
Resource Provisioning in Clouds via

Non-Functional Requirements

By

Diana Carolina Barreto Arias

Under the supervision of

Professor Rajkumar Buyya

and

Dr. Rodrigo N. Calheiros

A minor project thesis submitted in partial

fulfilment of the requirement for the degree of

Master of Information Technology

Department of Computing and Information Systems

The University of Melbourne

November, 2013

Resource Provisioning in Clouds via Non-Functional

Requirements
Diana Carolina Barreto Arias

Supervisors: Prof. Rajkumar Buyya and Dr. Rodrigo N. Calheiros

ABSTRACT

Cloud computing, in particular its Infrastructure as a Services model, allows sys-

tem administrators to obtain resources to deploy their applications and to pay just for

the resources that are consumed. Therefore, local data centers are replaced by remote

infrastructures. As a consequence, the specific hardware expertise required from system

administrators is reduced. However, cloud computing requires new skills. Estimating re-

sources that the applications require to run in the cloud is a complex task due to system

administrators frequently do not know the low-level technical details of what they really

need. Furthermore, the estimations can vary depending on the cloud provider characteris-

tics. Selecting the more adequate provider for a particular application is also a laborious

task because there are a huge number of services offered by a considerable number of

providers that are not directly comparable. In order to assist system administrators in

this hard labour, we propose an architecture that supports the process of deploying appli-

cations in cloud providers, using high level information based on non-functional require-

ments. Experiments with a small scale prototype compared our selection process based

on non-functional requirements with one based in price. The results demonstrate that our

architecture, considerably improves the process.

i

Declaration

I certify that

– this thesis does not incorporate without acknowledgement any material previously

submitted for a degree or diploma in any university; and that to the best of my

knowledge and belief it does not contain any material previously published or written

by another person where due reference is not made in the text.

– where necessary I have received clearance for this research from the University’s Ethics

Committee and have submitted all required data to the Department.

– the thesis is less than 9000 words in length (excluding text in images, table, bibli-

ographies and appendices).

Diana Carolina Barreto Arias

Nomvember, 2013

ii

Acknowledgement

My thankfulness is first for the Heavenly Father because it was his willing to give me

the opportunity, the knowledge and the understanding to join this master and to develop

the project presented in this thesis. I also want to express my gratefulness to Professor

Rajkumar Buyya, who give the opportunity to work in this project, and with his wide

knowledge introduce me to the field of cloud computing, giving me inspiration and moti-

vation. My special thanks are for Dr. Rodrigo N. Calheiros who was my constant support

and guide. He generously shared his expertise to provide me the right direction to address

the issues that I face in the development of this project. Thanks to his support, I finished

successfully the work that I am presenting today.

I would like also thank my husband, that with patient and love encourage me to

pursuit my goals and my family that from the distance were supporting me to make possible

this dream.

iii

Contents

1 Introduction 1

1.1 Cloud Computing Overview . 2

1.2 Automated Decision System for Efficient Resource Selection and Allocation

in Inter-Clouds. 3

1.3 Public Cloud Providers . 4

1.4 Problem Statement . 5

2 Related Work 7

2.1 Cloud Monitoring Services . 7

2.2 Techniques for Application Resources Estimation 7

2.3 Tools to Estimate and Compare Resources in Cloud Providers 9

3 System Design 13

3.1 Non Functional Requirements . 13

3.2 Cloud Resource Estimator . 16

3.2.1 Database Tier . 16

3.2.2 Business Tier . 18

3.2.3 Presentation Tier . 20

3.3 Resource Selection Decision Maker . 21

4 Implementation 23

4.1 Technical Details . 23

4.2 Cloud Resource Estimator . 23

4.3 Candidate Providers Prioritization . 25

5 Evaluation 28

5.1 Cloud Resource Estimator . 28

5.2 Resource Selection Decision Maker . 29

6 Conclusion and Future Directions 33

iv

List of Figures

1 System Context. 2

2 Issues faced by system administrators, addressed via non-functional require-

ments. 6

3 Software system provisioning via non-functional requirements. 14

4 Workflow to evaluate non-functional requirements. 16

5 Entity relation model of non-functional requirements. 17

6 Example of the data stored. 17

7 Entity relation model of application profile. 18

8 Class diagram business tier. 19

9 Steps executed by the evaluator NFEvaluatorEfficiency. 21

10 Example of constraints to filter the candidate cloud providers. 21

11 Extension of the database schema of the Resource Selection Decision Maker. 22

12 Picklist for adding, removing and ordering non-functional requirements. . . 24

13 Relation App nf requirement. 24

14 Resource Estimation Request. 25

15 Resource Estimation Result. 26

16 Relations Provider and NFR Evaluation. 26

17 Candidate providers order by non-functional requirements. 27

18 Set of candidate providers to be priorized. 29

19 Set of candidate provider order by non-functional requirements. 30

v

List of Tables

1 Differences in the computing services offered by Windows Azure, Amazon

EC2 and GoGrid. 5

2 Monitoring services. 8

3 Resource estimation techniques. 9

4 Tools to estimate and compare resources in cloud providers. 12

5 Initial non-functional requirements to consider in the system. 14

6 Synthetic evaluation of non-functional requirements. 30

7 Non-functional requirements prioritized by order. 30

8 Set of candidate providers to prioritized. 31

9 Set of candidate providers order by price. 31

10 Set of candidate providers order by % uptime. 32

11 Set of candidate providers order by response time. 32

vi

1 Introduction

Cloud computing is a revolutionary technology that changed the way as computing and

storage resources are acquired. If a company needs resources to deploy their applications,

it is no longer necessary to make a great investment in infrastructure and resources man-

agement, because there are significant number of cloud providers that can offer a solution

for specific requirements [3].

The fact that computing resources are not maintained in local infrastructures but

in cloud provider data centers suggests a considerable reduction in the number of tasks

that need specific hardware expertise [9]. However, system administrators, working in

cloud computing require new skills to be able to perform different tasks that include the

estimation of application resources, the selection of cloud providers, and the acquisition of

computing and storage resources in the selected clouds.

The tasks mention before are complex due to the large number of variables that

have to be considered to achieve the right balance between the cost and the performance,

expected from the users when they acquire resources in cloud providers. Furthermore,

frequently system administrators do not know the low-level technical details of the resources

that they need. For example, administrators who use a local data center in many cases

have extra resources to avoid lack of infrastructure and to allow their applications to work

correctly. Moreover, the resources required to deploy applications in a local data center

can differ from the ones required to deploy the applications in the cloud.

In this thesis, we propose the design of an automated solution that supports system

administrators in the execution of these tasks, reducing requirements of specific knowledge

and helping companies to take the decision of moving their applications to public cloud

providers.

We introduce this thesis providing a description of the system context, that as is

shown in Figure 1, includes a cloud computing overview, the description and the limitations

of an existent solution to select and allocate resources in cloud providers and a general

description of the services offered by public cloud providers. After presenting the system

context, we state the problem to be solved with the architecture proposed.

1

Figure 1: System Context.

1.1 Cloud Computing Overview

Cloud computing has a set of attractive features that promise to change the way that IT

services are accessed [3]. Among many features, the most outstanding are the possibility of

using computing services as utility, which means accessing services by demand and paying

as you go; the promise of rapid elasticity that enables users to increase the infrastructure

when it is necessary, having the idea of unlimited resources, and the possibility of saving

money in infrastructure and resources management. Additionally, cloud computing also

offers broad network access, so required resources can be obtained through networks such

as Internet, and the possibility of measure the quality of the services provided [3, 21].

The services that can be offered through the cloud are diverse; therefore they have

been classified in the following services models [21]: Software as a Service (SaaS), that

corresponds to services that offer diverse kind of applications to be accessed through the

cloud, Platform as a Service (PaaS), that means to provide platforms with complete tools

to develop applications, and Infrastructure as a Service (IaaS), that is related to provide

computing resources such as storage, processing, and network.

The main objective of this thesis is to raise a solution to support system adminis-

trators when they acquire resources from cloud providers that follow the IaaS model. By

using this model, they have control at operating system level to deploy and configure ap-

plications according to their needs. This is possible thanks to virtualization, which allows

the execution of individual virtual machines over shared hardware. This technology, along

2

with its benefits also comes with impact in the performance that should be considered [39].

This idea of virtualized environments to deploy applications has been highly used in

what is called public clouds, which can be accessed for anyone who pays for the resources.

Others models are private clouds, that correspond to the ones that are used in private or-

ganization, community clouds where infrastructures are shared for a group of organizations

and hybrid clouds that are associated with the combination of resources from public and

private clouds [21].

1.2 Automated Decision System for Efficient Resource Selection

and Allocation in Inter-Clouds.

Some earlier approaches have presented solutions to support system administrators in the

deploying applications in the cloud. The Automated Decision System [31] is one of such

approaches. It supports system administrators in the tasks of selecting and allocating

resources from IaaS public cloud providers. It is composed of two main sub-systems. The

first one, the Resource Selection Decision Maker, is supported by a database that unifies the

services features offering for different cloud providers, allowing comparisons among them.

The goal of this system is to receive requirements from system administrators to find cloud

providers configurations that can fulfil these requirements. Then it delivers the possible

options ordered from the one that offers the cheapest price to the one that offers the most

expensive price.

The second sub-system is the Automated Resource Allocator that is able to take

the list of possible cloud provider configurations and tries to allocate the resources in the

provider that offers the best price. If the best option is not available it tries the next ones,

according to the provided order. One of the main features of this system is that it follows

the inter-cloud model, being able to allocate resources in different cloud providers to fulfil

completely the requests.

The Automated decision system is a solution that tackles the issues that adminis-

trators have to face to select and deploy resources in cloud providers. However, it assumes

that system administrators know the resources that their applications need, so the esti-

mation of resources is not considered. Moreover, the selection of cloud provider is based

specifically in the best price and other important aspects related with the performance are

not evaluated. Therefore further research is needed to cover these important matters.

3

1.3 Public Cloud Providers

In the market, it is possible to find a great number of options to choose services in public

cloud providers. As example, More than 65 public clouds are registered by the monitoring

service CloudHarmony [6]. Additionally, each public cloud provider offers diverse kind of

services that cannot be directly compared with the services offered for other providers.

Many public cloud providers offer default configurations of virtual machines that

assign provided-specific amounts of resources, such as cores of CPU, size of memory, and

size of disk, to the machines that user can choose. However, the configurations differ for

one provider to other. For Instance, an GoGrid [13] offers just one type of machine x-

Large, that is configured with 8 cores of CPU and 8GB of memory, while Amazon [1] offer

configurations m1.xlarge, m2.xlarge, m3.xlarge, and c1.xlarge, all of them with different

amount of resources. Moreover, other clouds, such as CloudSigma [7], do not have default

configuration but allow a flexible configuration of resources.

The name of the resources and the data center locations are other aspects that

differs. A virtual machine in Amazon is called instance, in GoGrid is called cloud server

and in CloudSigma server. GoGrid has their data center locations in United States while

Amazon is located in five continents.

Other example of the difference among cloud providers are the billing models. For

instance, spot price is a specific model that is offered just by Amazon [2] and that allows

users saving money by sacrificing reliability. Using this model, users can bid for resources

that will be delivered just if the bid exceeds the price of the service and similarly when the

bid is less than the price, the computing service can be removed without any advice.

Table 1 shows three of the more popular cloud providers, Windows Azure [22],

Amazon EC2 [1] and GoGrid [13], and illustrates some differences. For example, looking

at the table, if a company needs few instances to be reserved monthly, the best option is

hiring machines in GoGrid, however if the customers of the service are located in South

Asia, because the performance, a better options are Windows Azure or Amazon EC2.

Moreover, if the company needs resources around the world, the best option is not

to hire the machines in one cloud provider but to use several of them, following the model

that has been called inter-cloud [4].

As a result, system administrators have the advantage of having many options to

find what is more suitable for their needs. However, to find an answer considering these

huge number of options is still a great challenge.

4

Table 1: Differences in the computing services offered by Windows Azure, Amazon EC2

and GoGrid.

1.4 Problem Statement

There are three issues that system administrators have to address when they decide to

deploy their applications in IaaS public cloud providers:

• Estimating the resources that are required, considering that this estimation can vary

from an external environment, such as a local data center, to a cloud environment

and from one public cloud provider to other.

• Selecting the cloud provider that is more adequate for a given application.

• Allocating the resources estimated in the selected cloud providers.

This thesis proposes an architecture that supports system administrators in address-

ing the two initial issues (Figure 2), via the use of non-functional requirements. The third

issue is addressed by the work presented by son [31], which is used as started point for the

architecture presented in this thesis.

The first objective of this thesis is to use non-functional requirements to solve the

initial problem of resource estimation. Non-functional requirements are used to classify

5

Figure 2: Issues faced by system administrators, addressed via non-functional requirements.

and to ask administrators the constraints and the performance expected from the applica-

tions. Then, considering these requirements, it is possible to perform an estimation of the

resources needed, without asking system administrator for technical details.

Having the resource estimation, the second issue to address, using non-functional

requirements, is the selection of the most suitable cloud provider. The work presented

by Son [31] is an initial approach to help system administrators in the arduous task of

selecting resources, however the prioritization of the possible configuration that fulfil the

requirement is based only in the price and price is not the only aspect that should be

considered. Depending of the project this is not the most important factor. As an example,

in an application to sell flowers for the mother’s day, availability is more important than

cost because if the applications does not work the clients would buy their products in other

place.

Therefore, the second objective of this thesis is to use prioritized non-functional

requirements to select cloud providers. In this way, the providers can be selected, not

just according with the price but according to the importance that each non-functional

requirement represents for the application.

6

2 Related Work

2.1 Cloud Monitoring Services

The importance of knowing the performance of different public cloud providers has encour-

aged the development of monitoring services that report metrics to support a better picture

of real behaviour of the different services. Three recognized monitoring tools are described

in the following paragraphs and the main features are summarized in Table 2.

CloudHarmony [6]: This service reports updated benchmarks that endorse com-

parisons related with performance, network and uptime for a wide set of public cloud

providers. Thus, uptime measures are available for the last 90 days and are provided for

more than 120 providers, while other metrics such as web performance, disk IO perfor-

mance, or multi-thread CPU performance are available for around 50 to 60 providers. To

collect this metrics, monitoring services are located inside and outside of the cloud provider

and additionally some benchmark applications are executed. The information can be ac-

cessed directly in the web page, in tabular or graphical format, or using SOA or RESTFUL

web services.

CloudSleuth [8]: In this service, it is possible to find a tool called Cloud Provider

View. This tool monitors the perceived response time and the percentage of availability of

cloud providers in different cities located around the world. This information is collected by

monitoring a set of hosted applications, and the measures can be found for around 90 cloud

providers in time frames of 6 hours, 24 hours, 7 days or 30 days. In addition, CloudSleuth

offers tools that help users to measure the performance of their applications when they are

deployed inside or outside of the cloud.

CloudStatus [14]: This tool is included in the monitoring application called Hy-

peric and it collects, in real-time, observations of cloud provider metrics such as availability,

response time, latency and throughput. Different types of applications inside and outside

of the cloud are used to collect these metrics. Currently this tool has been developed for

two providers: Amazon and Google.

2.2 Techniques for Application Resources Estimation

This subsection present a set of techniques based in mathematical models to estimate

resources. Table 3 shows a summary of this techniques together with the model, they use.

Stewart and Shen [32] propose a model to estimate the performance of on-line ap-

7

Table 2: Monitoring services.

plications, which usually are composed of several layers deployed in different nodes. The

general idea is to obtain a profile of each individual component, communication channels,

and overhead of remote invocation and then use this profile to feed a linear model which,

given the workload, estimates throughput and response time to predict the best placement

strategy for components.

Shimizu et al. [30] present an approach to predict the amount of resources that an

application requires to be executed. The aim of their work is to present a solution that

works independently of the platform where applications are deployed. To this purpose, they

propose to make a profile of the application with a specific workload in different platforms,

taking measures of computing, communication, and storage parameters. Those parameters

are plugged in a linear mathematical model that allows estimations of consumption of

resources, and response and execution time for static workload in different conditions of

hardware.

The issue of estimating resources is also developed by Wood et al. [36]. They address

this issue considering the applications that are deployed in virtualized environments. The

authors propose to perform the estimation in two steps. The first one is to execute a profile

of several benchmarks in virtualized and no-virtualized environments in a given platform.

In the second step, these results are used in a regression model to calculate the resource

usage of any application deployed over this platform.

Another interesting work focuses in estimating application performance in virtu-

alized environments. The authors, Kundu et al. [16], propose to build a model that is

iteratively trained to achieve a level of accuracy. The model is fed with the percentage of

CPU allocation, the memory allocation, disk and network IO, and with performance met-

rics, such as throughput or response time obtained with the resources configuration given.

8

They suggest using this metrics in a Neural Network model that, according to the evalua-

tion could work better than linear model to estimate resources in virtualized environments.

Table 3: Resource estimation techniques.

2.3 Tools to Estimate and Compare Resources in Cloud Providers

In the literature, it is possible to find some approaches related with the tasks of estimating

resources and selecting the best cloud provider for a given application; however, according

with the knowledge acquired, none of them suggest a complete system able to translate

non-functional requirements in a final allocation of resources in cloud providers. In this

section, known approaches, which deal with similar goals to the one pursuit by this thesis,

are described. Table 4 presents a summary of these approaches.

The initial work to present is DEVA [33], which is a module created to be added in a

cloud data center toolkit manager such as Open Nebula [26], Eucalyptus [10] or any internal

resource manager. This module has the ability to translate user resource requirements in

cloud physical resources that satisfy, mainly, network QoS requirements given by the user.

To achieve this goals, the authors propose to add a resource manager in the cluster manager

and an agent in each physical host that composes the data center. This two components

work together to monitor and to setup network connections in order to keep the levels of

QoS.

In the initial work of DEVA, specific requirements such as CPU power, quantity of

RAM, and bandwidth are expected to be given by the user; however, in a second work

[34], the proposal is to add a module able to receive non-functional requirements that

later are translated in the specific requirements. These non-functional requirements are

also used for application monitoring and to perform changes in the cloud deployment to

9

keep the fulfilment of these non-functional requirements. It is important to notice that

this application focuses in improving the service delivered from cloud providers, so it is

a provider decision to implement this kind of solution. Therefore, it is not an option for

end-users that want to choose a public cloud provider.

Another tool designed to estimate applications resources and performance in the

cloud is CloudProphet [20, 19]. It performs the estimation in two phases. The first phase

is called tracing and it is used to collect data related with the application workload in an

environment outside of the cloud provider. This workload is collected considering multi-

threaded applications, so time spent in synchronization is excluded to consider just the real

execution time of the threads. In a second phase, called replaying, an agent is set up with

the application workload to simulate the execution of the application in the cloud provider

and to estimate the cloud performance. The main advantage that the authors present is

that the application does not have to run in all providers to know their performance, which

could be more secure option.

In an initial work, Li et al. [17] presented CloudCmp, which allows the comparison

of different cloud providers by using a tool to perform systematic benchmarking. This tool

evaluates mainly the services of elastic computing, persistent storage, intra cloud and wide

area networking and to do this, for each kind of service, different metrics are chosen and

measured by performing the same tasks in different cloud providers.

In a second work by Li et al. [18], the benchmarking tool of CloudCmp is included

in a more ambitious application that allows comparisons of cost and performance of a web

application when this is deployed in different cloud providers. To achieve this task, the

proposal is first to perform the benchmarking and then to profile the application workload

by measuring the different trace requests in order to find the most expensive path. Finally,

the result of the workload is combined with the benchmarking values to estimate which

cloud provider could offer the best result.

An additional approach is described by Rak et al. [29]. The authors propose an

evaluation by using simulation that consists in first executing a benchmarking according

with the application features in the cloud provider where an application will be deployed.

Then with the results of this benchmarking, the parameters of a simulation model that

allows estimating of resources, cost and response time that the application could consume

for given workload are set up. Finally, an additional step evaluates different configura-

tions considering the prices given for the cloud provider helping users to visualise which

10

performance features could be sacrifice to get a better price. The model was developed

considering specific characteristic of applications developed in mOSAIC [23], which is an

environment for the development of cloud applications. It is important to notice that, in

futures works, the authors propose to use non-functional requirements to create a system

that suggests the best option among a set of cloud providers.

An approach that differs from the ones presented before, because does not use any

computational profile of the application, is SMICloud [11]. This is a software framework

to rank cloud providers for a given application considering the Service Measure Indexes :

accountability, agility, assurance of services, cost, performance, security and privacy and

usability. The proposal is assigning different Key Performance Indicators (KPI) to evaluate

these indexes in different cloud providers. Them these measures can be used to compare,

rank, and suggest a cloud provider. The framework is compose of a SMICloud broker

where the user can specify the QoS attributes that his application needs, together with a

weight that means the importance of each attribute. Additionally, the framework has a

SLA manager that keeps the historical compliance of the SLA promised by the providers; a

monitoring service that is in charge of keeping information about cloud providers’ function-

ality and a Service Catalogue that keeps the features offered by cloud providers. Having

this information, the module SMI calculator gives a value to each one of the KPI and a

final module called the Ranking system use this information to resolve the Multiple Criteria

Decision Making (MCMD) using an Analytic Hierarchy Process (AHP).

The final approach presented by Zhang et al. [38], supports system administrators

in the difficult task of reading cloud providers specifications to find the parameters to

compare and finally determined the best option at the best price. The authors propose

a tool that, after being populated with information from different cloud providers, is able

to unify concepts and measure units. Having this information unified enables the creation

of an interface that, given the application resource requirements, calculates the different

cloud provider that can fulfil the requirements and estimate cost. The authors suggest

modifying the decision making algorithm to include user requirements. To achieve this

goal they propose to use a combination of genetic algorithms with Analytic Hierarchy

Process (AHP) [37].

11

Table 4: Tools to estimate and compare resources in cloud providers.

12

3 System Design

In this section we present an overall view of the proposed architecture for provisioning re-

sources in the cloud via non-functional requirements. The architecture is composed of three

main modules: the Cloud Resources Estimator, the Resource Selection Decision Maker, and

the Automated Resource Allocator.

The Cloud Resources Estimator is a module able to estimate resources that an

application could consume when it is deployed in a cloud provider. It receives non-functional

requirements, such as efficiency, availability and reliability of a specific application and

translates them in an estimation of resources, such as number of CPU cores, Megabytes of

memory, and Gigabytes of Disk.

The second module, called Resource Selection Decision Maker, is responsible for

suggesting the cloud providers that are more adequate to deploy an application. For this

purpose, it receives the resource estimation, the constraints given by non-functional re-

quirements, and the prioritization of these non-functional requirements.

Finally, the Automated Resource Allocator is a module able to allocate resources

directly in cloud providers. For this task, it uses the output given by the Resource Selection

Decision Maker, trying to allocate first the most convenient providers. Figure 3 shows the

general view of the system.

As presented in the section 1.3, the two last modules have been already proposed by

Son [31]. However, the Resource Selection Decision Maker architecture has been enhanced,

including non-functional requirements in the decision process. The present work is focused

in the design and implementation of the first module the Cloud Resources Estimator and

in the improvements of the second module, the Resource Selection Decision Maker.

3.1 Non Functional Requirements

We propose a Cloud Resources Estimator and a Resource Selection Decision Maker that

work based on non-functional requirements. To select the initial set, a list containing

common non-functional requirements [5] was used, and those that were related with the

deployment of applications and those that allow cloud providers comparisons were chosen.

Therefore, requirements such as usability or testability were not considered because they

are more related with the development of applications itself.

The details of the non-functional requirements selected and the initial features that

13

Figure 3: Software system provisioning via non-functional requirements.

should be provided by system administrators, in order of describing the level needed by

the requirement, are described below. A summary of these requirements and the possible

features is presented in Table 5.

Table 5: Initial non-functional requirements to consider in the system.

Portability: This requirement is related with the easiness of an application to be

14

executed in different platforms. Therefore, related features are: operating system of the

images installed in the virtual machines, operating system required in hardware and if it is

preferred to run on platforms of 32 or 64 bits.

Reliability: In the context of this work, we target reliability related with the hard-

ware offering by cloud providers. Therefore, some possible features that can be asked to

administrators are the Mean Time To Failure (MTTF) and the Mean Time To Repair

(MMTR). Moreover, reliability can be also related with resources required to run an appli-

cation backup; with the number of machines to run a multilayer application, and with the

type of environment. The last one means whether resources are required for test, develop-

ment, or production environment. In addition, it can be included if it is acceptable to use

the spot price [2], supported by Amazon.

Availability: This is related with the ability of the system to respond to user re-

quests. Therefore, it is important to ask system administrators the minimum percentage of

uptime required from cloud providers, the different locations where the application will be

accessed or if the application supports load balance to estimate resources for this function-

ality. Other aspect to be considered is if there is a defined time contract or if the service is

continuing over the time.

Efficiency: The efficiency is associated with the application performance. There-

fore, it is necessary to ask administrators values of response time, throughput, and workload

expected for the application.

Cost: This requirement is related with how much the customer is willing to pay

in order to be provided with a service that supports all the additional non-functional

requirements. It is possible to ask the price expected to pay for a window of time.

The requirements mentioned above are probably sufficient to make a satisfactory

estimation of cloud resources and to choose an adequate cloud provider. However, these

requirements could be not enough for some applications and for other some of this could

be irrelevant. Therefore, it is important to allow system administrators to add and remove

no functional requirements in a dynamic way.

Apart from the dynamic management of non-functional requirements, other aspect

to consider is the way that they should be evaluated. The idea is to use a workflow to

evaluate requirement by requirement according to a priority given by system administra-

tors. Understanding, that non-functional requirements are generally contradictories, so if

a user wants to achieve one level in one requirement, probably he/she has to sacrifice other

15

requirements. Thus, the more important requirements are guarantee even though others

that have less priority could not be satisfied. Figure 4 represents the workflow to evaluate

non-functional requirements.

Figure 4: Workflow to evaluate non-functional requirements.

3.2 Cloud Resource Estimator

The architecture proposed for the Cloud Resources Estimator follows a client-server model

of three tiers composes of database, business, and presentation tier. The next sections

explain the functionality and design of each tier.

3.2.1 Database Tier

In the database tier, two different entity relation models are proposed and implemented.

The first one keeps non-functional requirements, their features, and the values that these

features can assume. The second one, which is used to estimate resources, stores data with

the results of application profiles executed in different infrastructures.

The first entity relation model, related to non-functional requirements, is presented

in Figure 5 together with an example of how it is populated in Figure 6. Next, the main

entities are described.

Est nf requirement: This relation enables storage of as many non-functional re-

quirements as needed. Each new requirement should specify the name of the class that will

16

Figure 5: Entity relation model of non-functional requirements.

Figure 6: Example of the data stored.

evaluate it in the business logic, thus this new requirement can be added dynamically.

Est feature: This relation is created to specify the features associated to each

requirement. A field to notice in this relation is feature type, because this identify whether

a feature receives close values, such Yes or No, or accepts open values, such as number of

days of a contract or response time.

Est feature value: This relation contains the values that a user can chose for

features of type close. For example, in Figure 6, the rows with Feature ID 2 (OS image

bits) contains the two possible answers, stored in the Feature Value ID 4 and 5 with the

Feature value 32 bits and 64 bits respectively.

A second entity relation model, showed in Figure 7, represents the data related with

the application profile and the performance estimation in different infrastructures. This

was designed considering the work presented by Stewart and Shen [32] that proposes pre-

diction of throughput of an application based in the performance of individual components

and the cost of communication among them. This approach has the advantage of allowing

17

the estimation of the application performance with components deployed in different in-

frastructures and possibly in different cloud providers. A description of entities suggested

to storage this information is provided below.

Figure 7: Entity relation model of application profile.

Est app: This relation represents the application, which is composed of one or more

components.

Prof app component: This relation stores the different components that consti-

tutes an application.

Prof infrastructure: This relation represents the characteristic of different infras-

tructures where the profiles are executed.

Prof component infrast: From this relation it is possible to obtain the perfor-

mance of each component in each infrastructure.

Prof communication: This relation stores the cost and overhead of communica-

tion between a component c1 installed in a infrastructure i1 and a component c2 installed

in a infrastructure i2.

3.2.2 Business Tier

The business tier of the Cloud Resource Estimator encapsulates the functionality to recov-

ery data from the database and the logic to create a workflow to evaluate non-functional

requirements and to perform the estimation of resources needed from cloud providers. In

18

order to present the design, a general description of the classes that compose the class

diagram (Figure 8) is given here.

Figure 8: Class diagram business tier.

CloudEstimator: This class was designed following the Facade pattern [35], so

this is the only interface to access the functionality of the Resource Estimator. It has two

methods getNFRequirements, to obtain the values from the database, and evaluateNFRe-

quirements, which begins the workflow to evaluate non-functional requirements.

WorkflowEvaluator: This class manages the workflow. Therefore, its process

consists in obtaining each requirement according with its priority, from a list given by the

system administrator, to then evaluate it. For each non-functional requirement it uses

the associated evaluator class (this association is stored in the database in the relation

est nf requirement shown in Figure 5).

CloudRequest: This class represents a cloud provider request. This request can in-

clude one or several configurations if they have the same specifications. However, if different

configurations are needed, different instance of CloudRequest are created. A CloudRequest

is created with default field values that are changed for the evaluators considering the

features provider by the user.

CloudTotalRequest: This class keeps all the different requests, CloudRequest, that

can result after running the evaluators of each non-functional requirement.

19

NFEvaluator: This is the abstract class that is inherited for each one of the eval-

uators that are created to assess each non-functional requirement. The only method that

it implements is evaluateNFRequirement, which receives an object CloudTotalRequest and

returns a CloudTotalRequest modified for the workflow of non-functional requirements.

EvaluatorFactory: This class is used by WorkflowEvaluator to obtain the imple-

mentation of each evaluator. This class follows the Factory pattern [35], thus it receives

the name of the evaluator and according with this creates and returns a implementation of

a class that inherits from the abstract class NFEvaluator.

The classes that were not described, NFEvaluatorPortability, NFEvaluatorAvail-

ability, NFEvaluatorReliability,NFEvaluatorEfficiency and NFEvaluatorCost, correspond

to evaluators, that assess each non-functional requirement and that inherits from the class

NFEvaluator. In this document, we describe, as an example, the functionality of the eval-

uator NFEvaluatorEfficiency.

NFEvaluatorEfficiency: To evaluate efficiency and estimate resources, we pro-

pose, in an initial step, to use a profile [33, 19, 17, 30] that runs the application components

with a given workload. The results of the execution, which are resources consumed and

performance achieved, can be store in the entity relation model presented in Figure 7. The

idea is to profile components in different infrastructures [30] to have better estimations.

Having the profile, the second step is to use this information to feed an estimator

model, for example a neural network as suggested by Kundu et.al [16]. Then, in a third

step this model can be used to estimate resources, that an application could need when it

is deployed with different workload and when it needs to achieve a different performance.

After this estimation, the new data obtained, using the model, should be also stored in

the database and possibly updated with the real values that could result of running the

application in the cloud provider. This new data is stored to update the model and to

make it more accurate. After, profiling, modeling the application and estimating resources,

the output is generated, updating the existent CloudTotalRequest with the result of the

estimation. Figure 9 shows the steps executed.

3.2.3 Presentation Tier

The presentation tier corresponds to the graphic interface that is used by system adminis-

trators in order to access the application functionality. An important design requirement of

this tier is to provide a friendly interface to allow users adding and removing non-functional

20

Figure 9: Steps executed by the evaluator NFEvaluatorEfficiency.

requirements, and supply the information of the features that describe them. It also should

support the entry of the non-functional priority that is given by order.

3.3 Resource Selection Decision Maker

The Resource Selection Decision Maker receives cloud resources requirements to suggest

a set of possible configurations prioritized by price. Non-functional requirements features

can include new constraints that along with the priority given by system administrators to

non-functional requirements, should be considered to select the most adequate providers.

Our architecture of Resource Selection Decision Maker is based on the model proposed by

Son [31], but it has been substantially improved.

First we propose to extend the data base schema adding new relations to store

the values that cloud providers have for new features (see Figure 11). For example, a

relation Uptime could be added to store the information related with the availability of

the different cloud providers, in order to include a new constraint of minimum percentage

of uptime to filter the candidate providers. Other examples of additional constraints are

shown In Figure 10.

Figure 10: Example of constraints to filter the candidate cloud providers.

21

The output of the Resource Selection Decision Maker is a set of possible configura-

tions organized by the best price. We add a new functionality that receives this configura-

tions and order them according with the priority given to non-functional requirements. This

is achieved with a relation NFR Evaluation (see Figure 11). It keeps the assessment that

the different providers receive for each non-functional requirement [11]. This data could be

maintained by using the information from cloud monitoring services and by collecting the

experience of users when they deploy their applications in different cloud providers.

Figure 11: Extension of the database schema of the Resource Selection Decision Maker.

The proposed architecture allows system administrators to allocate resources in the

cloud without providing low-level technical details, but providing a high level knowledge,

represented with prioritized non-functional requirements. They are used in the components

responsible for estimating resources and selecting cloud providers. The overall architecture

shows that to provide an automated system it is necessary the integration of inputs and

outputs of the different components. To facilitate the integration of the Cloud Resource

Estimator, the architecture was designed using a multitier model. Therefore, the business

component can be invoked from a web base interface or for an external application that

needs to use its services. The next section details a prototype implementation of the

proposed architecture.

22

4 Implementation

In order to illustrate and evaluate the functionality of the proposed architecture, we im-

plement a web base prototype that includes the Cloud Resource Estimator and the func-

tionality to prioritize candidate providers by non-functional requirements included in the

Resource Selection Decision Maker. The present section provides the details of this imple-

mentation.

4.1 Technical Details

The prototype was developed using the Java Platform Enterprise Edition 7 (Java EE 7) [27],

which is the last version of a middleware software platform that gives complete support

to develop multitier architectures, such as the one proposed in the design of the Cloud

Resource Estimator. To deploy the prototype was used the application web server for Java

EE GlassFish 4.0 [12].

The database selected was My SQL 5.5 [24] and to access the database following

the JEE standard, the Java Persistence API included in Java EE 7, was used. This API

allows Object-Relation Mapping. It means that the database relations are mapped to

Java objects, making simpler to deal with database instances. The presentation tier was

developed using Java Server Faces 2.0 [28] using components from JBoss RichFaces 4.3.3

[15].

The use of this technologies allow us to implement an architecture of three tier where

presentation and business components are well defined and independent developed, so it is

possible to build a web interface or other type of interfaces without performing any changes

in the business and database tier.

4.2 Cloud Resource Estimator

The prototype of the Cloud Resource Estimator includes the implementation of the two

entity relation models presented in the section 3.3.3, that were created for keeping non-

functional requirements data (see Figure 5) and for storing the profile information (see

Figure 7). The implementation of the Resource Estimator assumes that the profile of

the applications was performed off-line. Therefore, this information is available when the

workflow of non-functional requirements is executed.

The Resource Estimator was configured with four non-functional requirements: porta-

23

bility, availability, reliability and efficiency. They were configured with the features neces-

sary to create a resource estimation request able to supply the information required for the

existent Selection Decision Maker.

One interesting feature of the implemented availability requirement is that it is able

to add more than one location, so a cloud request estimation is created for each selected

place. Moreover, the prototype is also able to work with application components. Therefore,

It is required to store the results of the profile in n components, if the requirement is running

the application in n virtual machines. Having this information, the prototype is able to

generate individual estimations of the resources required for run each component in different

virtual machines.

To facilitate the user tasks of adding, removing, and prioritizing requirements by

order, a pick list, as is shown in Figure 12, was used. The order given by the user is stored

in the relation App nf requirement, which have the structure shown in Figure 13. This

relation was used to consider non-functional requirements in the prioritization of cloud

providers explained in the next subsection.

Figure 12: Picklist for adding, removing and ordering non-functional requirements.

Figure 13: Relation App nf requirement.

Figure 14 shows an example of the screen used for user to supply the features and

the priority by order of the non-functional requirements and Figure 15 shows the output

screen provided by the prototype.

24

Figure 14: Resource Estimation Request.

4.3 Candidate Providers Prioritization

The functionality to prioritize candidate providers by non-functional requirements was im-

plemented including two relations of the design proposed to improve the Resource Selection

Decision Maker: Provider and NFR Evaluation (see Figure 16). The information contained

in these two relations along with the order of the non-functional requirement stored in the

relation App nf requirement (see Figure 13) are used to reorganize the output list of candi-

date cloud providers generated for the existent Resource Selection Decision Maker. After

organized, the list conserves the same format of the input, so it can be used as the in-

put of the next component of the architecture which is the automated resource allocator.

Figure 17 shows the screen of this functionality.

25

Figure 15: Resource Estimation Result.

Figure 16: Relations Provider and NFR Evaluation.

26

Figure 17: Candidate providers order by non-functional requirements.

27

5 Evaluation

In this section, we present the experiments carried out to evaluate the proposed architecture.

The Resource Estimator was evaluated in order to have its performance measure. The

Selection Decision Maker was assessed, in order to evaluate the benefits of including non-

functional requirements in the prioritization of cloud provider candidates.

5.1 Cloud Resource Estimator

We evaluate the Cloud Resource Estimator by showing that the proposed architecture

is able to scale dynamically when the number of requirements and requirement’s fea-

tures increase. For this purpose, it was created and evaluator class, which inherits from

NFEvaluator. To enable the evaluation, this evaluator modifies 12 properties of the class

CloudRequest. This class was associated in the relation est nf requirement as the dynamic

class that evaluated the non-functional requirements.

The platform used to test the application was the Australia Research Cloud NeCTAR

[25] and for the experiments, was utilized an instance of type m1.small. Instances of this

type have 4GB of RAM, 1 CPU core and 10 GB of Disk. The Operating System used in

the virtual instance was Ubuntu 13.04.

To increase the number of requirements, the relation est nf requirement was popu-

lated with different workloads, beginning with 10 requirements and increasing the number

by 10 until reaching 300. In the same way, the number of features in the relation est feature

were incremented. For each increment of requirements and requirement’s features, the time

spending in performing the non-functional requirements evaluation was measured. The re-

sults of the experiment are shown in Figure 18

The conclusion of this experiment is that the application prototype scales satisfacto-

rily when the number of requirements increase but the performance is more affected when

the number of features grows. However, moving to a real environment it is very unlikely

that the number of features achieve a number higher than 70, which is the number were

the performance begin to decrease. Also, looking to the extreme case the time consume to

process 300 requirements with 300 features does not take more than 4 seconds, which is an

acceptable time to process this amount of information.

Another observation in relation to the graph is that the modification of the number

of requirements and features were performed in objects in memory that map the database

28

Figure 18: Set of candidate providers to be priorized.

relations, therefore allocation and deallocation of objects increase the work of the Java

garbage collector. In the real environment objects will be loaded just one time in memory

without modifications, so it is expected to have better performance.

5.2 Resource Selection Decision Maker

Experiments performed for the Resource Selection Decision Maker have the main objective

of assessing the benefits of including non-functional requirements in the Selection Decision

Maker.

First, the functionality of the system was tested with synthetic information, to show

the correct process of the prototype when it organize candidate cloud providers by non-

functional requirements. The relations Provider, NFR evaluation were populated with the

information given in the Table 6 and the non-functional requirements of a given application

were prioritized according to the order shown in Table 7. The input of initial set of candidate

cloud providers prioritized by price and the output of this set prioritized by non-functional

requirements are shown in Figure 19.

The new prioritization of the candidates providers shows how the provider2:location1

is considered the best option, because it has bigger evaluation in relation to portability than

the provider 1:location1, which by price was the best option. Moreover, provider2:location1

has same portability evaluation than the provider2:location2 ; however, thanks to the con-

sideration of the next requirements, it is possible to find that provider2:location1 is the

29

Table 6: Synthetic evaluation of non-functional requirements.

Table 7: Non-functional requirements prioritized by order.

Figure 19: Set of candidate provider order by non-functional requirements.

best configuration. After perform this experiment we conclude that more non-functional

requirements mean more refined prioritization of the set of candidate providers. Therefore,

even if price is considered the best option, adding more requirements allows the system to

make better decisions.

A second experiment for assessing the benefits of non-functional requirements in the

selection of the cloud providers uses information of monitoring service for evaluating cloud

provider using non-functional requirements. Availability was measured using % Uptime

of the last 90 days, published by CloudHarmony [6] and efficiency was measured using

the world response time of the last 30 days, published by CloudSleuth [8]. The candidate

30

configurations considered for the experiment are the ones provided in Table 8.

For the experiments we assume that a user requests a virtual machine with the

following features: 1 core(CPU), 1 GB(RAM) , 50 GB, 1 hour execution and with operating

system Linux. Therefore, all the providers offer configurations that fulfil the requirements.

Then, the configurations were prioritized by price, availability, and efficiency.

Table 8: Set of candidate providers to prioritized.

Table 9: Set of candidate providers order by price.

The suggestion that provides a decision based in price can be observed in the Ta-

ble 9. This organization of candidate providers by price is adequate if this is the most

important attribute for users. However, if the organizations using the cloud are able to

make profit from this configuration, they will be willing to pay more, if this represents

a better experience for their customers. Table 10 and Table 11 show recommendations

that could be better for users that are more concerned about efficiency and availability. It

is interesting to notice that GoGrid is not a good option if candidates are prioritized by

price. Nevertheless, GoGrid is more relevant when availability and efficiency become more

important.

31

Table 10: Set of candidate providers order by % uptime.

Table 11: Set of candidate providers order by response time.

32

6 Conclusion and Future Directions

Cloud computing following the Infrastructure as a service model, promises to change the

way that computing and storage resources are acquired. It gives the possibility of paying

just for the resources consumed, and it allows the IT infrastructure to be hosted in external

data centers. Thus, less specific hardware knowledge is required by system administrators.

This features make cloud computing and interesting option for companies. How-

ever, deploying applications in the cloud is still a complex task. It requires from system

administrators skills for estimating resources required by their applications, what is difficult

because system administrators frequently do not know what they really need and because

estimation in the cloud and outside of the cloud can be different. Besides, administrators

also need to select adequate cloud providers among of many options and type of services,

and to allocate applications in one or more providers.

The goal of the project presenting in this thesis was to propose an architecture

supporting system administrators in the arduous task of deploying applications in the

cloud. Two main tasks were developed. First, non-functional requirements were used to

estimate the resources that a given application could consume in public cloud providers.

In a second task, non-functional requirements were used to improve the decision process of

selecting the most convenient providers to deploy applications.

In the development of this project, as part of the system context, we explored the

main concepts of cloud computing, the differences that make difficult the selection of pub-

lic cloud provider among existent options, and the previous work to select and allocate

resources in public cloud providers [31]. Then, we presented bibliographic reviews related

to cloud monitoring services, techniques for estimation of computing resources, and existing

tools to compare cloud providers.

The architecture proposed is composed of three main modules The Cloud Resource

Estimator, The Resource Selection Decision Maker and the Automated Resource Allocator.

We focused in the design of two first modules. In the design of The Resource Estimator, we

propose an approach that uses a model of three tiers database, business and presentation,

and allows estimating the resources required by applications and evaluating a set of non-

functional requirements according to the priority given by the user. For Resource Selection

Decision Maker, we propose to improve the selection based in price including non-functional

requirements. The modifications required in the existent architecture to support the new

functionality were implemented in a prototype.

33

Finally, experiments were performed. The first one was used to validate the per-

formance and scalability of the architecture proposed for the Resources Estimator, which

showed that it scales well regarding to non-functional requirements and its features. Addi-

tional experiments were implemented to demonstrate how the order of the candidate cloud

providers changes when non-functional requirements are included; benefiting the applica-

tions where the price is not the most important issue to be considered.

Future works related to this project can focus in different directions. First, in the

area of resource estimation, techniques proposed for different authors [32, 30, 36, 16] could

be compared and tested, to find the one that is more accurate to estimate resources in

public cloud providers.

Other efforts could address the design of monitoring services that include additional

metrics to measure the level in which different cloud providers achieve non-functional re-

quirements others than efficiency and availability. For this purpose, it is important to

explore time and amount of data that a metric should consider to generate fairly compar-

isons. In relation to this topic, the proposed Resource Selection Decision Maker component

of our architecture could be expanded, considering the best way to automatically include

measurements collected the by selected monitoring services.

Moreover, The Resource Estimator could also be improved including new models to

prioritize non-functional requirements, for example the model based in weight proposed by

Garg et al. [11] could be an interesting option.

Finally a really interesting future challenge is to modify the architecture proposed

to make it able to estimate, select and allocate resources in a dynamic way. Therefore, it

would be possible for the applications to acquire more resources when it needs it or when

the cloud provider does not have the behavior expected.

34

References

[1] Amazon. Amazon. http://aws.amazon.com/. Accessed: 2013-09-29.

[2] Amazon. Amazon EC2 Spot Instances. http://aws.amazon.com/ec2/spot-instances/.

Accessed: 2013-09-29.

[3] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy Katz,

Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei

Zaharia. A view of cloud computing. Commun. ACM, 53(4):50–58, 2010.

[4] Rajkumar Buyya, Rajiv Ranjan, and Rodrigo N Calheiros. InterCloud: utility-oriented

federation of cloud computing environments for scaling of application services. In

Algorithms and architectures for parallel processing, pages 13–31. Springer, 2010.

[5] Lawrence Chung, B Nixon, E Yu, and J Mylopoulos. Non-functional requirements.

Software Engineering.

[6] CloudHarmony. CloudHarmony. http://cloudharmony.com/. Accessed: 2013-09-23.

[7] CloudSigma. CloudSigma. http://www.cloudsigma.com/. Accessed: 2013-09-29.

[8] CloudSleuth. CloudSleuth. https://cloudsleuth.net/global-provider-view. Accessed:

2013-09-23.

[9] Dave Durkee. Why cloud computing will never be free. Queue, 8(4):20, 2010.

[10] Eucalyptus. Eucalyptus. http://www.eucalyptus.com//. Accessed: 2013-10-27.

[11] Saurabh Kumar Garg, Steven Versteeg, and Rajkumar Buyya. SMICloud: A frame-

work for comparing and ranking cloud services. In Utility and Cloud Computing

(UCC), 2011 Fourth IEEE International Conference on, pages 210–218. IEEE, 2011.

[12] GlassFish. GlassFish. https://glassfish.java.net. Accessed: 2013-10-30.

[13] GoGrid. GoGrid. http://www.gogrid.com/. Accessed: 2013-09-29.

[14] Hyperic. CloudStatus. http://www.hyperic.com/products/cloud-status-monitoring.

Accessed: 2013-09-23.

[15] JBoss. RichFaces. http://www.jboss.org/richfaces. Accessed: 2013-10-30.

35

[16] Sajib Kundu, Raju Rangaswami, Kaushik Dutta, and Ming Zhao. Application per-

formance modeling in a virtualized environment. In High Performance Computer Ar-

chitecture (HPCA), 2010 IEEE 16th International Symposium on, pages 1–10. IEEE,

2010.

[17] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. Cloudcmp: comparing

public cloud providers. In Proceedings of the 10th ACM SIGCOMM conference on

Internet measurement, pages 1–14. ACM, 2010.

[18] Ang Li, Xiaowei Yang, Srikanth Kandula, and Ming Zhang. CloudCmp: shopping for

a cloud made easy. USENIX HotCloud, 2010.

[19] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming

Zhang. CloudProphet: predicting web application performance in the cloud.

http://www.cs.duke.edu/ angl/papers/cloudprophettr.pdf, 2011.

[20] Ang Li, Xuanran Zong, Srikanth Kandula, Xiaowei Yang, and Ming Zhang. Cloud-

Prophet: towards application performance prediction in cloud. In ACM SIGCOMM

Computer Communication Review, volume 41, pages 426–427. ACM, 2011.

[21] Peter Mell and Timothy Grance. The NIST definition of cloud computing (draft).

NIST special publication, 800(145):7, 2011.

[22] Microsoft. Azure. http://www.windowsazure.com/. Accessed: 2013-09-29.

[23] mOSAIC. mOSAIC. http://developers.mosaic-

cloud.eu/confluence/display/MOSAIC/mOSAIC+Java+API+-+ProgrammingGuide.

Accessed: 2013-11-03.

[24] MySQL. MySQL. http://www.mysql.com/. Accessed: 2013-10-30.

[25] Nectar. Nectar Research Cloud. http://www.nectar.org.au/research-cloud. Accessed:

2013-09-29.

[26] OpenNebula. OpenNebula. http://www.opennebula.org/. Accessed: 2013-10-27.

[27] Oracle. Java EE 7. http://www.oracle.com/technetwork/java/javaee/overview/index.html.

Accessed: 2013-10-30.

36

[28] Oracle. JavaServer Faces Technology. http://www.oracle.com/technetwork/java/javaee/javaserverfaces-

139869.html. Accessed: 2013-10-30.

[29] Massimiliano Rak, Antonio Cuomo, and Umberto Villano. Cost/performance evalua-

tion for cloud applications using simulation. In Enabling Technologies: Infrastructure

for Collaborative Enterprises (WETICE), 2013 IEEE 22nd International Workshop

on, pages 152–157. IEEE, 2013.

[30] Shuichi Shimizu, Raju Rangaswami, Hector A Duran-Limon, and Manuel Corona-

Perez. Platform-independent modeling and prediction of application resource usage

characteristics. Journal of Systems and Software, 82(12):2117–2127, 2009.

[31] Jungmin Son. Automated decision system for efficient resource selection and allocation

in inter-clouds. Master’s thesis, The University of Melbourne, Australia, 2013.

[32] Christopher Stewart and Kai Shen. Performance modeling and system management for

multi-component online services. In Proceedings of the 2nd conference on Symposium

on Networked Systems Design & Implementation-Volume 2, pages 71–84. USENIX

Association, 2005.

[33] David Villegas and Seyed Masoud Sadjadi. DEVA: distributed ensembles of virtual

appliances in the cloud. In Euro-Par 2011 Parallel Processing, pages 467–478. Springer,

2011.

[34] David Villegas and Seyed Masoud Sadjadi. Mapping non-functional requirements to

cloud applications. In International Conference on Software Engineering and Knowl-

edge Engineering, pages 527–532, 2011.

[35] John Vlissides, R Helm, R Johnson, and E Gamma. Design patterns: Elements of

reusable object-oriented software. Reading: Addison-Wesley, 49:120, 1995.

[36] Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, and Prashant Shenoy. Profiling

and modeling resource usage of virtualized applications. In Proceedings of the 9th

ACM/IFIP/USENIX International Conference on Middleware, Middleware ’08, pages

366–387, New York, NY, USA, 2008. Springer-Verlag New York, Inc.

[37] Miranda Zhang, Rajiv Ranjan, Armin Haller, Dimitrios Georgakopoulos, and Peter

Strazdins. Investigating decision support techniques for automating cloud service se-

37

lection. In Cloud Computing Technology and Science (CloudCom), 2012 IEEE 4th

International Conference on, pages 759–764. IEEE, 2012.

[38] Miranda Zhang, Rajiv Ranjan, Surya Nepal, Michael Menzel, and Armin Haller. A

declarative recommender system for cloud infrastructure services selection. In Eco-

nomics of Grids, Clouds, Systems, and Services, pages 102–113. Springer, 2012.

[39] Qi Zhang, Lu Cheng, and Raouf Boutaba. Cloud computing: state-of-the-art and

research challenges. Journal of Internet Services and Applications, 1(1):7–18, 2010.

38

