA [62].

Specifically, in service-oriented commercial Grid computing [22], resources are advertised and

traded as services based on an SLA after users specify various levels of service required for

processing their jobs [49]. However, SLAs have to be monitored and assured properly [52]. SLA

management has been addressed partially by frameworks such as WS-Agreement [12] and

WSLA [40].

Recently, Cloud computing has emerged as a new platform for delivering utility computing

services. In Clouds, infrastructure, platform and application services are available on-demand and

companies are able to access their business services and applications anywhere in the world

whenever they need. In this environment, massively scalable systems are made available to end

users as a service [20]. In this scenario, where both request arrival rate and resources availability

continuously vary, SLAs are used to ensure that service quality is kept at acceptable levels.

This chapter reveals key design factors and issues that are still significant in utility computing

platforms such as Grids and Clouds. It provides insights for extending and reusing components of

the existing SLA management frameworks and it aims to be a guide in designing and

implementing enhanced SLA-based management systems.

This chapter presents key use cases that reflect the latest technological advances. The design

concepts and architectures of these works are well-documented in publications to facilitate

comprehensive investigation.

The rest of the chapter is organized as follows: Utility architecture and SLA foundational

concepts are summarized in Section 2.2. In Section 2.3, the key challenges and solutions for SLA

management are discussed. SLA use cases are proposed in Section 2.4. The open problems

18

addressing some of the issues in current systems are presented in Section 2.5. Finally, the chapter

concludes with the open challenges in SLA management in Section 2.6.

2.2 Utility Architecture and SLA Foundations

In this section, initially, a typical utility computing architecture is presented. SLA definitions

from different areas are summarized in Section 2.2.2. SLA components are described in Section

2.2.3. In Section 2.2.4, two types of SLA lifecycle are presented and compared.

2.2.1 Utility Architecture

The layered architecture of a typical utility computing system is shown in Figure 2.2. From top

to bottom it is possible to identify four layers, a User or Broker submits its requests using

various applications to the utility computing system, the Service Request Examiner is

responsible for admission control, SLA Management balances workloads, and a Resource or

Service Provider offers resources or services. Users or Brokers, who act on usersô behalf, submit

their service requests of using applications, from anywhere in the world, to be processed by

utility computing systems. When a service request is submitted, the Service Request Examiner

(SRE) uses Admission Control mechanism to interpret requestôs QoS requirements before

determining whether to accept or reject it after interacting with SLA Management component

which is responsible for enforcing SLA. Thus, the SRE ensures that there is no overloading of

resources whereby many service requests cannot be fulfilled successfully due to limited

availability of resources/services.

The SLA Management component is responsible for resource allocation and consists of several

components: Discovery, Negotiation/Renegotiation, Pricing, Scheduling, Monitoring, SLA

Enforcement, Dispatching and Accounting. The Discovery component is responsible for

discovering service providers that can satisfy user requirements. In order to define mutually

agreed terms between parties, it is common to put in place price negotiation mechanisms or to

rely on quality metrics. The Pricing mechanism decides how service requests are charged. Pricing

serves as a basis for managing supply and demand of computing resources within the utility

computing system, and facilitates in prioritizing resource allocations. Once the negotiation

process is completed, the Scheduling mechanism uses algorithms or policies to decide how to

map requests to resource providers. Then the Dispatching mechanism starts the execution of

accepted service requests on allocated resources.

19

The Monitoring component consists of a Resource Monitoring mechanism and a Service Request

Monitoring mechanism. The Resource Monitoring mechanism keeps track of the availability of

Resource Providers and their resource entitlements. On the other hand, the Service Request

Monitoring mechanism keeps track of the execution progress of service requests. The SLA

enforcement mechanism manages violation of contract terms during the execution. Due to the

SLA violation, sometimes Renegotiation is needed in order to keep ongoing trading. The

Accounting mechanism maintains the actual usage of resources by requests so that the final cost

can be computed and charged to the users. At the bottom of the architecture, there exists a

Resource/Service Provider that comprises multiple services such as computing services, storage

services and software services in order to meet service demands.

Figure 2.2 SLA-based Utility Computing System Architecture

2.2.2 SLA Definitions

Dinesh et al. [27] define an SLA as: ñAn explicit statement of expectations and obligations that

exist in a business relationship between two organizations: the service provider and customerò.

Since SLA has been used since 1980s in a variety of areas, most of the available definitions are

contextual and vary from area to area. Some of the main SLA definitions in Information

Technology related areas are summarized in Table 2.1.

User/BrokerUser/BrokerUser/Broker

Service Request Examiner and Admission Control
- User-driven Service Management

- Computational Risk Management

- Autonomic Resource Management

Re/Negotiation

Scheduling Monitoring
SLA

Enforcement

SLA Management and Resource Allocation

Pricing AccountingDiscovery

Web Applications Mobile Applications Desktop Applications

Resource/Service

Provider

Resource/Service

Provider

Dispatching

Resource/Service

Provider

U
tility

 C
o

m
p

u
tin

g
 S

y
ste

m

20

Table 2.1 Summary of SLA definitions classified by the area

Area Definition Source

Web

Services

ñSLA is an agreement used to guarantee web service delivery.

It defines the understanding and expectations from service

provider and service consumerò.

HP Lab [36]

Networking ñAn SLA is a contract between a network service provider and

a customer that specifies, usually in measurable terms, what

services the network service provider will supply and what

penalties will assess if the service provider cannot meet the

established goalsò.

Research

Project

Internet ñSLA constructed the legal foundation for the service delivery.

All parties involved are users of SLA. Service consumer uses

SLA as a legally binding description of what provider promised

to provide. The service provider uses it to have a definite,

binding record of what is to be deliveredò.

Internet NG [51]

Data Center

Management

ñSLA is a formal agreement to promise what is possible to

provide and provide what is promisedò.

Sun Microsystems

Internet Data

Center group [54]

2.2.3 SLA Components

An SLA defines the delivery ability of a provider, the performance target of consumersô

requirement, the scope of guaranteed availability, and the measurement and reporting

mechanisms [50].

Jin et al. [36] provided a comprehensive description of the SLA components, including: (Figure

2.3):

¶ Purpose: Objectives to achieve by using an SLA.

¶ Restrictions: Necessary steps or actions that need to be taken to ensure that the

requested level of services are provided.

¶ Validity period: SLA working time period.

¶ Scope: Services that will be delivered to the consumers, and services that will not be

covered in the SLA.

¶ Parties: Any involved organizations or individuals involved and their roles (e.g. provider

and consumer).

21

¶ Service-level objectives (SLO): Levels of services which both parties agree on. Some

service level indicators such as availability, performance, and reliability are used.

¶ Penalties: If delivered service does not achieve SLOs or is below the performance

measurement, some penalties will occur.

¶ Optional services: Services that are not mandatory but might be required.

¶ Administration : Processes that are used to guarantee the achievement of SLOs and the

related organizational responsibilities for controlling these processes.

Figure 2.3 SLA Components

2.2.4 SLA Lifecycle

Ron et al. [51] define the SLA life cycle in three phases (Figure 2.4). Firstly, the creation phase,

in which the customers find service provider who matches their service requirements. Secondly,

the operation phase, in which a customer has read-only access to the SLA. Thirdly, the removal

phase, in which SLA is terminated and all associated configuration information is removed from

the service systems.

22

Figure 2.4 SLA high level lifecycle phases, according to the description of Ron et al. [51]

A more detailed life cycle has been characterized by the Sun Microsystems Internet Data Center

Group [54] , which includes six steps for the SLA life cycle: the first step is ódiscover - service

providersô, in where service providers are located according to consumerôs requirements. The

second step is ódefine ï SLAô, which includes definition of services, parties, penalty policies and

QoS parameters. In this step it is possible to negotiate between parties to reach a mutual

agreement. The third step is óestablish ï agreementô, in which an SLA template is established

and filled in by specific agreement, and parties are starting to commit to the agreement. The

fourth step is ómonitor ï SLA violationô, in which the providerôs delivery performance is

measured against to the contract. The fifth step is óterminate ï SLAô, in which SLA terminates

due to timeout or any partyôs violation. The sixth step is óenforce - penalties for SLA violationô,

if there is any party violating contract terms, the corresponding penalty clauses are invoked and

executed. These steps are illustrated in Figure 2.5.

The mapping between three high level phases and six steps of SLA lifecycle is shown in Table

2.2 Mapping between two types of SLA lifecycle. The ócreationô phase of three phase lifecycle

maps to the first three steps of the other lifecycle. In addition, the óoperationô phase of three

phase lifecycle is the same as the fourth step of the other lifecycle.

1.Creation Phase

2. Operation Phase
3. Removal Phase

SLA Lifecycle

Three Phases

23

Table 2.2 Mapping between two types of SLA lifecycle

Three phases Six steps

1. 1.2 .3

2. 4.

3. 5.6.

The six steps SLA lifecycle is more reasonable and provides detailed fine grain information,

because it includes important processes, such as re/negotiation and violation control. During the

service negotiation or renegotiation, a consumer exchanges a number of contract messages with a

provider in order to reach a mutual agreement. The result of these processes leads to a new SLA

[66]. In six steps lifecycle, steps 2 and 3 map to these processes. However, the three phaseôs

lifecycle does not include them. Furthermore, the óEnforce Penalties for SLA violationô phase is

important because it motivates parties adhere to follow the contract. We believe that the six steps

formalization of the SLA life cycle provides a better characterization of the phenomenon and

from here onwards we will refer to this as SLA life cycle.

Figure 2.5 SLA life cycle six steps, as defined by Sun Microsystems Internet Data Center Group [54]

1.Discover Service
Provider

2. Define SLA

3. Establish Agreement

4. Monitor SLA Violation

5.Terminate SLA

6. Enforce Penalties for
SLA Violation

SLA Lifecycle

Six Steps

24

2.3 SLA in Utility Computing Systems

As highlighted by Patterson [5], there are many challenges involved in developing software for a

million users to use as a service via a data center as compared to distributing software for a

million users to run on their individual personal computers. Using SLAs to define service

parameters that are required by users, the service provider knows how users value their service

requests, hence it provides feedback mechanisms to encourage and discourage service request

submissions. In particular, utility models are essential to balance the supply and the demand of

computing resources by selectively accepting and fulfilling limited service requests out of many

competing service requests submitted.

However, in the case of service providers making available a commercial offer to enable crucial

business operations of companies, there are other critical QoS parameters to be considered in a

service request, such as reliability and trust/security. In particular, QoS requirements cannot be

static and need to be dynamically updated over time due to continuing changes in business

operations and operating environments. In short, there should be greater importance on customers

since they pay for accessing services. Therefore, the emphasis of this section is to describe SLA

management in utility computing systems.

2.3.1 SLA Management in Utility Computing Systems

SLA management includes several challenges and in this section we will discuss them as part of

the steps of the SLA life cycle.

Discover - Service Provider

In current utility computing environments, especially Grid and Cloud, it is important to

locate resources that can satisfy consumersô requirement efficiently and optimally [32]. Such

computing environments contain a large collection of different types of resources, which are

distributed worldwide. These resources are owned and operated by various providers with

heterogeneous administrative policies. Resources or services can join and leave a computing

environment at any time. Therefore, their status changes dynamically and unpredictably.

Solutions for service provider discovery problems must efficiently deal with scalability,

dynamic changes, heterogeneity and autonomous administration.

25

Define - SLA

Once service providers have been discovered, it is necessary to identify the various elements

of an SLA that will be signed by agreeing metrics. These elements are called service terms

and include QoS parameters, the delivery ability of the provider, the performance target of

diversity components of userôs workloads, the bounds of guaranted availability and

performance, the measurement and reporting mechanisms, the cost of the service, the data set

for renegotiation, and the penalty terms for SLA violation. In this stage of the SLA lifecycle,

measurement metrics and definition of each of these elements is done by a negotiation

process between both parties [16][25].

Other challanges are related to the negotiation process. Firstly, parties may use different

negotiation protocols or they may not have the common definition of the same service [19].

Secondly, service descriptions, in an SLA, must be defined unambiguously and be

contextually specified by the means of its domain and actor. Therefore, an SLA language

must allow the parameterisation of service description [43]. Moreover it should allow a high

degree of flexibility and enable a precise formalisation of what a service guarantee means.

Another aspect is how to keep SLA definition consistent throughout the entire SLA lifecycle.

Establish - Agreement

In this step an SLA template is constructed. A template has to include all aspects of SLA

components. In utility computing environments, to facilitate dynamic, versatile, and adaptive

IT infrastructures, utility computing systems have to promply react to environmental

changes, software failures, and other events which may influence the systemôs behavior.

Therefore, how to manage SLA-based adaptive systems, which exploit self-renegotiation

after system failure, becomes an open issue [20]. Although most of the works recognise SLA

negotiation as a key aspect of SLA managemet, recent works only provide little insight on

how negotiation (especially automated negotiation) can be realised. In generalclients provide

their QoS requirements; however, given the dynamic and hetergeneous nature of underline

computing system, it is not trivial for the service providers to reflect or gurantee the quality

aspects of SLA components in a template.

Monitor - SLA Violation

SLA violation monitoring begins once an agreement has been established. It plays a critical

role in determining whether SLOs are achieved or violated. There are three main concerns.

26

Firstly, which party should be in charge of this process? There are two types of SLAs,

negotiable and non-negotiable. When a non-negotiable SLA is offered, the provider

administers those portions stipulated in the agreement. In the case of PaaS or IaaS, it is

usually the responsibility of the consumerôs system administrators to effectively manage the

residual services specified in the SLA, with some offset expected by the provider to ensure

basic quality of service [183]. In the case of SaaS, it is the customer who monitors the quality

of service and SaaS provider will be responsible for the SLA violations, and this

responsibility might be transferred to the PaaS or IaaS providers if SaaS using their services.

Secondly, how fairness can be assured between parties. Thirdly, how the boundaries of SLA

violation are defined.

SLA violation means óun-fulfillmentô of service agreement. According to the Principles of

European Contract Law, the term óun-fulfillmentô is defined as defective performance

(parameter monitored at lower level than agreed), late performance (service delivered at the

appropriate level but with unjustified delays), and no performance (service not provided at

all). There are three broad provisioning categories based on the above definition [48]. óAll-

or-Nothingô provisioning, characterizes the case in which all SLOs must be satisfied or

delivered by the provider. óPartialô provisioning identifies some SLOs as mandatory ones,

and must be met for the successful service delivery by both parties. óWeighted Partialô

provisioning, is the case in which the ñprovision of a service meets SLO if it has a weight

greater than a threshold (defined by the client)ò [48]. óAll-or-Nothingô provisioning is used

in most cases of SLA violation monitoring, because violation leads to complete failure and

negotiation to create a new SLA. An SLA contains mandatory SLOs that must be delivered

by the provider. Hence, in óPartialô provisioning, all parties assign these SLOs the highest

priority to reduce violation risk. How much the SLO affects the óBusiness Valueô a measure

of the importance of a particular SLO term? The more important the violated SLO, the more

difficult it is to renegotiate the SLA, because any party does not want to lose their

competitive advantages in the market.

Terminate - SLA

In terminating a SLA, a key aspect is to decide when it should be terminated, and once

decided, all associated configuration information is removed from the service systems.

If the termination is due to a SLA violation, two questions need to be answered, who is the

party that triggered this activity and what are the consequences of it.

27

Enforce Penalties for SLA Violation

In order to enforce penalties for SLA violation, penalty clauses are need to be defined. In

utility computing systems, where consumers and provides are globally distributed, the

penalty clauses work differently in various countries.

This leads to two problems, which particular clause should be used and whether it is fair for

both sides. Moreover, due to the different types of violation, the penalty clauses need to be

comprehensive. Recently, some works used the linear model for penalty enforcement of SLA

violations in simple contexts [42][63]. The linear model exhibits a poor performance, thus,

the selection of these best models for SLA violation penalty clauses enforcement is still an

open problem.

2.3.2 Solutions for SLA Management in Utility Computing Systems

This section introduces solutions for the problems presented in the previous section. Six SLA

management languages and frameworks are analyzed, because they can be used as solutions in

multiple steps of SLA lifecycle.

SLA Management Frameworks and Languages

SLA can be represented by specialized languages for easing SLA preparation, automating

SLA negotiation, adapting services automatically according to SLA terms, and reasoning

about their composition. In this section we introduce six languages for SLA specification and

management. Among them, the WS-Agreement and Web Service Level Agreement (WSLA)

are the most popular and widely used in research and industry. The comparison among all of

these languages is shown in Table 2.3.

Bilateral Protocol: Venugopal et al. [56] presented a negotiation mechanism for advanced

resource reservation. It is a protocol for negotiating SLAs based on Rubinsteins Alternating

Offers protocol for bargaining between parties. Any party is allowed to modify the proposal

in order to reach a mutually-agreed contract. The authors implemented this protocol by using

the Gridbus Broker on the customerôs side and Aneka on the providerôs side. Web services

enable platform independence, and are therefore used to communicate between consumers

and providers because the Gridbus Broker is implemented in Java, and Aneka is a .Net based

28

enterprise Grid. The advantage of these high level languages is that they are object oriented

and web services enable semantic definition. Thus, this protocol supports SLA component

reuse, and type and semantic definition.

WS-Agreement: Open Grid Forum (OGF) has defined a standard for the creation and the

specification of SLAs called Web Services Agreement Specification (WS-Agreement) [12].

It is a language and a protocol for establishing, negotiating, and managing agreements on the

usage of services at runtime between providers and consumers. It uses an XML-based

language for specifying the nature of an agreement template, which facilitates discovery of

compatible providers. Its interaction is based on request and response. Moreover, it helps

parties in exposing their status, so SLA violation can be dynamically managed and verified.

Originally the language did not support negotiation and currently it has been complemented.

WS-Agreement Negotiation, which lies on the top of WS-Agreement and describes the

re/negotiation of the SLA. Its main feature is the robust signaling protocol for the

negotiation.

Web Service Level Agreement (WSLA): WSLA [40] is a framework developed by IBM to

specify and monitor SLA for Web Services. It provides a formal XML schema based

language to express SLAs, and architecture to interpret this language at runtime. It can

measure, and monitor QoS parameters and report violations to the party. It separates

monitoring clauses from contractual terms for outsourcing purposes. It provides the

capability to create new metrics over existing metrics to implement multiple QoS parameters

[40]. However, the semantic of metrics is not formally defined, hence, there are limitations

for the creation of new terms base on existing terms.

WSOL: Web Service Offerings Language (WSOL) defines a syntax for service offersô

interaction [53]. It provides template instantiation and reuse of definitions. WSOL and

WSLA support definition of management information and actions, such as violation

notifications. However, they are not defined by a formal semantic. WSOL and QML (Quality

Management Language) support type systems allowing the same SLA to be described either

in abstract or specific values to create a new SLA. The generalization relationships between

SLAs facilitate definitions of SLA types.

29

SLAng: Skene et al. [55] propose Service Level Agreement Language (SLAng), which uses

Extensible Markup Language (XML) to define SLAs. It is motivated by the fact that

federated distributed systems must manage the quality of all aspects of their deployment.

SLAng is different from other languages and frameworks. Firstly, it defines an SLA

vocabulary for Internet services. Secondly, its structure is based on the specific industry

requirement, aiming to provide usable terms. Thirdly, it is modeled using Unified Markup

Language (UML) and defined according to the behavior of services and consumers involved

in service usage, unlike other languages, such as WSLA and WSOL, where QoS definition is

based on metrics. Moreover, it supports third party monitoring schemes. However, it lacks of

the ability to define management information, such as associated financial terms. Thus, it is

not suitable for commercial computing environments.

QML: QML [31] define a type system for SLAs, allowing users to define their own

dimension types. However, it does not support extension of individual defined metrics

because the exchange of SLAs between parties requires a common understanding of metrics.

QML defines semantic for both its type system and its notion of SLA conformance.

QUO: It is a CORBA specific framework for QoS adaption based on proxies [43]. It includes

a quality description language used for describing QoS parameters, adaptations and

notifications. QUO properties are the response of invoking instrumentation methods on

remote objects. Like WSLA, no formal constraints are placed on the implementation of these

methods.

Discover - Service Provider

In the Grid computing community, Fitzgerald [28] introduced the Monitoring and Discovery

System, Gong et al. [32] proposed the VEGA Grid Project and also relevant is the work of

Iamnitchi et al. [35].

Monitoring and Discovery System (MDS) is the information service described in the Globus

project [28]. In its architecture, Lightweight Directory Access Protocol (LDAP) is used as

directory service, and information stored in information servers are organized in tree

topology. In utility computing systems, resourcesô availability and capability are dynamic in

nature. However, in MDS, the relationship between information and information servers is

30

static. In addition, service providerôs information is frequently updated in these dynamic

changing environments, whilst LDAP is not designed for writing and updating information.

VEGA Infrastructure for Resource Discovery (VIRD) has three-level hierarchy architecture.

The top level is a backbone, which is responsible for the inter-domain resource discovery and

consists of Border Grid Resource Name Servers (BGRNS). The second level consists of

several domains and each domain consists of Grid Resource Name Servers (GRNS). The

third level includes all clients and resource providers. There is no central control in this

architecture, thus resource providers register themselves to GRNS server within a domain.

When clients submit requests, GRNS responses to them with requested resources. The

limitation of this architecture is that it only focuses on the issue of scalability and dynamic

environmental changes but not on heterogeneity and autonomous administration.

Iamnitchi et al. [35] propose a resource discovery framework using peer-to-peer (P2P)

technologies in Grids. P2P architecture is fully distributed and all the nodes are equivalent.

However, one major limitation of their work is that every node has little knowledge about

resources distribution and their status. Specifically, when there is large number of resource

types or the work-set is very large, the opportunity for inaccurate results increases, because

the framework is not able to use history data to accurately discover resources.

Define - SLA and Establish - Agreement

óDefine ï SLAô and óEstablish ï Agreementô are two dependent steps, and SLA languages

facilitate their development. For example, WSLA and WS-Agreement are the most widely

used languages in these steps. Creation and Monitoring of Agreements (CREMONA) is a

WS-Agreement framework implemented by IBM [26]. It proposes a Commitment

Agreement and architecture for the WS-Agreement. All of these agreements are normal WS-

Agreements, following a certain naming convention. This protocol basically aims at solving

problems related to the creation of agreements on multiple sites. However, it is unable to

solve limitations when service providers and consumers have different standards, policies,

and languages during negotiations. For example, if a consumer uses WSLA but a provider

uses WS-Agreement, the interaction is actually not possible. In order to solve this, Brandic et

al. [19] proposed a Meta-Negotiation Architecture for SLA-Aware Grid Services based on

meta-negotiation documents. These documents record supported protocols, document

31

languages, and the prerequisites for starting negotiations and establishing agreements for all

participants.

SLA-based Resource Management Systems (RMS) have been developed for addressing

negotiation problems in Grids, for example, Wurman et al. [61] state a set of auction

parameters and a price-based negotiation platform, which serves as an auction server for

humans and software agents. Nevertheless, their solution only support one-dimensional

auction (only focus on price), but not multiple-dimensional auctions, which are important in

utility computing environments.

32

Table 2.3 Comparison of SLA Management frameworks and Languages

Name Type Domain Dynamic

Establish /

Management

Negotiation Metrics Deýne

Management

Actions

Support

Reuse

Provide

Type

Systems

Define

Semantic

Cope

with SLA

lifecycle

Bilateral

Protocol

Java, .Net

and Web

Service

based

protocol

Originally

for resource

reservation in

Grids.

Yes Yes Yes Yes Yes. Yes Support by

Web

Service.

Step 1 to

Step 4.

WS-

Agreement

XML

language;

Framework;

A protocol

Any domain Establish and

manage

dynamically

Re/negotiation

with WS-

Agreement

Negotiation

Do not

define

specification

of metrics

associated

with

agreement

parameters.

Yes Yes Yes Not

formally

defined

Step 1 to

step 6

WSLA Provide

language;

Framework;

runtime

architecture

Originally

for Web

services

Establish and

manage

dynamically

Re/negotiation. Allows

creation of

new metrics

Yes Yes NA Not

formally

defined

Step 1 to

step 6

QML language Any Domain Yes Yes Allows

creation of

new metrics

Yes Yes Yes,

allows

definition

of new

Yes Step 1 to

step 4

33

type

systems

WSOL XML Originally

for Web

Services

Yes Originally do

not support

NA Yes Yes Yes No Step 1 to

step 4

QUO CORBA

speciýc

framework

Any domain Yes Yes NA Yes Yes Yes No Step 1 to

step 4

SLAng XML

Language

Originally

for

Internet DS

environment

NA Yes No

But based on

behavior of

SLA parties

NA Yes Yes Yes Step 1 to

Step 4

34

Monitor - SLA Violation

Monitoring infrastructures are used to measure the difference between the pre-agreed and

actual service provision between parties [48]. There are three types of monitoring

infrastructures, which are trusted third party (TTP), trusted module on the provide side, and

trusted module on the client side. Nowadays, TTP provides most of functionalities for

monitoring in most typical situations to detect SLA violation.

Terminate - SLA

There are two scenarios in which an SLA may be terminated. The first is termination due to

normal time out. The second one is termination because any party violated its contract terms.

Normally, in Clouds, this step is conducted by customers and termination typically is caused

by normal time out or the providerôs SLA violation. Sometimes, providers also terminate

SLAs depending on the task priorities. If the reason for SLA termination is violation, then the

óEnforce Penalties for SLA Violationô step of the SLA lifecycle has to be applied. This step

is normally performed manually.

Enforce Penalties for SLA Violation

A penalty clause can be applied to the party who violates SLA terms. First is a direct

financial deposit being negotiated and agreed between parties. Second is a decrease in price

along with the extra compensation for any subsequent interaction. In other words, this option

is according to the value of loss caused by the violation. In this case, TTP is usually used as a

mediator. The workflow for this option is that clients transfer their deposit, bond, and any

other fees into the Third Partyôs account, and then if the SLOs have been met, the money is

paid to provider via TTP. Otherwise, the TTP returns the amount of fees back to the

consumer as compensation for SLA violations. The SLA violation has two indirect side

impacts on providers. The first is that consumers use less service from the provider in the

future. The second is that providerô reputation decreases and it affects other clientsô willing

to choose this provider subsequently. The major indirect influence on consumer is future

request will be rejected due to bad credit record.

A major issue, in the above discussion, is the variety of laws enforced in different countries.

This problem can be solved by a óchoice of law clauseô, which indicates expressly which

countryô laws are applied when a conflict happens between parties. óLegal templatesô [27]

can be used to refine these clauses [48].

35

2.4 SLA Use Cases in Utility Computing Systems

Utility computing provides access to on-demand delivery of IT capabilities to the consumer

according to cost-effective pricing schema. Typically, a resource in a Data Center is idle during

85% of time [63]. Utility computing provides a way for enterprises to lease this 85% of idle

resource or to use outsourcing to pay for resources according to their usage. Two approaches of

utility computing that achieve above goals are Grid and Cloud. In the rest part of this section, we

present use cases in Grid and Cloud computing environments.

2.4.1 SLA in Grid Computing Systems

In this section we introduce the definition of Grid computing, and some recent significant Grid

computing projects that have focused on SLAs and enabled them in their frameworks.

According to Buyya et al. (2009) ñA Grid is a type of parallel and distributed system that enables

the sharing, selection, and aggregation of geographically distributed óautonomousô resources

dynamically at runtime depending on their availability, capability, performance, cost, and usersô

quality-of-service requirements [22] .ò Grid computing is a paradigm of utility computing,

typically used for access to NPC and scientific resources, even though it has been also used in the

industry.

SLA has been adopted in Grid computing, and many Grid projects are SLA oriented. We classify

them into three categories, which are SLA for business collaboration, SLA for risk assessment,

and SLA renegotiation supports dynamic changes.

SLA for Business Collaboration: GRIA (The GRIA Project) is a service-oriented infrastructure

designed to support B2B collaborations across organizational boundaries by providing services.

The framework includes a service manager with the ability to identify the available resources

(e.g. CPUs and applications), assign portions of the resources to consumers by SLAs, and charge

for resource usage. Furthermore, a monitoring service is responsible for monitoring the activity

of services with respect to agreed SLOs.

The BREIN consortium (The BREIN Project, 2006-2009) defines a business framework

prototype for electronic business collaborations. Some capabilities of this framework prototype

include Service Discovery with respect to SLA capabilities, SLA negotiation in a single-round

36

phase, system monitoring and evaluation, and SLA evaluation with respect to the agreed SLA.

The WSLA/WS-Agreement specifications are suggested for SLAs management. The project

focuses on dynamic SLAs. This initiative shows that the industry is demonstrating their interest

in SLA management.

In the work of Joita et al. [37], WS-Agreement specification is used as a basis to conduct

negotiation between two parties. An agent-based infrastructure takes care of the agreement offer

made by the requesting party. In this scenario, many one-to-one negotiations are considered in

order to find the service that best matches the offer.

Risk Assessment: The AssessGrid [15] project focuses on risk management and assessment in

Grid. It aims at providing service providers with risk assessment tools, which help them to make

decisions on the suitable SLA offer by assigning, mapping, and associating the risk of failure to

penalty fees. Similarly, end-users get knowledge about the risk of an SLA violation by a resource

provider that helps them to make appropriate decisions regarding acceptable costs and penalty

fees. A broker is the matchmaker between end-users and providers. WS-Agreement-Negotiation

protocol is responsible for negotiating SLAs with external contractors.

SLA renegotiation supporting dynamic changes: Ludwig et al. [44] propose an extension of

WS-Agreement allowing a run-time SLA renegotiation. Some modifications are proposed in

the ôGuaranteeTermô section of the agreement schema and a new section is added to define

possible negotiations, to be agreed by parties before the offer is submitted. The limitation is that

it does not support run-time renegotiation to adapt dynamic operational and environmental

changes, because after the agreementôs acceptance, there is no interaction between the provider

and the consumer. Sakellariou et al. [53] specify the guarantee terms of an agreement as variable

values rather than fixed values. This work aims at minimizing the number of re-negotiations to

reach consensus with agreement terms. BabelNet, is a Protocol Description Language for

automated SLA negotiation, has been proposed [34] to handle multiple-dimensional auctions.

2.4.2 SLA in Cloud Computing

Cloud computing is a paradigm of service oriented utility computing. In this section we introduce

a definition of Cloud computing and SLA use cases in industry and academia. Finally, we

compare SLA usage difference between Cloud computing and traditional web services.

37

Cloud Computing

Based on the observation of the essence of what Clouds are promising to be, Buyya et al.

(2009) propose the following definition: ñA Cloud is a type of parallel and distributed system

consisting of a collection of inter-connected and virtualized computers that are dynamically

provisioned and presented as one or more unified computing resource(s) based on service-

level agreements established through negotiation between the service provider and

consumer[22] .ò Hence, Clouds fit well into the definition of utility computing.

Figure 2.6 shows the layered design of Cloud computing architecture. Physical Cloud

resources along with core middleware capabilities from the bottom for delivering IaaS. The

user-level middleware aims at providing PaaS capabilities. The top layer focuses on

application services (SaaS) by making use of services provided by the lower layer services.

PaaS/SaaS services are often provided by 3rd party service providers, who are different from

IaaS providers [23].

User-Level Applications: this layer includes the software applications, such as social

computing applications and enterprise applications, which be deployed by PaaS providers

renting resources from IaaS providers.

Core Middleware: this layer provides runtime environment enabling Capabilities to

application services built using User-Level Middleware. Dynamic SLA management,

Accounting, Monitoring and Billing are examples of core services in this layer. The

commercial example suit this layer are Google App Engine and Aneka.

System Level: physical resources including physical machines and virtual machines sit in

this layer. These resources are transparently managed by higher level virtualization services

and toolkits that allow sharing of their capacity among virtual instances of servers.

38

Figure 2.6 Layered Cloud computing architecture [23]

Use Cases

In this section, we present industry and academic use cases in Cloud computing

environments.

Industry Use Cases: In this section, we present how Cloud providers implement SLA.

Important parameters are summarized in Table 2.4. All elements in Table 2.4, are original

from formal published SLA documents of AmazonEC2 and S3 (IaaS provider), and

Microsoft Azure
1
 Compute and Storage (IaaS/PaaS provider).

A Characterization of studied systems following the six steps of SLA lifecycle model is

summarized in Table 2.5. From the usersô perspective, the process of activating SLA

lifecycle with Amazon and Microsoft is simple because the SLA has been pre-defined by the

provider. According to SLA lifecycle, the first step is to find the service providers according

to usersô requirements. For example, users find the provider via searching on the Internet,

and then explore the providersô web site for collecting further information. Most Cloud

service providers offer pre-defined SLA documents. In this case, the second step and third

step are pre-defined and always be entwined together. The check for SLA violation

monitoring can be done by third party tools, such as Cloudwatch, Cloudstatus, Monists,

39

Nimsoft. Developers are able to develop their own monitoring systems by taking use of these

tools.

For what concerns the termination of a SLA we can consider IaaS services as a reference

example. In this case three scenarios may occur. The normal termination of a SLA is

constituted by the release of Cloud release of Cloud resources by the user. An SLA can also

be actively terminated by a provider if the resource usage lasts beyond the predefined expire

time. A termination with penalty may occur in case the resource is unable to provide

resources according to the expected Quality of Service. The last step of SLA lifecycle will be

invoked if any party violates contract terms. Currently most of service providers give service

credit to customer if they violate SLA.

 Table 2.4 SLA Use Cases of the most famous Cloud Provider and related characteristics in SLAs

Cloud

Provider

Name

Service Commitment Effective

Date

Monthly Uptime

Percentage (MUP)%

Service Credits

Percentage (%)

Amazon

AWS EC2

ñAWS will use

commercially reasonable

efforts to make Amazon

EC2 and Amazon EBS each

available with a Monthly

Uptime Percentage (defined

below) of at least 99.95%, in

each case during any

monthly billing cycle (the

ñService Commitmentò). In

the event Amazon EC2 or

Amazon EBS does not meet

the Service Commitment,

you will be eligible to

receive a Service Credit

ñ(AWS EC2 Service Level

Agreement).

01 June,

2013

99%=<MUP<99.9% 10%

MUP%<99% 30%

Amazon ñAWS will use 01 June, 99%=<MUP<99.9% 10%

40

AWS S3 commercially reasonable

efforts to make Amazon S3

available with a Monthly

Uptime Percentage (defined

below) of at least 99.9%

during any monthly billing

cycle (the ñService

Commitmentò). In the event

Amazon S3 does not meet

the Service Commitment,

you will be eligible to

receive a Service Credit as

described below. ñ(AWS S3

Service Level Agreement).

2013 MUP<99 25%

Microsoft

Azure

ñFor Cloud Services, we

guarantee that when you deploy

two or more role instances in

different fault and upgrade

domains, your Internet facing

roles will have external

connectivity at least 99.95% of

the time.

For all Internet facing Virtual

Machines that have two or

more instances deployed in the

same Availability Set, we

guarantee you will have

external connectivity at least

99.95% of the time.

For Virtual Network, we

guarantee a 99.9% Virtual

Network Gateway availability.ò

(Windows Azure Service Level

Agreement)

NA <99.95% 10%

<99% 25%

1.The formula used to calculate Monthly Connectivity Uptime Percentage (MCUP) is depending on

Maximum Connectivity Minutest (MCM), Connectivity Downtime (CD) and Maximum Connectivity

Minutest (MCM). The equation is given as follows MCMCDMCMMCUP ·-=)(Source:

Windows Azure Service Level Agreement

41

Table 2.5 From usersô perspective SLA Use Cases of Cloud Provider follows six steps SLA lifecycle

Cloud

Service

Provider

Service

Type

Step 1:

Discover-Service

Provider

Step 2:

Define-SLA

Step 3:

Establish-

Agreement

Step 4:

Monitor -SLA

Violation

Step 5:

Terminate-

SLA

Step 6:

Enforce

Penalties for

SLA Violation

Amazon

EC2

IaaS

(Computi

ng)

Discover manually

(e.g. via web site)

Pre-defined

SLA

terms and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g.

CloudWatch)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

Amazon

S3

IaaS

(Storage)

Discover manually Pre-defined

SLA terms

and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g. CloudStatus)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

Microsoft

Azure

Compute

PaaS Discover manually

(e.g. via web site)

Pre-defined

SLA

terms and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g. Monitis)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

Microsoft

Azure

Storage

PaaS

Discover manually Pre-defined

SLA terms

and QoS

parameters

Pre-defined

SLA document

by provider

Can use third

party monitor

systems

(e.g. Monitis)

By user, or

provider

programmaticall

y or manually

Service Credit

given by

provider

42

Academy Use Cases: In this section, we present SLA-based projects and algorithms as

academy use cases.

SLA-based Resource Allocation for Data Centers and Cloud Computing Systems: The

Cloud Computing and Distributed Systems (CLOUDS) Laboratory, at the University of

Melbourne has proposed the use of market-based resource management to support utility-

based resource management for cluster computing [65][64]. The initial work successfully

demonstrated that market-based resource allocation strategies are able to deliver better utility

for users than traditional system-centric strategies. However, early research focused on

satisfying only two static Quality of Service (QoS) parameters: the deadline for completing a

service request and the budget that the consumer is willing to pay for completing the request

before the deadline. In the commercial computing environment, there are other critical QoS

parameters to consider in a service request, such as reliability and trust/security. In particular,

QoS requirements cannot be static and need to be dynamically updated over time due to

continuing changes in business operations and operating environments.

SLA based Management and Scheduling: Lee et al. [42] propose profit-driven SLA based

scheduling algorithms in Clouds to maximize the profit for service providers. The application

model used in this work can be classified as SaaS and PaaS. The service types supported by

their algorithm are dependent services, which mean one sub-service can not start until the

pre-required services complete. However, their work does not support multiple providers and

full simulation configuration is not available. We recommend possible future research

direction is SLA management with multiple providers, since it is required for emerging

research in InterCloud. We define InterCloud as multiple Cloud providers with peer

agreement to support collaborative activities.

Several projects in the last years are related at different degrees to the SLA-aware

management of resources, such as Claudia[176], BonFIRE [179], Optimis [177] and 4CaaSt

[178].

Claudia: is a toolkit aims to provide dynamic provision and scalability of services in IaaS

Clouds. BonFIRE is a European project provides a unified federation environment for

developers to manage Cloud deployments. In addition, European project 4CaaSt targets to

provide a platform for the deployment, management and trade of Cloud services. It allows

43

providers to federate their resources in a common marketplace and enables users to compose

services. However these works neither consider dynamic management of resources nor

consider QoS parameters, so SLA-based resource management is not in their scope.

Optimis: A European project aimed to enable private Cloud to automatically interact with

public Cloud providers, optimizing the usage of resources by means of Cloud federation; it

does scheduling operations by deciding the best provider to host resources. It allows

specifying requirements at IaaS level and constraints in Cloud services. However, this work

does not cover SaaS level requirements and only considers cost but not customer satisfaction

level.

SLA@SOI: The SLA@SOI project has developed a methodology for the SLA-aware

management of infrastructures and services, and encompasses activities such as dynamic

service discovery and composition, service monitoring and assessment, infrastructure

planning and optimization etc. However this project does not consider Cloud computing

infrastructures as their target platform, and hence it does not account for some specific needs

of this area.

Cloud-TM [180]: a European project aimed to provide a data centric PaaS middleware for

the development of distributed Cloud applications. However, this work does not cover SaaS

level. The SLA system is based on SLA@SOI. However this project does not cover the PaaS

and SaaS levels of Cloud computing, and is focused on data centric Cloud applications,

instead of the general purpose Cloud computing.

PaaSage [181] : another recent European project providing runtime monitoring and dynamic

adaptation, intelligent metadata retrieval, multi provider support, etc. Although this project

covers several topics dealing with QoS assessment and dynamic management of resources, it

does not use SLAs for the definition of resources or QoS requirements, nor cover SaaS Level

of Cloud computing.

SLA related difference between Cloud and Web Service

In this section we compare the difference between SLAs applied in cloud computing and in

traditional web services as follows:

44

QoS Parameters: Most web services focus on parameters such as response time, SLA

violation rate for the task, reliability, availability, levels of user differentiation, and cost of

service. In Cloud computing more QoS parameters than traditional web services need to be

considered, for example, energy related QoS, Security related QoS, Privacy related QoS,

trust related QoS. More than 20 QoS parameters are defined by the SMI (Service

Management Index) consortium to be used in the industry and academy as standard

benchmark.

Automation: The whole process of SLA negotiation and provisioning, service delivery and

monitoring need to be automated for highly dynamic and scalable service consumption.

Researches in traditional web services explored this topic, for example, Jin L.J et al [36]

proposed a model for SLA analysis of Web Services. Nevertheless, SLA automation is a

rapidly growing area in Cloud computing. In fact there are some research projects starting to

focus on it, such as CLOUDS Lab at the University of Melbourne and SLA@SOI.

Resource Allocation: SLA oriented resource allocation in Cloud computing is possible

different from allocation in traditional web services, because web services have a Universal

Description Discovery and Integration (UDDI) for advertising and discovering between web

services. However, in Clouds, resources are allocated and distributed globally without central

directory, so the strategy and architecture for SLA based resource allocation in such

environment are different from traditional web services.

2.5 Open Problems

SLA management must provide ways for reliable provisioning of services, monitoring of SLA

violations and detection of any potential performance decrease during service execution [41][45].

The goal of SLA management is to establish a scalable and automatic SLA management

framework for automatically adapting to dynamic environmental changes by considering

multiple QoS parameters. In addition, an SLA has to be suitable for multiple domains with

heterogeneous resources. The VIRD architecture is a three-level hierarchy focused on scalability.

Wurman et al. [61] state a set of auction parameters and price-based negotiation platform.

Nevertheless, this solution only supports one-dimensional auction, thus could not handle

45

multiple-dimensional auctions, which are important in utility computing environments. Recently,

BabelNet handles multiple-dimensional auctions.

Nevertheless, somehow consumers still need to be involved in the management process to some

extent. Moreover, multiple QoS parameters have been investigated by CLOUDS Labôs initial

work. Whilst that work only focused on the most common QoS parameters (price and deadline),

there are other critical QoS parameters that should be considered in a service request, such as

reliability and trust/security. In particular, QoS parameters are must be updated dynamically over

time due to continuing changes in business operations environments. Thus, multiple QoS

parameters should be investigated in the future research work.

More specifically, there are some open challenges for SLA-based resource management. First

and foremost, different SLA negotiation protocols and processes constraint the negotiation for

establishing SLAs, the modification of an implemented SLA, and SLA negotiation between

distinct administrative domains. Second, the SLA has to be established between providers and

consumers from different end-to-end viewpoint. For example, if the system service has been

outsourced from one provider to another, there should be SLA agreement between them as well.

Similar to Business to Consumer (B2C) models and Business to Business (B2B) models, there

will be different types of SLAs that needs to be established depending on entities involved..

Third, admission control policies, because decision on which user request to accept affects the

performance, profit, and reputation of the resource provider. Moreover, the resource allocation

management has to be considered carefully, because it addresses which resource is best suitable

for current admitted requests from both partiesô point of view. In addition, management of QoS

metrics, different parties using different parameters, and the failure management become a

challenge especially for the automatic handling, such as cause analysis and automatic problem

resolution. We can also mention, performance forecast management is another open question in

utility computing environments because it enables the recommendation for performance

improvement.

2.6 Summary

This chapter presented the literature survey, issues and solutions of SLA management in utility

computing systems and how SLAs have been used in these systems. An SLA is a formal contract

between service providers and consumers to guarantee that the service quality is delivered to

46

satisfy pre-agreed consumersô expectations. SLA management is important in utility computing

systems because it helps to improve the CSL and to define clear relationship between business

parties. In this chapter, we summarized the main fundamental concepts of SLA and analyzed two

types of SLA lifecycle. One is the three phase high level lifecycle, which includes creation phase,

operation phase and removal phase; the other is more specific lifecycle including six steps, which

are ódiscover-service providerô, ódefine-SLA elementsô, óestablish-agreementô, ómonitor-SLA

violationô, óterminate-SLAô and óSLA violation controlô. The second type of lifecycle is more

comprehensive, and introduces the characterization of SLA violation that is a foundation in

utilit y computing environments where services are consumed on a pay-as-you-go basis.

The analysis carried out in this chapter identified four major goals in case of SLA-based utility

computing. First, supporting customer-driven service management based on customer profiles

and requested service requirements. Second, defining computational risk management tactics to

identify and manage risks involved in the execution of applications with regards to service

requirements and customer needs. Third, deriving appropriate market-based resource

management strategies encompassing customer-driven service management to sustain SLA-based

resource allocation. Fourth, how to incorporate adaptive resource management models and

dynamic changes in service requirements in order to satisfy both new service demands and

existing service obligations.

To achieve these goals, the main challenges and solutions of SLA-based resource management in

utility computing environments are discussed by following the steps of SLA lifecycle. In the

ódiscover-service providerô, the main issues are scalability, dynamic changes, heterogeneity, and

autonomous administration. Some architectures and algorithms have been proposed to cope with

them, such as the MDS and VIRD architectures. To design an automatic negotiation framework

is a challenge during the ódefine-SLAô and óestablish- agreementô steps, because two parties need

to negotiate before they agree on the terms to be included in SLAs. SLA frameworks and

languages are used as solutions. Currently, the most widely used languages are WSLA and WS-

Agreement. However, there are not many effective solutions for the automatic negotiation

framework for SLA-based resource management. Thus, the automatic negotiation is still an open

issue. Regarding the ómonitor SLA violationô step, the most popular solution is using Third Party

(TTP) who provides most of functionalities for monitoring a service in most typical situations to

detect SLA violations. The main issues for the last two steps óterminate SLAô and óenforce

penalties for SLA violationô, are automatic failure management, such as cause analysis, penalty

47

clauses invocation, and automatic failure resolution. Some penalty strategies were presented.

However, resource management with penalty model and automatic problem resolution still are

open challenges and more investigation is needed in the future.

In conclusion, SLA in utility computing systems is a rapidly moving target although some works

have been explored in the past. The rest of this thesis will explore three major challenges listed in

the Chapter 1. In addition, the next chapter will investigate admission control and scheduling

algorithms for SaaS providers to effectively utilise public Cloud resources to maximize profit by

minimizing cost and improving customer satisfaction level.

48

49

3 SLA-based Admission Control for Software-as-

a-Service Providers

This chapter presents innovative admission control and scheduling algorithms for SaaS providers

to effectively utilise heterogeneous Cloud resources to maximize profit by minimizing cost and

enlarging market share by accepting more user requests while minimizing the SLA violations for

existing customers. Then, an extensive evaluation study is conducted to analyse which algorithm

suits best in which scenario to achieve SaaS (Software-as-a-Service) providersô objectives.

Simulation results show that our proposed algorithms provide substantial improvement (up to

40% cost saving) over reference ones across all ranges of variation in QoS parameters.

3.1 Introduction

The general objective of SaaS providers is to maximize profit and enlarge market share. To

maximize profit, SaaS (Software-as-a-Service) providers need to minimize the infrastructure cost,

administration operation cost and penalty cost caused by SLA violations. Market share can be

enlarged by accepting more user requests, which also increases the profit. Market share can also

be improved by satisfying more customers. To satisfy the customer, SaaS providers need to

guarantee Quality of Service (QoS) specified in SLAs.

In general, SaaS providers utilize internal resources of its data centres or rent resources from a

specific IaaS provider. For example, Saleforce.com [102] hosts resources but Animoto rents

resources from Amazon EC2 [92]. In-house hosting can generate administration and maintenance

cost while renting resources from a single IaaS provider can impact the service quality offered to

SaaS customers due to the variable performance [103].

50

To overcome the above limitations, multiple IaaS providers and admission control are considered

in this chapter. Procuring from multiple IaaS providers brings huge amount of resources, various

price schemas, and flexible resource performance to satisfy Service Level Objectives, which are

items specified in Service Level Agreement (SLA). Admission control has been used as a general

mechanism to avoid overloading of resources and SLA satisfaction [2]. However, current SaaS

providers do not have admission control and how they conduct scheduling is not publicly known.

Therefore, the following questions need to be answered to allow efficient use of resources in the

context of SaaS providers using multiple resources from IaaS providers, where resources can be

dynamically expanded and contracted on demand:

¶ Can a new user request be accepted without impacting accepted requests?

¶ How to map various user requests with different QoS parameters to VMs?

¶ What available resource should the request be assigned to? Or should a new VM be

initiated to support the new user request?

This chapter provides answers to the above questions by proposing an innovative cost-effective

admission control and scheduling algorithms to maximize the SaaS providerôs profit and CSL. Our

proposed solutions are able to maximize the number of accepted users through the efficient

placement of requests on VMs leased from multiple IaaS providers. We take into account various

customerôs QoS requirements and infrastructure heterogeneity. The key contributions of this

chapter are twofold: 1) it proposes the system and mathematical models for SaaS providers to

satisfy customers; and 2) it proposes three innovative admission control and scheduling

algorithms for profit and market share maximization by accepting as many new user requests as

possible with guaranteed SLA and minimized cost.

3.2 System Model

In this section, we introduce a model, which consists of actors and óadmission control and

schedulingô system (as depicted in Figure 3.1). The actors are users/customers, SaaS providers,

and IaaS providers. The system consists of application layer and platform layer functions. Take

Animoto.com as an example of SaaS provider, who leases video generation software to users.

There are three steps for users to generate video using Animoto.com: 1) upload pictures or videos;

2) select themes, music and styles for the video; 3) download or share the video. In this example,

customers expect video to be generated within deadline and budget. We extended this application

model by focusing more on customer requirements satisfaction. Thus, users request the software

51

service from a SaaS provider by submitting their QoS requirements, such as service deadline and

budget. The QoS model considered is adapted from utility models proposed in previous work [6].

In general, budget is computed by clients through own their market research and strategic plans.

The platform layer uses admission control to interpret and analyse the userôs QoS parameters and

decides whether to accept or reject the request based on the capability, availability and price of

VMs. Then, the scheduling component is responsible for allocating resources based on admission

control decision. Furthermore, in this section we design two SLA layers with both users and

resource providers, which are SLA (U) and SLA (R) respectively.

3.2.1 Actors

The participating actors involved in the process are discussed below along with their objectives

and constraints:

User

On usersô side, a request for application is sent to a SaaS providerôs application layer with

QoS constraints, such as, deadline, budget and penalty rate. Then, the platform layer utilizes

the óadmission control and schedulingô algorithms to admit or reject this request. If the request

can be accepted, a formal agreement (SLA) is signed between both parties to guarantee the

QoS requirements. SLA with Users ï SLA (U) includes the following properties:

¶ Deadline: Maximum time user would like to wait for the result.

¶ Budget: How much user is willing to pay for the requested services.

¶ Penalty Rate Ratio: A ratio for consumersô compensation if the SaaS provider misses the

deadline.

¶ Input File Size: The size of input file provided by users. Users upload the file, and the size is

calculated by the application layer function.

¶ Request Length: How many Millions of Instructions (MI) are required to be executed to

serve the request? This value is predefined in the SLA (U) by the SaaS provider.

52

Figure 3.1 A high level system model for application service scalability for in IaaS providers.

SaaS provider

A SaaS provider rents resources from IaaS providers and leases software as services to users.

SaaS providers aim at minimizing their operational cost by efficiently using resources from

IaaS providers, and improving CSL by satisfying SLAs, which are used to guarantee QoS

requirements of accepted users. From SaaS providerôs point of view, there are two layers of

SLA with both users and resource providers, which are described in Section A and Section C.

It is important to establish two SLA layers, because SLA with user can help the SaaS provider

to improve the CSL by gaining usersô trust of the QoS; SLA with resource providers can

enforce resource providers to deliver the satisfied service. If any participants in the contract

violate its terms, the defaulter has to pay for the penalty according to the clauses defined in the

SLA.

IaaS Provider

An IaaS resource provider (RP), offers VMs to SaaS providers and is responsible for

dispatching VM images to run on their physical resources. The platform layer of SaaS

53

provider uses VM images to create instances. It is important to establish SLA with a resource

provider ï SLA (R), because it enforces the resource provider to guarantee service quality.

Furthermore, it provides a risk transfer for SaaS providers, when the terms are violated by

resource provider. In this work, we do not consider the compensation given by the resource

provider because 85% resource providers do not really provide penalty enforcement for SLA

violation currently [93]. The SLA (R) includes the following properties:

¶ Service Initiation Time: How long it takes to deploy a VM.

¶ Price: How much a SaaS provider has to pay per hour for using a VM from a

resource provider?

¶ Input Data Transfer Price: How much a SaaS provider has to pay for data transfer

from local machine (their own machine) to resource providerôs VM.

¶ Output Data Transfer Price: How much a SaaS provider has to pay for data

transfer from resource providerôs VM to local machine?

¶ Processing Speed: How fast the VM can process? We use Machine Instruction Per

Second (MIPS) of a VM as processing speed.

¶ Data Transfer Speed: How fast the data is transferred? It depends on the location

distance and also the network performance.

3.2.2 Profit Model

In this section we describe mathematical Equations used in our work. Let assume at a given time

instant t, I be the number of initiated VMs, and J be the total number of IaaS providers. Let IaaS

provider j provides Nj types of VM, where each VM type l has Pjl price. The prices/GB charged

for data transfer-in and ïout by the IaaS provider j are inPri j and outPrij

respectively. Let (iniTijl)

be the time taken for initiating VM i of type l from provider j.

Let a new user submit a service request at submission time subT
new

 to the SaaS Provider. The new

user offers a maximum price B
new

 (Budget) to SaaS provider with deadline DL
new

and Penalty

Rate ɓ
new

. Let inDS
new

 and outDS
new

 be the user requests required transfer in and transfer out

data.

Let Costijl
new

 be the total cost incurred to the SaaS provider by processing the user request on

VM i of type l uses resource provider j. Then, the profit Profij l
new

 gained by the SaaS provider is

defined as:

54

new

ijl

newnew

ijl CostB -=Prof jNlJjIi ÍÍÍ" ,, (3.1)

The total cost incurred to SaaS provider for accepting the new request consists of requestôs

processing cost (PCijl
new

), data transfer cost (DTCjl
new

), VM initiation cost (ICijl
new

), and penalty

delay cost (PDCijl
new

) (to compensate for miss deadline). Thus, the total cost is given by

processing the request on VM i of type l on IaaS provider j.

new

ij

new

ijl

new

jl

new

ijl

new

ijl PDCICDTCPCCost +++= jNlJjIi ÍÍÍ" ,,

(3.2)

The processing cost (PCijl
new
) for serving the request is dependent on the new requestôs

processing time (procTijl
new

) and hourly price of VMil offered by IaaS provider j . Thus, PCij l
new

 is

given as:

 jjl

new

ijl

new

ijl NlJjIiPprocTPC ÍÍÍ"³= ,,,
 (3.3)

Data transfer cost as described in Equation (3.4) includes cost for both data-in and data-out.

 jl

new

jl

newnew

jl ioutoutDSiininDSDTC PrPr ³³= +
jNlJj ÍÍ" ,

(3.4)

The initiation cost (ICij
new

) of VM i (type l) is dependent on the type of VM initiated in the data

center of IaaS provider j.

 jjlij

new

ijl NlJjIiPiniTIC ÍÍÍ"³= ,,, (3.5)

In Equation (3.6), penalty delay cost (PDCij
new

) is how much the service provider has to give

discount to users for SLA(U) violation. It is dependent on the penalty rate (ɓ
new

) and penalty

delay time (PDTij l
new

) period. We model the SLA violation penalty as linear function which is

similar to other related works [65][48][68].

new

ijl

newnew

ijl PDTPDC ³=b
jNlJjIi ÍÍÍ" ,, (3.6)

To process any new request, SaaS provider either can allocate a new VM or schedule the request

on an already initiated VM. If service provider schedules the new request on an already initiated

VM i, the new request has to wait until VM i becomes available. The time for which the new

request has to wait until it starts processing on VM i is ä
=

K
k

ijl
k

procT
1

 , where K is the number of

request yet to be processed before the new request. Thus, PDTljl
new

 is given by:

 ὖὈὝ
,

1

new
K

k

ijl DL
new

ijl
procT

k
procTt -ä

=
+ + ὭὪ ὲὩύ ὠὓ Ὥί ὲέὸ ὭὲὭὸὭὥὸὩὨ

ὴὶέὧὝ ὭὲὭὝὈὝὝ Ὀὒ ȟὭὪ ὲὩύ ὠὓ Ὥί ὭὲὭὸὭὥὸὩὨ

 (3.7)

DTTijl
new

 is the data transfer time which is the summation of time taken to upload the input

(inDTill
new

) and download the output data (outDTijl
new

) from the VM il on IaaS Provider j. The

data transfer time is given by:

55

new

ijl

new

ijl

new

ijl outDTinDTDTT += jNlJjIi ÍÍÍ" ,, (3.8)

Thus, the response time (Tijl
new

) for the new request to be processed on VMil of IaaS Provider j is

calculated in Equation (3.9) and consists of VM initiation time (iniTijl
new

), requestôs service

processing time (procTijl
new

), data transfer time (DTTijl
new

), and penalty delay time (PDTijl
new

).

 Ὕ
,

1

new

ijl
procT

k
procT

K
k

ijlä
=

+ ὭὪ ὲὩύ ὠὓ Ὥί ὲέὸ ὭὲὭὸὭὥὸὩὨ

ὴὶέὧὝ ὭὲὭὝὈὝὝ ȟὭὪ ὲὩύ ὠὓ Ὥί ὭὲὭὸὭὥὸὩὨ

 (3.9)

The investment return (retijl
new

) to accept new user request per hour on a particular VM il on IaaS

Provider j is calculated based on the profit (profijl
new

) and response time (Tijl
new

):

new

ijl

new

ijlnew

ijl
T

prof
=ret jNlJjIi ÍÍÍ" ,, (3.10)

3.3 Algorithms and Strategies

In this section, we present four strategies to analyse whether a new request can be accepted or not

based on the QoS requirements and resource capabilities. Then, we propose three algorithms

utilizing these strategies to allocate resources. In each algorithm, the admission control uses

different strategies to decide which user requests to accept in order to cause minimal performance

impact, avoiding SLA penalties that decrease SaaS providerôs profit. The scheduling part of the

algorithms determines where and which type of VM will be used by incorporating the

heterogeneity of IaaS providers in terms of their price, service initiation time, and data transfer

time.

3.3.1 Strategies

In this section, we describe four strategies for request acceptance: a) initiate new VM, b) queue

up the new user request at the end of scheduling queue of a VM, c) insert (prioritize) the

new user request at the proper position before the accepted user requests and, d) delay the

new user request to wait all accepted users to finish. Inputs of all strategies are QoS

parameters of the new request and resource providersô related information. Outputs of all

strategies are admission control and scheduling related information, for example, which VM and

in which resource provider the request can be scheduled. All flow charts in this section are in the

context of each VM in each resource provider.

Initiate New VM Strategy

56

Figure 3.2 illustrates the flow chart of ñinitiate new VM strategyò, which first checks for

each type of VMs in each resource provider in order to determine whether the deadline of

new request is long enough comparing to the estimated finish time. The estimated finish time

depends on the estimated start time, request processing time, and VM initiation time.

If the new request can be completed within the deadline, the investment return is calculated

(Equation 3.10). If there is value added according to the investment return, and then all

related information (such as resource provider ID, VM ID, start time and estimated finish

time) are stored into the potential schedule list. This strategy is represented as

canInitiateNewVM () in algorithms.

Figure 3.2 Flow Chart of óInitiate new VM strategyô

Wait Strategy

Figure 3.3 illustrates the wait strategy, which first verifies each VM in each resource

provider if the flexible time (fTijl
new

) of the new request is enough to wait all accepted

requests in vmil to complete. The fTijl
new

 is given by Equation (3.11), in which K indicates

total number of all accepted requests, I indicates all VMs, J indicates all resource providers, l

indicates VM type, and Nj indicates all VM types provided by resource provider j.

ä
=

-= -
K

newk

ijl

new

k
procTDLfT subTnew

ijl
1

jNlKkJjIi ÍÍÍÍ" ,,, (3.11)

If new request can wait for all accepted requests to complete, and then the investment return

is calculated and the remaining steps are the same as those in initiate new VM strategy. This

strategy is called as canWait () in algorithms.

Request can complete

within deadline

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

No

Yes

Yes

No

57

Figure 3.3 Flow Chart of ówait strategyô

Insert Strategy

Figure 3.4 shows the flow chart of ñinsert strategyò, which first checks verifies if any

accepted request uk according to latest start time in vmil can wait the new request to finish. If

the flexible time of accepted request (fTijl
k
) is enough to wait for a new user request to be

completed then the new request is inserted before request k. The fTijl
k
 indicates the duration

of request wait time with deadline and it is given by Equation (3.12), in which DL
k
indicates

the deadline of accepted request, k indicates the position of accepted request, and K indicates

the total number of accepted user requests, l indicates the VM type and Nj indicates all VM

types provided by resource provider j.

newnew

ijl

K

kn
n

n

ijl

kk subTTprocTDLfTijl --ä-=

¸
=,1

jNlKkJjIi ÍÍÍÍ" ,,, (3.12)

If there is an already accepted request u
k
 that is able to wait for the new user request to

complete, the strategy checks if the new request can complete before its deadline. If so, u
new

gets priority over u
k
, then the algorithm calculates the investment return and the remaining

steps are the same as those in initiate new VM strategy. This strategy is presented as

canInsert () in algorithms.

Request can wait all

accepted requests to finish

Yes

No

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

Yes

No

58

Figure 3.4 Flow Chart of óinsert strategyô

Penalty Delay Strategy

Figure 3.5 describes the flow chart of ñpenalty delay strategyò, which first checks if the new

user requestôs budget is enough to wait for all accepted user requests in vmi to complete after

its deadline. Equation (3.1) is used to check whether budget is enough to compensate the

penalty delay loss, and then the investment return is calculated and the remaining steps are

the same as those in initiate new VM strategy. This strategy is presented as funciton

canPenaltyDelay() in algorithms.

Figure 3.5 Flow Chart of ópenalty delay strategyô

Any accepted request can

wait for new request

Yes

No

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

Yes

No

Budget is enough to

compensate delay penalty

No

Store Related Info. Return True

Return False

Calculate Investment Return

Investment Return > 0

Yes

Yes

No

59

3.3.2 Proposed Algorithms

A service provider can increase the profit by reducing the infrastructure cost, which depends on

the number and type of initiated VMs in IaaS providersô data centre. Therefore, our algorithms

are designed to minimize the number of VMs by maximizing the utilization of already initiated

VMs. The assumption here is that SaaS provider will offer proper security protection for business

data, especially when data is copied to VMs that are already created. In this section, based on

above strategies we propose three algorithms, which are ProfminVM, ProfRS, and ProfPD:

¶ Maximizing the profit by minimizing the number of VMs (ProfminVM).

¶ Maximizing the profit by rescheduling (ProfRS).

¶ Maximizing the profit by exploiting the penalty delay (ProfPD).

Maximizing the Profit by Minimizing the number of VMs (ProfminVM)

Algorithm 1 describes the ProfminVM algorithm, which involves two main phases: a)

admission control and b) scheduling.

In admission control phase, the algorithm analyses if the new request can be accepted either

by queuing it up in an already initiated VM or by initiating a new VM. Hence, firstly, it

checks if the new request can be queued up by waiting for all accepted requests on any

initiated VM - using Wait Strategy (Step 3). If this request cannot wait in any initiated VM,

then the algorithm checks if it can be accepted by initiating a new VM provided by any IaaS

provider - using Initiate New VM Strategy (Step 8). If a SaaS provider does not make any

profit by utilizing already initiated VMs nor by initiating a new VM to accept the request,

then the algorithm rejects the request (Step 9). Otherwise, the algorithm gets the maximum

investment return from all of the possible solutions (Step 13). The decision also depends on

the minimum expected investment return (expInvRetijlnew) of the SaaS provider. If the

investment return

new

ijlret
is more than the SaaS providerôs expInvRetijlnew, the algorithm

accepts the new request (Step 14, 15), otherwise it rejects the request (Step 16, 17). The

expected investment return ratio w is customized by SaaS providers. The expected

investment return (expInvRetijlnew) is given by Equation (3.13):

new

ijl

new
ijlnew

ijl
T

Cost
³=wexpInvRet

jNlJjIi ÍÍÍ" ,,
 (3.13)

60

The scheduling phase is the actual resource allocation and scheduling based on the admission

control result; if the algorithm accepts the new request, the algorithm first finds out in which

IaaS Provider rpj and which VM vmi a SaaS provider can gain the maximum investment

return by extracting information from PotentialScheduleList (Step 20). If the maximum

investment return is gained by initiating a new VM (Step 22), then the algorithm initiates a

new VM in the referred resource provider (rpj), and schedule the request to it. Finally, the

algorithm schedules the new request on the referred VM (vmi) (Step 23). The time

complexity of this algorithm is O(KIJ+KI), where K indicates the total number of accepted

requests, I indicates the total number of initiated matched type of VMs and J indicates the

number of resource providers.

Algorithm 1. Pseudo-code for ProfminVM algorithm

Input: New userôs request parameters (unew), expInvRetijnew

Output: Boolean

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. continue;

 5. }

6. }

 7. }

 8. Else If (! canInitiateNew(unew, rpj))

9. Return reject

10. If (PotentialScheduleList is empty)

11. Return reject

12. Else {

13. Get the max[retijnew, SDij] in PotentialScheduleList

14. If (max(retijnew) Ó expInvRetijnew)

15. Return accept

16. Else

17. Return reject

18. }

61

19. }

}

schedule () {

20. Get the [retmaxnew, SDmax] in maxRet(PotentialScheduleList)

21. If (SDmax is initiateNewVM)

22. initiateNewVM in rpj

23. Schedule the unew in VMmax in rpmax according to SDmax.

 }

Maximizing the Profit by Rescheduling (ProfRS)

In ProfminVM algorithm, a new user request does not get priority over any accepted request.

This inflexibility affects the profit of a SaaS provider since many urgent and high budget

requests will be rejected. Thus, ProfRS algorithm reschedules the accepted requests to

accommodate an urgent and high budget request. The advantage of this algorithm is that a

SaaS provider accepts more users utilizing initiated VMs to earn more profit.

Algorithm 2 describes ProfRS algorithm. In the admission control phase, the algorithm

analyses if the new request can be accepted by waiting in an already initiated VM, inserting

into an initiated VM, or initiating a new VM. Hence, firstly it verify if new request can wait

all accepted requests in any already initiated VM - invoking Wait Strategy (Step 3). If the

request cannot wait, then it checks if the new request can be inserted before any accepted

request in an already initiated VM -using Insert Strategy (Step 4). Otherwise the algorithm

checks if it can be accepted by initiating a new VM provided by any IaaS provider - using

Initiate New VM Strategy (Step 5). If a SaaS provider does not make sufficient profit by any

strategy, the algorithm rejects this user request (Step 10, 11). Otherwise the algorithm gets

the maximum return from all analysis results (Step 15). The remaining steps are the same as

those in ProfminVM algorithm. The time complexity of this algorithms is O (KIJ+IK
2
),

where K indicates the total number of accepted requests, I indicates the total number of

initiated matched type of VMs and J indicates the number of resource providers.

Algorithm 2. Pseudo-code for ProfRS algorithm

Input: New userôs request parameters (unew), expInvRetij
new

Output: Boolean

62

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. If (! canInsert (unew, vmi)) {

 5. If (! canInitiateNew(unew, rpj)) {

 6. continue;

 7. }

 8. }

 9. }

 10. Else If (! canInitiateNew(unew, rpj))

 11. Return reject

 12. If (PotentialScheduleList is empty)

 13. Return reject

 14. Else {

 15. Get the max[retij
new, SDij] in PotentialScheduleList

 16. If (max(retij
new) Ó expInvRetij

new)

 17. Return accept

 18. Else

 19. Return reject

 20. }

 }

schedule () {

21. Get the [retmax
new, SDmax] in maxRet(PotentialScheduleList)

22. If (SDmax is initiateNewVM)

23. initiateNewVM in rpj

24. Schedule the unew in VMmax in rpmax according to SDmax.

 }

Maximizing the Profit by exploiting penalty delay (ProfPD)

To further optimize the profit, we design the algorithm ProfPD by considering delaying the

new requests to accept more requests.

63

Algorithm 3 describes ProfPD algorithm. In the admission control phase, we analyse if the

new user request can be processed by queuing it up at the end of an already initiated VM, by

inserting it into an initiated VM, or by initiating a new VM. Hence, firstly the algorithm

check if the new request can wait all accepted requests to complete in any initiated VM -

invoking Wait Strategy (Step 3). If the request cannot wait, then it checks if the new request

can be inserted before any accepted request in any already initiated VM -using Insert

Strategy (Step 4). Otherwise the algorithm checks if the new request can be accepted by

initiating a new VM provided by any resource provider - using Initiate New VM Strategy

(Step 5) or by delaying the new request with penalty compensation - using Penalty Delay

Strategy (Step 7). If a SaaS provider does not make sufficient profit by any strategy, the

algorithm rejects the new request (Step 14). Otherwise, the request is accepted and scheduled

based on the entry in PotentialScheduleList which gives the maximum return (Step 23). The

rest of the steps are the same as those in ProfminVM. The time complexity of this algorithms

is O (KIJ+IK
2
), where K indicates the total number of accepted requests, I indicates the total

number of initiated matched type of VMs and J indicates the number of resource providers.

Algorithm 3. Pseudo-code for ProfPD algorithm

Input: New userôs request parameters (unew), expInvRetij
new

Output: Boolean

Functions:

admissionControl() {

 1. If (there is any initiated VM) {

 2. For each vmi in each resource provider rpj {

 3. If (! canWait (unew, vmi)) {

 4. If (! canInsert (unew, vmi)) {

 5. If (! canInitiateNew(unew, rpj))

 6. continue;

 7. If (! canPenaltyDelay(unew, rpj))

 8. continue;

 9. }

10. }

11. }

12. }

13. Else If (! canInitiateNew(unew, rpj))

64

14. Return reject

15. If (PotentialScheduleList is empty)

16. Return reject

17. Else { Get the max[retij
new, SDij] in PotentialScheduleList

18. If (max(retij
new) Ó expInvRetij

new)

19. Return accept

20. Else

21. Return reject

22. }

}

schedule () {

23. Get the [retmax
new, SDmax] in maxRet(PotentialScheduleList)

24. If (SDmax is initiateNewVM)

25. initiateNewVM in rpj

26. Schedule the unew in VMmax in rpmax according to SDmax.

}

3.4 Performance Evaluation

In this section, we first explain the reference algorithms and then describe our experiment

methodology, followed by performance evaluation results, which includes comparison with

reference algorithms and among our proposed algorithms.

As existing algorithms in the literature are designed to support scenarios different to those

considered in our work, we are comparing proposed algorithms to reference algorithms exhibiting

lower and up bounds: MinResTime and StaticGreedy.

¶ The MinResTime algorithm selects the IaaS provider where new request can be processed

with the earliest response time to avoid deadline violation and profit loss, therefore it

minimizes the response time for users. Thus, it is used to know how fast user requests

can be served.

¶ The StaticGreedy algorithm assumes that all user requests are known at the beginning of

the scheduling process. In this algorithm, we select the most profitable schedule obtained

by sorting all the requests either based on Budget or Deadline, and then using ProfPD

algorithm. Thus, the profit obtained from StaticGreedy algorithm acts as an upper bound

65

of the maximum profit that can be generated. It is clear that assumption taken in

StaticGreedy algorithm is not possible in reality as all the future requests are not known.

3.4.1 Experimental Methodology

We use CloudSim [80] as a Cloud environment simulator and implement our algorithms within

this environment. We observe the performance of the proposed algorithms from both usersô and

SaaS providersô perspectives. From usersô perspective, we observe how many requests are

accepted and how fast user requests are processed (we call it average response time). From SaaS

providersô perspective, we observe how much profit they gain and how many VMs they initiate.

Therefore, we use four performance measurement metrics: total profit, average request response

time, number of initiated VMs, and number of accepted users. All the parameters from both usersô

and IaaS providersô side used in the simulation study are given in following sub-sections:

Usersô side

We examine our algorithms with 5000 users. From the user side, five parameters (deadline,

service time, budget, arival rate and penalty rate factor) are varied to evaluate their impact on

the performance of our proposed algorithms. Request arrival rate follows poisson distribution

as many previous works [100][101] model arrival rate as poisson distribution. Similar as

other works, we use a normal distribution to model all parameters (standard deviation

=(1/2)xmean), because there is no available workload specifiying these parameters. Equation

3.14 is used to calculate the deadline (DLijl
new

). ais the factor which is used to vary the

deadline from ñvery tightò (a=0.5) to ñvery relaxò (a=2.5). estprocTijl
new

 indicates the new

service requestôs estimated processing time.

new
ijl

estprocTnew
ijl

estprocTnew
ijl

DL +³=a

jNlJjIi ÍÍÍ" ,, (3.14)

Service time is estimated based on the Request Length (MI) and the Millions of Instruction

per Second (PS) of a VM. The mean Request Lengths are selected between 10
6
MI (ñvery

smallò) to 5x10
6
MI (ñvery largeò), while MIPS value for each VM type is fixed.

In common economic models, budget is generated by random numbers [65]. Therefore, we

follow the same random model for budget, and vary it from ñvery smallò (mean=0.1$) to

ñvery largeò (mean=1$). We choose budget factor up to 1, because the trend of results does

66

not show any change after 1. Five different types of request arrival rate are used by varying

the mean from 1000 to 5000 users per second. The penalty rate ɓ (the same as in Equation

3.1) is modelled by Equation 3.15. It is calculated in terms of how long a user is willing to

wait (r) in proportion to the deadline when SLA is violated. In order to vary the penalty rate,

we vary the mean of r from ñvery smallò (4) to ñvery largeò (44).

 rnewDL

newB

³

=b JjIi ÍÍ" , (3.15)

Resource Providersô side

We consider five resouce providers ï IaaS providers, which are Amazon EC2[92],

GoGrid[94], Microsoft Azure[96], RackSpace[95] and IBM[97]. To simulate the effect of

using different VM types, MIPS ratings are used. Thus, a MIPS value of an equivalent

processor is assigned to the request processing capability of each VM type. The price schema

of VMs follows the price schema of GoGrid [94] , Amazon EC2 [92], RackSpace [95],

Microsoft Azure [96], and IBM [97]. The detail resource characteristics which are used for

modelling IaaS providers are shown in Table 3.1. The three different types of average VM

initiation time are used in the experiment, and the mean initiation time varies from 30

seconds to 15 minutes (standard deviation= (1/2)xmean). The mean of initiation time is

calculated by conducting real experiments of 60 samples on GoGrid [94] and Amazon EC2

[92] done for four days (2 week days and 2 weekend days).

3.4.2 Performance Results

In this section, we first compare our proposed algorithms with reference algorithms by varying

number of users. Then, the impact of QoS parameters on the performance metrics is evaluated.

Finally, robustness analysis of our algorithm is presented. All of the results present the average

obtained by 5 experiment runs. In each experiment we vary one parameter, and others are given

constant mean vaule. The constant mean, which are used during experiment, are as follows:

arrival rate=5000 requests/sec, deadline=2*estprocT, budget=1 $, requst length= 4x10
6
MI, and

penalty rate factor (r) =10.

67

Table 3.1 The summary of resource provider characteristics.

Provider VM Types VM Price ($/hour)

Amazon EC2 Small / Large 0.12/0.48

GoGrid 1 Xeon / 4 Xeon 0.19/0.76

RackSpace Windows 0.32

Microsoft Azure Compute 0.12

IBM VMs 32-bit (Gold) 0.46

Comparison with Reference Algorithms

To observe the overall performance of our algorithms, we vary the number of users from

1000 to 5000 without varying other factors such as deadline and budget. Figure 3.6 presents

the comparison of our proposed algorithms with reference algorithms StaticGreedy and

MinResTime in terms of the four performance metrics. When the number of user requests

varies from 1000 to 5000, for each algorithm the total profit and average response time has

increased, because of more user requests.

Figure 3.6 shows that ProfPD earns 8% less profit (Requests = 5000) for SaaS provider than

StaticGreedy which is used as the upper bound. That is because in the case of StaticGreedy,

all the user requests are already known from the beginning to the SaaS provider. The base

algorithm MinResTime has smaller (two third of StaticGreedy) response time, but earns less

profit (approximately half of ProfPD). These observations indicate the trade-off between

response time and profit, which SaaS provider has to manage while scheduling requests.

Figure 3.6a shows that the ProfPD achieves (15%) more profit over ProfRS and (17%) over

ProfminVM by accepting (10%, 15%) more user requests and initiating (19%, 40%) less

number of VMs, when number of users changes from 1000 to 5000. When number of users is

1000 ProfPD earns 4% and 15% more profit over ProfminVM and ProfRS respectively.

When the user number is increased from 1000 to 5000, the profit difference between ProfPD

and other two algorithms became larger. This is because when the number of requests

increased, the number of users being accepted increased by utilizing initiated VMs. If all

requests are known before scheduling, then StaticGreedy is the best choice for maximizing

profit, however, in the real Cloud computing market, these are unknown. Therefore, a SaaS

provider should use ProfPD, however, ProfRS is a better choice for a SaaS provider in

68

comparison with ProfminVM. In addition, the ProfPD is effective in maximizing profit in

heavy workload situations.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

Figure 3.6 Overall algorithmsô performance during variation in number of user requests

Figure 3.6b shows that our algorithmsô trends of response time increase from 1000 users to

5000 users because of increasing in processing of user requests per VM. When there is

smaller number of requests, the difference between different algorithmôs response times

becomes significant. For example, with 1000 requests, ProfPD gives users 16% lower

response time than ProfminVM and ProfRS, and even accept more requests. This is because

ProfPD scheduled less number of users per VM, thus userôs experience less delay. In other

scenarios the reason for lower response time is smaller initiation time. ProfminVM provides

the lowest response time compared to others, because it can serve a new user with new VMs.

Impact of QoS parameters

In the following sections, we examine various experiments by varying both user and resource

provider sideôs SLA properties to analyse the impact of each parameter.

1) Impact of variation in arrival rate

0

1000

2000

3000

4000

5000

6000

7000

8000

1000 2000 3000 4000 5000

T
o

ta
l
P

ro
fi

t
($

)

Variation in User Requests Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

0

100

200

300

400

500

600

700

800

900

1000 2000 3000 4000 5000

A
v
g

.
R

e
s
p

o
n

s
e

T

im
e
 (s

e
c

.)

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

0

20

40

60

80

100

120

1000 2000 3000 4000 5000

V
M

 I
n

it
ia

te
d

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1000 2000 3000 4000 5000

U
s
e
r

A
c
c
e

p
te

d

Variation in User Request Number

ProfminVm ProfRS ProfPD StaticGreedy MinResTime

69

To observe the impact of arrival rate in our algorithms, we vary the arrival rate factor, while

keeping all other factors such as deadline, budget as the same. All experiments are conducted

with 5000 user requests. It can be seen from Figure 3.7 that when arrival rate is ñvery highò,

the performance of ProfminVM, ProfRS, and ProfPD are affected significantly. The overall

trend of profit is decreasing and the response time is increasing because when there is more

user arrival per second, the service capability is decreased due to fewer new VM

instantiations.

Figure 3.7a shows that the ProfPD achieves the highest profit (maximum 15% more than

ProfminVM and ProfRS) by accepting (45%) more users and initiating the least number of

VMs (19% less than ProfminVM, 28% less than ProfRS) when arrival rate increases from

ñvery smallò to ñvery largeò. This is because ProfPD accept users with existing machines

with penalty delay. In the same scenario, ProfminVM and ProfRS achieve similar profit, but

ProfRS accepts 4% more requests with 13% more VMs than ProfminVM. Therefore, in this

scenario ProfPD is the best choice for a SaaS provider. However, when arrival rate is ñvery

largeò, and the number of VM is limited, ProfRS is a better choice compared to ProfminVM

because although it provides similar profit as ProfminVM, it accepts more requests, leading

to market share expanding.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.7 Impact of arrival rate variation

200

1200

2200

3200

4200

5200

6200

7200

8200

very low low medium high very high

T
o

ta
l
P

ro
fi

t
($

)

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

20

40

60

80

100

120

very low low medium high very high

V
M

 In
it

ia
te

d

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

0

1000

2000

3000

4000

5000

6000

very low low medium high very high

U
s

e
r

A
c

c
e

p
te

d

Variation in Arrival Rate

ProfminVm ProfRS ProfPD

70

Figure 3.7b shows that the ProfPD achieves in the smallest response time and accepted more

number of users with less number of VMs except when arrival rate is very high. Even in the

case of high arrival rate, the difference between response time from ProfPD and its next

competitor is just 3%. ProfminVM and ProfRS have similar response times. However, there

is a drastic increase in response time when the arrival rate is very high because more requests

are accepted per VM which delays the processing of requests. It is safe to conclude that even

considering the response time constraints from users, the first choice for a SaaS provider is

still the ProfPD.

2) Impact of variation in deadline

To investigate the impact of deadline in our algorithms, we vary the deadline, while keeping

all other factors such as arrival rate and budget fixed. Figure 3.8a shows that the ProfPD

achieved the highest profit (45% over ProfminVM and 41% over ProfRS) by accepting 33%

more user requests (Figure 3.8d) and initiating 52% less VMs (Fig. 8c)ò. In some scenarios,

ProfminVM provides higher profit than ProfRS, for example, when deadline is ñvery tightò,

because ProfRS accepted requests with larger service time, which occupy the space for

accepting other requests.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

Figure 3.8 Impact of deadline variation

200

1200

2200

3200

4200

5200

6200

7200

very tight tight medium relax very relax

T
o

ta
l
P

ro
fi

t
($

)

Variation in Deadline

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

1400

1600

very tight tight medium relax very relax

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Deadline

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

90

100

very tight tight medium relax very relax

V
M

 I
n

it
ia

te
d

Variation in Deadline

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very tight tight medium relax very relax

U
s

e
r

A
c

c
e

p
te

d

Variation in Deadline

ProfminVm ProfRS ProfPD

71

Figure 3.8b shows that when deadline is relaxed, ProfPD results in 4% higher average

response time than in the case of ProfminVM and ProfRS. The ProfPD has larger response

time because of the two factors governing response time, i.e., requestôs service time and VM

initiation time. It can be seen from Figure 3.8d that ProfPD always requires less VMs, to

process more requests. Thus, when service time is comparable to the VM initiation time, the

response time will be lower. When the VM initiation time is larger than the service time, the

response time is affected by the number of initiated VMs.

3) Impact of variation in budget

Figure 3.9 shows variation of budget impacts our algorithms, while keeping all other factors

such as arrival rate and deadline fixed. Figure 3.9a shows that when budget is varies from

ñvery smallò to ñvery largeò, in average the total profit by all the algorithms has increased,

and response time has decreased since less requests are processed using more VMs. From

Figure 3.9a, it can be observed that ProfPD gains the highest profit for SaaS provider except

when budget is ñlargeò. In case of scenario when budget is ñlargeò, ProfminVM provides the

highest profit (20%) over other algorithms by accepting similar number of requests while

initiating more VMs without penalty delay. This is due to an increase in the Penalty Delay

Rate (ɓ) (Equation15) with the budget raise. Between ProfminVM and ProfRS, ProfminVM

provides more profit in all scenarios. Therefore, in this scenario a SaaS provider should

consider ProfPD, ProfminVM compared with ProfRS.

In the case of response time (Figure 3.9b), ProfPD on average delayed the processing of

request for the longest time (e.g. 33% bigger response time for ñvery smallò budget scenario)

even though it processed more user requests and initiated less VMs. However, when budget

is ñlargeò, the response time provided by ProfminVm is the longest even though it accepts

similar number of users as ProfPD. This anomaly caused by the contribution of VM initiation

time which becomes very significant when ProfRS initiated large number of VMs.

72

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.9 Impact of budget variation

4) Impact of variation in service time

Figure 3.10 shows how service time impacts our algorithms, while keeping all other factors

such as arrival rate and deadline as the same. In order to vary the service time, five classes of

request length (MI) are chosen from ñvery smallò (10
6
MI) to ñvery largeò (5x10

6
MI).

Figure 3.10a shows that the total profit by all algorithms has slightly decreased but response

time increased rapidly when the request length varies from ñvery smallò to ñvery largeò.

ProfPD achieves the highest profit among other algorithms. For example, in the case of ñvery

largeò request length scenario, ProfPD generated about 30% more profit than other

algorithms by accepting 24% more requests (Figure 3.10d) and initiating 32% (Figure

3.10c) less VMs. In addition, ProfminVM and ProfRS achieve similar profit in most of the

cases. Therefore, the ProfPD is the best solution for any size of requests.

In addition, it can be observed from Fig. 10b that ProfPD provides only a slightly higher

response time (almost 6%) than others except when the request size is very small. When

0

500

1000

1500

2000

2500

3000

3500

4000

4500

very small small medium large very large

T
o

ta
l
P

ro
fi

t
($

)

Variation in Budget

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

1400

very small small medium large very large

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in Budget

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

90

very small small medium large very large

V
M

 I
n

it
ia

te
d

Variation in Budget

ProfminVm ProfRS ProfPD

0

1000

2000

3000

4000

5000

6000

very small small medium large very large

U
s
e

r
A

c
c

e
p

te
d

Variation in Budget

ProfminVm ProfRS ProfPD

73

request size is very small, the response time provided by ProfPD becomes 27% bigger than

others, because it accepts 63% more user requests with 22% more VMs, leading to more

requests waiting for processing on each VM.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.10 Impact of request length variation

5) Impact of variation in penalty rate

In this section, we investigate how penalty rate (ɓ) impacts our algorithms. The penalty rate

(Equation 3.15) depends on how long user is willing to wait (r), which is defined as penalty

rate factor in our chapter. Therefore, when the penalty rate factor (r) is large, the penalty rate

is small. All the results are presented in Figure 3.11.

In can be observed from Figure 3.11 that only ProfPD shows some effect of variation in

penalty rate since this is the only algorithm which uses Penalty Delay strategy to maximize

the total profit. The total profit (Figure 3.11a) and average response time (Figure 3.11b) are

only slightly decreased when the (r) is varied from ñvery lowò to ñvery highò. In almost all

scenarios, ProfPD achieves 29% more profit over others by accepting 22% more requests

and initiating 30% less VMs. In addition, when the penalty rate varies from ñvery lowò to

very highò, the response time slightly decreased. This is because ProfPD accepts a little bit

200

1200

2200

3200

4200

5200

6200

7200

8200

very small small medium large very large

T
o

ta
l
P

ro
fi

t
($

)

Variation in Request Length

ProfminVm ProfRS ProfPD

0

200

400

600

800

1000

1200

very small small medium large very large

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Request Length

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

very small small medium large very large

V
M

 In
it

ia
te

d

Variation in Request Length

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very small small medium large very large

U
s

e
r

A
c

c
e

p
te

d

Variation in Request Length

ProfminVm ProfRS ProfPD

74

less requests with similar number of VMs. Thus, the number of requests waiting in each VM

becomes smaller, leading to faster response time for each request.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.11 Impact of penalty rate factor variation

6) Impact of variation in Initiation Time

In this section, we analyse the variation of initiation time impacts our algorithms. Figure

3.12a illustrates that with increase in initiation time the total profit achieved by all the

algorithms decreases slightly while response time has increased a little bit. Due to increase in

initiation time, the number of initiated VMs (Figure 3.12c) has decreased rapidly due to the

contribution of initiation time in SaaS providers cost (spending). In all the scenarios, ProfPD

achieves highest profit over others by accepting 17% more requests (Figure 3.12d) and with

37% less initiated VMs. Therefore, ProfPD is the best choice for a SaaS provider in this

scenario.

The response time offered by ProfPD is slightly higher than others in most of cases, because

it accepted more users with less number of VMs, in other word, a VM required to serve more

number of users, leading to delay in request processing. The response time of ProfPD is the

lowest in this scenario; because of large initiation time of VM, the response time is also

200

1200

2200

3200

4200

5200

6200

7200

8200

very low low medium high very high

T
o

ta
l
P

ro
fi

t
($

)

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very low low medium high very high

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

very low low medium high very high

V
M

 I
n

it
ia

te
d

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very low low medium high very high

U
s

e
r

A
c

c
e

p
te

d

Variation in Penalty Rate Factor

ProfminVm ProfRS ProfPD

75

increased with each initiated VM. However, the contribution to delay in processing of

requests, due to more number of requests per VM also increases. This leads to higher

response time in the scenario when the initiation time is ñvery longò.

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.12 Impact of initiation time variation

Robustness Analysis

In order to evaluate the robustness of our algorithms, we run some experiments by reducing

the actual performance of VMs in the SLA(R) promised by IaaS providers. This performance

degradation has been observed by previous research study in Cloud computing environments

[98]. This experiment is conducted also to justify the inclusion of compensation (penalty)

clauses in SLAs which is absent in current IaaS providersô SLAs [93]. We modelled the

reduced performance using a normal distribution with average variation between mean varies

0% and 50%.

200

1200

2200

3200

4200

5200

6200

7200

8200

very short short medium long very long

T
o

ta
l
P

ro
fi

t
($

)

Variation in VM InitiationTime

ProfminVm ProfRS ProfPD

0

100

200

300

400

500

600

700

800

900

very short short medium long very long

A
v
g

.
R

e
s
p

o
n

s
e

T
im

e
 (S

e
c

.)

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

very short short medium long very long

V
M

 I
n

it
ia

te
d

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

very short short medium long very long

U
s

e
r

A
c

c
e

p
te

d

Variation in VM Initiation Time

ProfminVm ProfRS ProfPD

76

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.13 Impact of performance degradation variation

Figure 3.13 shows that during the degradation of VM performance, the average total profit

(Figure 3.13a) has reduced 11% and average response time (Figure 3.13b) has doubled with

the increase in performance degradation of initiated VMs. This is because of the performance

degradation of VMs has not been accounted in SLA(R). Therefore, a SaaS provider does not

consider this variation during their scheduling, but it impacts significantly on the total profit

and average user requests response time.

Two solutions to handle this VMs performance degradation are: first, utilization of the

penalty clause in SLA(R) to compensate for profit loss; second, considering the degradation

as a potential risk. Therefore, during the scheduling process a (300 seconds) slack time is

added in estimated service processing time and it can be seen from Figure 3.14, that the latter

solution reduces considerably (from 0% to 50%, profit decreased only by 2%). Thus, if there

is a risk for a SaaS provider to enforce SLA violation with an IaaS provider, an alternative

solution to reduce risk is by considering a slack time during scheduling.

200

250

300

350

400

450

500

0% 10% 20% 30% 40% 50%

T
o

ta
l
P

ro
fi

t
($

)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

0% 10% 20% 30% 40% 50%

A
v
g

.
R

e
s

p
o

n
s

e
T

im
e

 (S
e

c
.)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

80

0% 10% 20% 30% 40% 50%

V
M

 I
n

it
ia

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

3200

3400

3600

3800

4000

4200

4400

0% 10% 20% 30% 40% 50%

U
s
e

r
A

c
c

e
p

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

77

 (a). Total profit (b). Average response time

 (c). Number of initiated VMs (d). Number of accepted users

 Figure 3.14 Impact of performance degradation variation after considering slack time

3.5 Related Work

Research on market driven resource allocation and admission control has started as early as 1981

[72][69]. Most of the market-based resource allocation methods are either non-pricing-based [6] or

designed for fixed number of resources, such as FirstPrice [48] and FirstProfit [70]. In Cloud, IaaS

providers focusing on maximize profit and many works [89][6][42] proposed market based

scheduling approaches. For instance, Amazon [92] introduced spot instance way for customers to

buy those unused resources at bargain prices. This is a way of optimizing resource allocation if

customers are happy to be terminated at any time. However, our goal is not only to maximize

profit but also satisfy the SLA agreed with the customer.

At platform category, Projects such as InterCloud [77], Sky Computing [79], and Reservoir [78]

investigated the technological advancement that is required to aid the deployment of cloud

services across multiple infrastructure providers. However, research at the SaaS provider level is

still in its infancy, because many works do not consider maximizing profit and guaranteeing SLA

200

250

300

350

400

450

500

550

0% 10% 20% 30% 40% 50%

T
o

ta
l
P

ro
fi

t
($

)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

0% 10% 20% 30% 40% 50%

A
v
g

.
R

e
s

p
o

n
s
e

T
im

e
 (S

e
c

.)

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

10

20

30

40

50

60

70

0% 10% 20% 30% 40% 50%

V
M

 I
n

it
ia

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0% 10% 20% 30% 40% 50%

U
s
e

r
A

c
c

e
p

te
d

Variation in Performance Degradation

ProfminVm ProfRS ProfPD

78

with the leasing scenario from multiple IaaS providers, where resources can be dynamically

expanded and contracted on demand.

As we focus on developing admission control and scheduling algorithms and strategies for SaaS

providers in Cloud, we divide related work into two sub-sections: admission control and

scheduling.

3.5.1 Admission Control

Yeo and Buyya presented algorithms to handle penalties in order to enhance the utility of the

cluster based on SLA [65]. Although they have outlined a basic SLA with four parameters in

cluster environment, multiple resources and multiple QoS parameters from both user and provider

sides are not explored.

Bichler and Setzer proposed an admission control strategy for media on demand services, where

the duration of service is fixed [74]. Our approach allows a SaaS provider to specify its expected

profit ratio according to the cost, for example; the SaaS provider can specify that the service

request which can increase the profit in 3 times will be accepted.

Islam et al. investigated policies for admission control that consider jobs with deadline constraints

and response time guarantees [90][91]. The main difference is that they consider parallel jobs

submitted to a single site, whereas we utilize multiple VM from multiple IaaS providers to serve

multiple requests.

Jaideep and Varma proposed learning-based admission control in Cloud computing environments

[67]. Their work focuses on the accuracy of admission control but does not consider software

service providersô profit.

Reig G. et al contributed on minimizing the resource consumption by requests and executing them

before their deadline with a prediction system [86]. Both the works use deadline constraint to

reject some requests for more efficient scheduling. However, we also consider the profit constraint

to avoid wastage of resources on low profit requests.

79

3.5.2 Scheduling

Chun et al. built a prototype cluster of time-sharing CPU usage to serve user requests [75]. A

market-based approach to solve traffic spikes for hosting Internet applications on Cluster was

studied by Coleman et al. [76][75]. Lee et al. investigated a profit-driven service request

scheduling for workflows [42]. These related works focus on scenarios with fixed resources, while

we focus on scenarios with variable resources.

Liu et al. analysed the problem of maximizing profit in e-commerce environment using web

service technologies, where the basic distributed system is Cluster [83]. Kumar et al. investigated

two heuristics, HRED and HRED-T, to minimize business value but they studied only the

minimization of cost [99]. Garg et al. also proposed time and cost based resource allocation in

Grids on multiple resources for parallel applications [89]. However, our current study uses

different QoS parameters, (e.g. penalty rate). In addition, our current study focuses on Clouds,

where the unit of resource is mostly VM, which may consist of multiple processors.

Menasce et al. proposed a priority schema for requests scheduling based on user status. The

algorithm assigns higher priority to requests with shopping status during scheduling to improve

the revenue [84]. Nevertheless, their work is not SLA-based and response time is the only concern.

Xiong et al. focused on SLA-based resource allocation in Cluster computing systems, where QoS

metrics considered are response time, Cluster utilization, packet loss rate and Cluster availability

[87]. We consider different QoS parameters (i.e., budget, deadline, and penalty rate), admission

control and resource allocation, and multiple IaaS providers. Netto et al. considered deadline as

their only QoS parameter for bag-of-task applications in utility computing systems considering

multiple providers [88]. Popovici et al. mainly focused on QoS parameters on resource providerôs

side such as price and offered load [70]. However, our work differs on QoS parameters from both

usersô and SaaS providersô point of view, such as budget, deadline, and penalty rate.

In summary, this chapter is unique in the following aspects:

¶ The utility function is time-varying by considering dynamic VM deploying time (aka

initiation time), processing time and data transfer time.

80

¶ Our strategies adapt to dynamic resource pools and consistently evaluate the profit of adding a

new instance or removing instances, while most previous work deal with fixed size resource

pools.

3.6 Summary

We presented admission control and scheduling algorithms for efficient resource management to

maximize profit and market share by accepting more profitable user requests with minimum

number of resources for SaaS providers. Through simulation, we showed that the algorithms

work well in a number of scenarios. Simulation results show that in average the ProfPD

algorithm gives the maximum profit (in average save about 40% VM cost) among all proposed

algorithms in all scenarios varying all types of QoS parameters. If a user request needs fast

response time, ProfRS and ProfminVM could be chosen depending on the scenario. The summary

of algorithms and their ability to deal with different scenarios is shown in Table 3.2.

In this work, we assumed that the estimated service time is accurate since existing performance

estimation techniques (e.g. analytical modelling Error! Reference source not found., empirical,

and historical data [83]) can be used to predict service times on various types of VMs. However,

still some error can exist in this estimated service time [98] due to variable VMsô performance in

Cloud. The impact of error could be minimized by two strategies: first, considering the penalty

compensation clause in SLAs with IaaS provider and enforce SLA violation; second, adding

some slack time during scheduling for preventing risk.

The next chapter generalizes the problem and presents customer requirements-driven algorithms

to achieve SaaS providersô objectives by dedicating personalized attention to customers. These

algorithms take into account customer profiles (such as their credit level) and multiple Key

Performance Indicator (KPI) criteria.

81

Table 3.2 Summary of heuristics of comparison results (Profit)

Algorithm Time

Complexity

Overall Performance

Arrival

Rate

Deadline Budget Request

Length

Penalty

Rate

Factor

VM

Initiation

Time

Data

Transfer

ProfminVM O(KIJ+KI) Good (low

-high)

Good

(low-high)

Good Good

(very low

& very

high)

No

effect

Okay Good

(very low

& very

high)

ProfRS

O(KIJ+IK
2
)

Okay

(very

high)

Okay

(very

high)

Okay

(very low)

Okay No

effect

Good

(low-

high)

Okay

ProfPD O(KIJ+IK
2
) Best Best Best Best Best Best Best

82

83

4 SLA-based Resource Provisioning for SaaS

Applications

This chapter proposes customersô requirements-driven resource provisioning algorithms to

achieve SaaS providers' objectives. The proposed provisioning algorithms consider customer

profiles and providersô quality parameters (e.g. response time) to handle dynamic changes in

customer requirements and infrastructure level heterogeneity for SaaS providers that lease

enterprise software. We also take into account customer-side parameters (such as the proportion

of upgrade requests), and infrastructure-level parameters (such as the service initiation time) to

compare algorithms. Simulation results show that our algorithms reduce the total cost up to 54%

and the number of SLA violations up to 45%, compared with the previously proposed best

algorithm.

4.1 Introduction

Research related to SLA-based cost minimization and Customer Satisfaction Level (CSL)

maximization for SaaS providers are still in their preliminary stages, and current research on

Cloud computing [42][6][89] focus mostly on market oriented models for IaaS providers. Many

authors do not consider customer driven resource management, where resources have to be

dynamically reallocated according to the customerôs on-demand requirements.

CSL can be reduced by SLA violations while it also can be improved by delivering services better

than expected. For example, if actual service response time is higher than the one specified in SLA,

it causes SLA violations and customer will be unsatisfied. On the other hand, if the response time

is smaller than the one specified in the SLA, the customer satisfaction level will be improved.

This chapter proposes customer driven algorithms to minimize the total cost and maximize CSL

by resource provisioning. These algorithms also take into account customer profiles (such as their

84

credit level) and multiple Key Performance Indicator (KPI) criteria. A holistic way to quantify the

customer experience is by considering KPIs from seven categories: Financial, Agility, Assurance,

Accountability, Security and Privacy, Usability and Performance [115]. To improve a SaaS

applicationôs performance quality rating, we consider three KPIs, including one from providerôs

perspective: cost (part of the Financial category) and two from customersô perspective: service

response time (part of the Performance category) and SLA violations (related to Assurance):

¶ Cost: the total cost of resource usage including VM and penalty cost.

¶ Service response time: how long it takes for users to receive a response.

¶ SLA violations: the possibility of SLA violations creates a risk for SaaS providers. In

this chapter, SLA violations are caused by elapse in the expected response time, and

whenever a SLA violation occurs, a penalty is charged.

To satisfy customer requests in order to minimize the total cost and SLA violations for SaaS

providers, the following key questions are addressed:

¶ How to manage dynamic customer demands? (such as upgrading from a standard

product edition to an advanced product edition or adding more accounts)

¶ How to reserve resources by considering the customer profiles and multiple KPI

criteria?

¶ How to map customer requirements to infrastructure level parameters?

¶ How to deal with infrastructure level heterogeneity (such as different VM types and

service initiation time)?

The key contributions of this chapter are:

¶ Design of a resource provisioning model for SaaS Clouds considering customer profiles

and multiple KPI criteria. These considerations are important for resource reservation

strategies to improve the CSL.

¶ Development of innovative scheduling algorithms to minimize the total cost and

number of SLA violations.

¶ Extensive evaluation of the proposed algorithms with new QoS parameters such as

credit levels.

85

4.2 System Model

The SaaS model for serving customers in the Cloud is shown in Figure 4.1. The SaaS provider

uses a three layered Cloud model, namely the application layer, the platform layer and the

infrastructure layer, to satisfy the user requests. The application layer manages all the secured

application services, such as the Customer Relationship Management (CRM) or Enterprise

Relationship Package (ERP) applications, that are offered to customers by the SaaS provider. The

platform layer is responsible for application development and deployment (such as Aneka [106],

Google App Engine [135], Spring framework). In our model, the function of this layer also

includes mapping and scheduling policies for translating the customer side QoS requirements to

infrastructure level parameters. The mapping policy considers customer profiles and KPI criteria

to measure the SaaS providerôs QoS.

The infrastructure layer includes the virtualization VM management services (such as VMWare

[137], Hyper-V [136]) and controls the actual initiation and termination of VMs resources, which

can be leased from IaaS providers, such as Amazon EC2, S3 [106] or own private virtualized

clusters. In both cases, the minimization of the number of VMs will deliver savings for the

providers.

86

Figure 4.1 A system model of SaaS layer structure

4.2.1 Actors

The actors involved in our system model are described below along with their objectives, activities

and constraints.

SaaS Providers

SaaS providers lease web-based enterprise software as services to customers. The main

objective of SaaS providers is to minimize cost and SLA violations. We achieve this objective

by proposing customer-driven SLA-based resource provisioning algorithms for Web-based

enterprise applications. In our context, a SaaS service provider X offers CRM or ERP software

packages with three product editions (for example, Standard, Professional and Enterprise) and

each product edition with a fixed price. The current SaaS providers, such as óCompiere ERPô,

use a similar service model [107]. In this service model, when a customer Company Y submits

its ófirst time rentô request with a product edition (Standard), and additional number of

accounts, the SaaS provider needs to allocate resources and then provides the login

information to the customer. Company Y may require an upgrade in their service by adding

SaaSProvider

Application Layer (e.g. CRM, ERP)

Platform Layer (e.gAneka, Google App Engine, Spring)

Infrastructure Layer (e.g. Hyper-V, EC2, S3)

Application Service Application Service

Application

Development

Environment and Tools

Application Deployment

and Execution

Management Services

Virtualization and VM

Management Services

Data

Centre

Resources

Request Service Provide Access Info.

Customers

